1
|
Ivantsova E, Martyniuk CJ. Environmental presence and toxicological outcomes of the herbicide pendimethalin in teleost fish. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:531-545. [PMID: 38896413 DOI: 10.1007/s10646-024-02767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Herbicides are often detected in aquatic ecosystems due to residential and agricultural applications and can harm aquatic organisms once deposited into water systems. Pendimethalin is part of the dinitroaniline chemical family and is applied to crops like corn, legumes, potatoes, and soybeans. The potential toxicity of pendimethalin to aquatic species is understudied compared to other widely studied herbicides, like atrazine and glyphosate. The objectives of this review were to (1) collate information on sub-lethal responses to pendimethalin exposure in fish, (2) evaluate how exposure studies relate to environmental concentrations, and (3) identify putative bioindicators for exposure studies. Overall, studies reporting pendimethalin in water systems worldwide indicate a range of 100-300 ng/L, but levels have been reported as high as ~15 µg/g in sediment. In teleost fish, studies demonstrate developmental toxicity, immunotoxicity, and behavioral disruptions. The strongest evidence for pendimethalin-induced toxicity involves oxidative stress, although studies often test toxicity at higher concentrations than environmentally relevant levels. Using the Comparative Toxicogenomics Database, pathway analysis reveals linkages to neurotoxicity and mechanisms of neurodegeneration like "Ubiquitin Dependent Protein Degradation", "Microtubule Cytoskeleton", "Protein Oxidation and Aggregation in Aging", and "Parkinson's Disease". Other prominent pathways included those related to mTOR signaling and reproduction. Thus, two potential mechanisms underlying pendimethalin-induced toxicity in fish include the neural and reproductive systems. This review synthesizes current data regarding environmental fate and ecotoxicology of pendimethalin in teleost fish and points to some putative physiological and molecular responses that may be beneficial for assessing toxicity of the herbicide in future investigations.
Collapse
Affiliation(s)
- Emma Ivantsova
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA.
- UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
2
|
Souza TL, de Morais TP, Neto FF, Opuskevitch I, Ferreira FCAS, Randi MAF, de Oliveira Ribeiro CA, de Souza C, Prodocimo MM. Physicochemical and bioinformatic characterization of Oreochromis niloticus vitellogenin as an endocrine disruption biomarker. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:12-24. [PMID: 36547786 DOI: 10.1007/s10646-022-02612-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Aquatic biota is increasingly being exposed to chemical pollutants due to human activities and the relationship between the level of environmental pollution and fish reproduction is a continuously ongoing issue. The vitellogenin (Vtg) protein synthesis can be induced in the liver of juvenile and male fish after stimulation of the estrogen receptor and therefore, Vtg has been used as a biomarker of xenoestrogen exposure in several fish species. The current study reported the first physicochemical characterization of Vtg from Oreochromis niloticus. Adult male fish were exposed to 17α-ethinylestradiol for Vtg induction. Purified vitellogenin from plasma showed low stability at 25 and 4 °C in saline conditions, and good stability in acidic (low pH) or in heated conditions. The 3D modeling provided useful information on the structure of O. niloticus Vtg showing conserved structural features. According to bioinformatics and experimental results, there are important structural differences between the two chemical forms of Vtg (VtgAb and VtgC) in a phylogenetic context. The present results add information about the development of ecotoxicological immunoassays to study the endocrine disruption in O. niloticus improving the Vtg performance as a biomarker of reproduction in fish.
Collapse
Affiliation(s)
- Tugstênio L Souza
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81.531-980, Curitiba, PR, Brazil
| | - Tobias P de Morais
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81.531-980, Curitiba, PR, Brazil
| | - Francisco Filipak Neto
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81.531-980, Curitiba, PR, Brazil
| | - Iracema Opuskevitch
- Copel GeT-SOS/DNGT, Rua José Izidoro Biazetto, No. 18, Bloco A, CEP 81200-240, Curitiba, PR, Brazil
| | - Fernando C A S Ferreira
- Copel GeT-SOS/DNGT, Rua José Izidoro Biazetto, No. 18, Bloco A, CEP 81200-240, Curitiba, PR, Brazil
| | - Marco Antônio Ferreira Randi
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81.531-980, Curitiba, PR, Brazil
| | - Ciro Alberto de Oliveira Ribeiro
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81.531-980, Curitiba, PR, Brazil
| | - Claudemir de Souza
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81.531-980, Curitiba, PR, Brazil
| | - Maritana Mela Prodocimo
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81.531-980, Curitiba, PR, Brazil.
| |
Collapse
|
3
|
Giglio A, Vommaro ML. Dinitroaniline herbicides: a comprehensive review of toxicity and side effects on animal non-target organisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76687-76711. [PMID: 36175724 PMCID: PMC9581837 DOI: 10.1007/s11356-022-23169-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/18/2022] [Indexed: 05/23/2023]
Abstract
The widespread use of herbicides has increased concern about the hazards and risks to animals living in terrestrial and aquatic ecosystems. A comprehensive understanding of their effective action at different levels of biological organization is critical for establishing guidelines to protect ecosystems and human health. Dinitroanilines are broad-spectrum pre-emergence herbicides currently used for weed control in the conventional agriculture. They are considered extremely safe agrochemicals because they act specifically on tubulin proteins and inhibit shoot and root growth of plants. However, there is a lack of toxicity information regarding the potential risk of exposure to non-target organisms. The aim of the present review is to focus on side effects of the most commonly used active ingredients, e.g. pendimethalin, oryzalin, trifluralin and benfluralin, on animal non-target cells of invertebrates and vertebrates. Acute toxicity varies from slightly to high in terrestrial and aquatic species (i.e. nematodes, earthworms, snails, insects, crustaceans, fish and mammals) depending on the species-specific ability of tested organisms to adsorb and discharge toxicants. Cytotoxicity, genotoxicity and activation of oxidative stress pathways as well as alterations of physiological, metabolic, morphological, developmental and behavioural traits, reviewed here, indicate that exposure to sublethal concentrations of active ingredients poses a clear hazard to animals and humans. Further research is required to evaluate the molecular mechanisms of action of these herbicides in the animal cell and on biological functions at multiple levels, from organisms to communities, including the effects of commercial formulations.
Collapse
Affiliation(s)
- Anita Giglio
- Department of Biology, Ecology and Earth Science, University of Calabria, via Bucci, 87036, Rende, Italy.
| | - Maria Luigia Vommaro
- Department of Biology, Ecology and Earth Science, University of Calabria, via Bucci, 87036, Rende, Italy
| |
Collapse
|
4
|
Mukherjee D, Saha S, Chukwuka AV, Ghosh B, Dhara K, Saha NC, Pal P, Faggio C. Antioxidant enzyme activity and pathophysiological responses in the freshwater walking catfish, Clarias batrachus Linn under sub-chronic and chronic exposures to the neonicotinoid, Thiamethoxam®. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155716. [PMID: 35526629 DOI: 10.1016/j.scitotenv.2022.155716] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
The hydrophilic nature and resultant persistence of neonicotinoids in aquatic systems increase the exposure duration for non-target organisms. The sublethal toxicity of the neonicotinoid Thiamethoxam® spanning sub-chronic and chronic durations was investigated in Clarias batrachus, a non-target freshwater fish species. 96 h LC50 value of Thiamethoxam® on Clarias batrachus was 138.60 mg L-1. Pre-determined exposure concentrations of Thiamethoxam® (6.93 and 13.86 mg L-1) were used and effects were assessed at days 15, 30, and 45 exposure intervals. Biomarker effects were evaluated using antioxidant enzyme responses (CAT, SOD) neurotransmission (acetylcholinesterase activity), haematological and serum biochemistry changes (including haemoglobin content, total erythrocyte count, and serum albumin total leukocyte count, total serum protein, serum globulin, triglyceride, cholesterol, high-density lipoprotein, very low-density lipoprotein, low-density lipoprotein, phospholipid, and total serum glucose), histopathological alterations (gill and liver). Thiamethoxam®-exposed fish showed a marked reduction in haemoglobin content, total erythrocyte count, and serum albumin levels compared to control fish. Similarly, gill and liver antioxidant enzyme activity (CAT, SOD) and neurotransmission (acetylcholinesterase) also showed altered responses between sub-chronic exposure on day-15 and chronic responses on day-45. Histopathological observations in gill tissue revealed alterations ranging from vacuolation, hypertrophy, disruption of primary lamellar architecture, haemorrhage, the fusion of secondary lamella, and sloughing of outer epithelia. For liver tissue of exposed fish histopathological observations included increased sinusoidal spaces (ISS), necrosis of hepatocytes (NOH), nuclear degeneration (ND), disruption of architecture (DOA), macrophage infiltration of the central vein, vacuolation (V), hypertrophied hepatocytes, and haemorrhages. The gradients of toxic responses across exposure concentrations and depictions of impaired fish health with increasing thiamethoxam® exposure duration portend lowered physiological capacity for survival in the wild.
Collapse
Affiliation(s)
- Dip Mukherjee
- Department of Zoology, S.B.S. Government College, Hili, Dakshin Dinajpur, 733126 West Bengal, India
| | - Shubhajit Saha
- Department of Zoology, Sundarban Hazi Desarat College, South 24 Parganas, 743 611 West Bengal, India
| | - Azubuike V Chukwuka
- National Environmental Standards and Regulations Enforcement Agency (NESREA), Osogbo, Nigeria.
| | - Biswatosh Ghosh
- Post Graduate Department of Zoology, Bidhannagar College, Kolkata 700 064, West Bengal, India
| | - Kishore Dhara
- Freshwater Fisheries Research & Training Centre, Directorate of Fisheries, Nadia 741 251, West Bengal, India
| | - Nimai Chandra Saha
- Department of Zoology, The University of Burdwan, Purba Barddhaman, 713 104 West Bengal, India
| | - Prasenjit Pal
- College of Fisheries, Central Agricultural University (I), Lembucherra, Tripura 799 210, India
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| |
Collapse
|
5
|
Duan M, Guo X, Chen X, Guo M, Xu H, Hao L, Wang C, Yang Y. Life Cycle Exposure to Cyhalofop-Butyl Induced Reproductive Toxicity in Zebrafish. TOXICS 2022; 10:495. [PMID: 36136460 PMCID: PMC9503539 DOI: 10.3390/toxics10090495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Cyhalofop-butyl (CyB) is a herbicide widely used in paddy fields that may transfer to aquatic ecosystems and cause harm to aquatic organisms. In this study, zebrafish (Danio rerio) were exposed to CyB at environmental concentrations (0.1, 1 and 10 µg/L) throughout their adult life cycle, from embryo to sexual maturity. The effects of CyB on zebrafish growth and reproduction were studied. It was found that female spawning was inhibited, and adult male fertility decreased. In addition, we examined the expression of sex steroid hormones and genes related to the hypothalamus-pituitary-gonad-liver (HPGL) axis. After 150 days of exposure, the hormone balance in zebrafish was disturbed, and the concentrations of 17β-estradiol (E2) and vitellogenin (VTG) were decreased. Changes in sex hormone were regulated by the expression of genes related to the HPGL axis. These results confirmed that long-term exposure to CyB at environmental concentrations can damage the reproductive capacity of zebrafish by disrupting the transcription of genes related to the HPGL axis. Overall, these data may provide a new understanding of the reproductive toxicity of long-term exposure to CyB in zebrafish parents and offspring.
Collapse
Affiliation(s)
- Manman Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Xuanjun Guo
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Xiangguang Chen
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Mengyu Guo
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Hao Xu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Lubo Hao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Chengju Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Yang Yang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
6
|
Peris A, Barbieri MV, Postigo C, Rambla-Alegre M, López de Alda M, Eljarrat E. Pesticides in sediments of the Ebro River Delta cultivated area (NE Spain): Occurrence and risk assessment for aquatic organisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119239. [PMID: 35398158 DOI: 10.1016/j.envpol.2022.119239] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Intense agricultural activities are performed in the Ebro River Delta (NE Spain) with extensive use of pesticides. Medium to highly polar pesticides have not been studied intensively in sediments despite its larger use in the recent years. This work aimed at assessing the occurrence of 69 pesticides, including medium to highly polar compounds, in sediments collected from drainage and irrigation channels of the Ebro River Delta during the main rice growing season. In addition, an environmental risk assessment was performed to evaluate the potential adverse effects to sediment-dwelling organisms with the risk quotient approach. A total of 24 pesticides were detected in sediments with bentazone and cypermethrin exhibiting high detection frequencies (79%) as well as high mean concentration levels (61.9 and 81.8 ng g-1 dw, respectively). Overall, the Alfacs bay, in the South of the delta, presented higher pesticide contamination than the Fangar bay, in the North. A similar pesticide distribution profile was observed in both bays, with oxadiazoles, organochlorines, pyrethroids, benzothiazinones and organophosphates as major, predominant classes. The presence of oxadiazon, pendimethalin and thifensulfuron methyl in the sediments may pose a moderate risk to sediment-dwelling organisms while bentazone, chlorpyrifos, and cypermethrin exhibited a potential high risk. Thus, the importance of the inclusion of medium to highly polar pesticides in the analysis of sediments is emphasized since some polar pesticides such as bentazone, imidacloprid, and thifensulfuron-methyl have been detected at concentrations that may pose a risk to aquatic organisms. Moreover, the co-occurrence of pesticides may potentially pose a high risk to sediment-dwelling organisms in 13 out of the 14 investigated locations. Finally, it could be concluded that the risk derived from the presence of pesticides in sediments must be assessed since some pesticides not detected at concerning levels in water, may pose a moderate/high risk in the sediments.
Collapse
Affiliation(s)
- A Peris
- Dep. of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - M V Barbieri
- Dep. of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - C Postigo
- Dep. of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - M Rambla-Alegre
- Institute of Agriculture and Food Research and Technology (IRTA), Ctra. Poble Nou, Km 5.5, Sant Carles de La Ràpita, Tarragona, 43540, Spain
| | - M López de Alda
- Dep. of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - E Eljarrat
- Dep. of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
7
|
Wang S, Lopez S, El Ahmadie N, Wengrovitz AS, Ganter J, Zhao YH, Souders CL, Martyniuk CJ. Assessing sub-lethal effects of the dinitroaniline herbicide pendimethalin in zebrafish embryos/larvae (Danio rerio). Neurotoxicol Teratol 2021; 89:107051. [PMID: 34813896 DOI: 10.1016/j.ntt.2021.107051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 12/19/2022]
Abstract
Pendimethalin is a dinitroaniline herbicide used to control broadleaf weeds by inhibiting the formation of microtubules during cell division. Its use on a variety of crops leads to its potential entry into aquatic environments, but little is known about its sub-lethal toxicity to early developmental stages of aquatic vertebrates. To address this knowledge gap, we assessed the toxicity of pendimethalin to zebrafish embryos and larvae by measuring mortality, developmental abnormalities, oxidative respiration, reactive oxygen species, gene expression, and locomotor activity following exposure to the herbicide throughout early development. Embryos at ~6 h post-fertilization (hpf) were exposed to either a solvent control (0.1% DMSO, v/v), embryo rearing medium (ERM), or one dose of either 1, 2.5, 5, or 25 μM pendimethalin for up to 7-days post fertilization depending on the bioassay. Exposure to 25 μM pendimethalin resulted in high prevalence of spinal curvature, tail malformations, pericardial edema, and yolk sac edema at 4 dpf, while exposure to 5 μM pendimethalin induced pericardial edema and lordosis in the fish exposed over 7 dpf. Exposure to pendimethalin up to 5 μM did not negatively impact oxidative respiration (e.g., basal respiration, oligomycin-induced ATP production) in embryos following a 24-h exposure. Pendimethalin did not induce reactive oxygen species at concentrations of 1-5 μM. Levels of transcripts associated with oxidative respiration and damage response were altered in 7d-larvae; cox1 mRNA was increased in larvae fish exposed to 1 μM while cox5a1 and sod2 mRNA were decreased with 2.5 μM exposure. The Visual Motor Response (VMR) test for light-dark response revealed that larval activity in the dark period was reduced for zebrafish exposed to >1 μM pendimethalin compared to ERM and DMSO solvent control groups. These data inform on the sub-lethal toxicity of pendimethalin to early stages of fish embryos and larvae.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China
| | - Sofia Lopez
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Nader El Ahmadie
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Andrew S Wengrovitz
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Jade Ganter
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Yuan Hui Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China.
| | - Christopher L Souders
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
8
|
Determination of Pendimethalin Dynamic Residual Distribution in Crucian Carp Tissues and Associated Risk Assessment. Int J Anal Chem 2021; 2021:9984230. [PMID: 34306087 PMCID: PMC8270702 DOI: 10.1155/2021/9984230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/21/2021] [Indexed: 01/12/2023] Open
Abstract
Pendimethalin has been considered a moderately to extremely toxic compound for fish and aquatic organism. This study developed the determination of dynamic residual distribution for pendimethalin in crucian carp tissues (muscle, liver, kidney, gill, and blood) under semistatic exposure system by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method. The pendimethalin residues in various fish tissues increased initially and then decreased, and the residue amount of pendimethalin varied from tissue to tissue of crucian carp. Particularly, the pendimethalin accumulation in most fish tissues made significant decreases at two-time points. Pendimethalin was initially absorbed and enriched by fish body, and then partial pendimethalin was discharged into the outside environment through the metabolism function of crucian carp. The residue levels of pendimethalin distributed in crucian carp were ranked in the following decreasing order: liver > kidney > gill or muscle > blood, attributed to the fact that pendimethalin tends to accumulate in lipid-rich tissues of fish. Risk assessment results indicated that the chronic risk from dietary exposure to pendimethalin through crucian carp consumption for Chinese residents was acceptable, along with a lower estimated exposure dose (EED) than acceptable daily intake (ADI) and risk quotient (RQ) < 1. This study performed the first analysis for pendimethalin residual distribution in crucian carp tissues under semistatic exposure condition and provided a reference for pollution control and risk assessment of pendimethalin aimed at aquatic products.
Collapse
|
9
|
Park H, Lee JY, Lim W, Song G. Assessment of the in vivo genotoxicity of pendimethalin via mitochondrial bioenergetics and transcriptional profiles during embryogenesis in zebrafish: Implication of electron transport chain activity and developmental defects. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125153. [PMID: 33485224 DOI: 10.1016/j.jhazmat.2021.125153] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Pendimethalin, an herbicide used to control weeds, acts by inhibiting plant cell division and mitosis. Several studies have reported the detrimental effects of pendimethalin on non-target organisms. It has been found to be especially toxic to aquatic life. Additionally, there is some evidence that pendimethalin induces mitochondrial stress. However, none of the studies have provided information about the functional defects in mitochondria and toxicity during embryogenesis. In this study, we evaluated the impact of pendimethalin on the electron transport chain (ETC) activity and mitochondrial complexes via in vivo screening of oxidative phosphorylation and transcriptional profiles in zebrafish embryos. The results showed that pendimethalin interferes with mitochondrial complexes I and V, which inhibit embryo energy metabolism, thereby leading to developmental defects. Transgenic zebrafish, fli1:eGFP and olig2:dsRed, were used to confirm pendimethalin-induced functional depletion in neurogenesis and vasculogenesis during embryo development. This study provides new insights into the methodology of environmental assessment of biohazard chemicals that target ETC activity in mitochondria. Additionally, the results suggest that real-time respiratory and metabolic monitoring in zebrafish will be useful for the genotoxicity assessment of environmentally hazardous substances and may be used as an alternative model for the control of aquatic environmental pollutants.
Collapse
Affiliation(s)
- Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jin-Young Lee
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
10
|
Shen C, Zhu K, Ruan J, Li J, Wang Y, Zhao M, He C, Zuo Z. Screening of potential oestrogen receptor α agonists in pesticides via in silico, in vitro and in vivo methods. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116015. [PMID: 33352482 DOI: 10.1016/j.envpol.2020.116015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/28/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
In modern agricultural management, the use of pesticides is indispensable. Due to their massive use worldwide, pesticides represent a latent risk to both humans and the environment. In the present study, 1056 frequently used pesticides were screened for oestrogen receptor (ER) agonistic activity by using in silico methods. We found that 72 and 47 pesticides potentially have ER agonistic activity by the machine learning methods random forest (RF) and deep neural network (DNN), respectively. Among endocrine-disrupting chemicals (EDCs), 14 have been reported as EDCs or ER agonists by previous studies. We selected 3 reported and 7 previously unreported pesticides from 76 potential ER agonists to further assess ERα agonistic activity. All 10 selected pesticides exhibited ERα agonistic activity in human cells or zebrafish. In the dual-luciferase reporter gene assays, six pesticides exhibited ERα agonistic activity. Additionally, nine pesticides could induce mRNA expression of the pS2 and NRF1 genes in MCF-7 cells, and seven pesticides could induce mRNA expression of the vtg1 and vtg2 genes in zebrafish. Importantly, the remaining 48 out of 76 potential ER agonists, none of which have previously been reported to have endocrine-disrupting effects or oestrogenic activity, should be of great concern. Our screening results can inform environmental protection goals and play an important role in environmental protection and early warnings to human health.
Collapse
Affiliation(s)
- Chao Shen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Kongyang Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jinpeng Ruan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jialing Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yi Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Meirong Zhao
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, 361005, China.
| |
Collapse
|
11
|
Saquib Q, Siddiqui MA, Ansari SM, Alwathnani HA, Musarrat J, Al-Khedhairy AA. Cytotoxicity and genotoxicity of methomyl, carbaryl, metalaxyl, and pendimethalin in human umbilical vein endothelial cells. J Appl Toxicol 2021; 41:832-846. [PMID: 33427323 DOI: 10.1002/jat.4139] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/15/2020] [Accepted: 12/27/2020] [Indexed: 12/13/2022]
Abstract
Pesticides have adverse effects on the cellular functionality, which may trigger myriad of health consequences. However, pesticides-mediated toxicity in the endothelial cells (ECs) is still elusive. Hence, in this study, we have used human umbilical vein endothelial cells (HUVECs) as a model to quantify the cytotoxicity and genotoxicity of four pesticides (methomyl, carbaryl, metalaxyl, and pendimethalin). In the MTT assay, HUVECs exposed to methomyl, carbaryl, metalaxyl, and pendimethalin demonstrated significant proliferation inhibition only at higher concentrations (500 and 1000 μM). Likewise, neutral red uptake (NRU) assay also showed proliferation inhibition of HUVECs at 500 and 1000 μM by the four pesticides, confirming lysosomal fragility. HUVECs exposed to the four pesticides significantly increased the level of intracellular reactive oxygen species (ROS). Comet assay and flow cytometric data exhibited DNA damage and apoptotic cell death in HUVECs after 24 h of exposure with methomyl, metalaxyl, carbaryl, and pendimethalin. This is a first study on HUVECs signifying the cytotoxic-genotoxic and apoptotic potential of carbamate insecticides (methomyl and carbaryl), fungicide (metalaxyl), and herbicide (pendimethalin). Overall, these pesticides may affect ECs functions and angiogenesis; nonetheless, mechanistic studies are warranted from the perspective of vascular biology using in vivo test models.
Collapse
Affiliation(s)
- Quaiser Saquib
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Maqsood A Siddiqui
- DNA Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sabiha M Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hend A Alwathnani
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Javed Musarrat
- Faculty of Agricultural Sciences, Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | | |
Collapse
|
12
|
Soni R, Verma SK. Impact of herbicide pretilachlor on reproductive physiology of walking catfish, Clarias batrachus (Linnaeus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:2065-2072. [PMID: 32772217 DOI: 10.1007/s10695-020-00853-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Herbicide pretilachlor is widely used in paddy fields to control annual weeds. The present study has been carried out in walking catfish, Clarias batrachus, to evaluate the impact of herbicide pretilachlor on reproductive physiology after chronic exposure. Based on the median lethal concentration value (96 h), fish were exposed to three nominal test concentrations of pretilachlor ((SL-I (1/20th LC50), SLII (1/15th LC50), and SL-III (1/10th LC50)) for 30, 45, and 60 days after which plasma sex steroid profile, plasma vitellogenin concentration, and gonadal aromatase activity were analyzed in both sexes. Plasma concentration of testosterone decreases in herbicide-exposed male fish. Significant increase in plasma 17β-estradiol, plasma vitellogenin concentration, and gonadal aromatase activity were observed in herbicide-exposed male fish. All these alterations in reproductive parameters in male fish are dependent on concentration and exposure duration of herbicide. On the other hand, significant decrease in plasma concentration of testosterone was observed in female fish which was also dependent on concentration and exposure duration of herbicide. No significant changes in plasma 17β-estradiol concentrations, plasma vitellogenin concentration, and gonadal aromatase activity were observed in female fish. Above findings clearly suggested that herbicide pretilachlor acts as endocrine disruptor in fish and affects overall reproductive physiology of fish, but its ability to induce reproductive toxicity in male and female differs considerably.
Collapse
Affiliation(s)
- Rakesh Soni
- Department of Zoology, Guru Ghasidas Vishwavidyalaya (Central University), Bilaspur, Chattisgarh, India
| | - Sushant Kumar Verma
- Department of Zoology, Guru Ghasidas Vishwavidyalaya (Central University), Bilaspur, Chattisgarh, India.
| |
Collapse
|
13
|
Pradhan D, Singh RK, Verma SK. Genotoxic Potential Assessment of the Herbicide Bispyribac-Sodium in a Fresh Water Fish Clarias batrachus (Linn.). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:715-720. [PMID: 32970224 DOI: 10.1007/s00128-020-03003-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Genotoxic potential of herbicide bispyribac-sodium was evaluated in fish Clarias batrachus using micronucleus (MN) test and comet assay. Fish were exposed to three environmentally relevant test concentrations of the herbicide for 20, 25 and 30 days. Significant effects (p < 0.05) for both concentration and duration of exposure were observed in herbicide exposed fish. Similar trend of DNA damage was observed through MN test and comet assay. Maximum DNA damage was observed in fish exposed to highest concentration of herbicide at all duration. Maximum damage was observed on day 25 at all concentrations followed by a decline. This study established C. batrachus as an ecotoxicological model for bispyribac-sodium induced genotoxicity testing. It further confirmed that both MN test and comet assay are useful tool for assessment of genotoxicity induced by water pollutants.
Collapse
Affiliation(s)
- Dibyajyoti Pradhan
- Department of Zoology, Dr. C. V. Raman University, Bilaspur, Chattisgarh, India
| | | | - Sushant Kumar Verma
- Department of Zoology, Guru Ghasidas Vishwavidyalaya (Central University), Bilaspur, Chattisgarh, India.
| |
Collapse
|