1
|
Baranoski A, Semprebon SC, Biazi BI, Zanetti TA, Corveloni AC, Areal Marques L, Lepri SR, Coatti GC, Mantovani MS. Piperlongumine inhibits antioxidant enzymes, increases ROS levels, induces DNA damage and G2/M cell cycle arrest in breast cell lines. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:294-309. [PMID: 38279841 DOI: 10.1080/15287394.2024.2308801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
Piperlongumine (PLN) is a biologically active alkaloid/amide derived from Piper longum, with known promising anticancer activity. The aim of this study was to compare the antiproliferative activity of PLN in human breast MCF-7 adenocarcinoma cell line with effects in HB4a normal mammary epithelial non-tumor cell line. The parameters examined were cell growth, viability, reactive oxygen species (ROS) levels and DNA damage, as well as the effects on the modulating targets responsible through regulation of these pathways. PLN increased ROS levels and expression of the SOD1 antioxidant enzyme. PLN inhibited the expression of the antioxidant enzymes catalase, TRx1, and PRx2. The ability of PLN to inhibit antioxidant enzyme expression was associated with the oxidative stress response. PLN induced genotoxicity in both cell lines and upregulated the levels of GADD45A mRNA and p21 protein. The DNA damage response ATR protein was downregulated in both cell lines and contributed to an enhanced PLN genotoxicity. In HB4a cells, Chk1 protein, and mRNA levels were also decreased. In response to elevated ROS levels and DNA damage induction, the cells were arrested at the G2/M phase, probably in an attempt to promote cell survival. Although cell viability was reduced in both cell lines, only HB4a cells underwent apoptotic cell death, whereas other types of cellular death may be involved in MCF-7 cells. Taken together, these data provide insight into the anticancer mechanisms attributed to PLN effects, which acts as an inhibitor of DNA damage response (DDR) proteins and antioxidant enzymes.
Collapse
Affiliation(s)
- Adrivanio Baranoski
- Centro de Ciências Biológicas, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| | - Simone Cristine Semprebon
- Centro de Ciências Biológicas, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| | - Bruna Isabela Biazi
- Centro de Ciências Biológicas, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| | - Thalita Alves Zanetti
- Centro de Ciências Biológicas, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| | - Amanda Cristina Corveloni
- Centro de Ciências Biológicas, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| | - Lilian Areal Marques
- Centro de Ciências Biológicas, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| | - Sandra R Lepri
- Centro de Ciências Biológicas, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| | - Giuliana Castello Coatti
- Centro de Pesquisa Sobre o Genoma Humano e Células Tronco, Universidade de São Paulo, São Paulo, Brazil
| | - Mário Sérgio Mantovani
- Centro de Ciências Biológicas, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| |
Collapse
|
2
|
Francisco LFV, Baldivia DDS, Crispim BDA, Baranoski A, Klafke SMFF, Dos Santos EL, Oliveira RJ, Barufatti A. In vitro evaluation of the cytotoxic and genotoxic effects of Al and Mn in ambient concentrations detected in groundwater intended for human consumption. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115415. [PMID: 37696077 DOI: 10.1016/j.ecoenv.2023.115415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/13/2023]
Abstract
Environmental exposure to metals can induce cytotoxic and genotoxic effects in cells and affect the health of the exposed population. To investigate the effects of aluminum (Al) and manganese (Mn), we evaluated their cytogenotoxicity using peripheral blood mononuclear cells (PBMCs) exposed to these metals at previously quantified concentrations in groundwater intended for human consumption. The cell viability, membrane integrity, nuclear division index (NDI), oxidative stress, cell death, cell cycle, and DNA damage were analyzed in PBMCs exposed to Al (0.2, 0.6, and 0.8 mg/L) and Mn (0.1, 0.3, 1.0, and 1.5 for 48 h. We found that Al induced late apoptosis; decreased cell viability, NDI, membrane integrity; and increased DNA damage. However, no significant alterations in the early apoptosis, cell cycle, and reactive oxygen species levels were observed. In contrast, exposure to Mn altered all evaluated parameters related to cytogenotoxicity. Our data show that even concentrations allowed by the Brazilian legislation for Al and Mn in groundwater intended for human consumption cause cytotoxic and genotoxic effects in PBMCs. Therefore, in view of the results found, a comprehensive approach through in vivo investigations is needed to give robustness and validity to the results obtained, thus broadening the understanding of the impacts of metals on the health of environmentally exposed people.
Collapse
Affiliation(s)
- Luiza Flavia Veiga Francisco
- Postgraduate Program in Environmental Science and Technology, Faculty of Exact Sciences and Technology, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul 79804-970, Brazil; Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784-400, Brazil
| | - Debora da Silva Baldivia
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul 79804-970, Brazil
| | - Bruno do Amaral Crispim
- Postgraduate Program in Biodiversity and Environment, Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul 79804-970, Brazil
| | - Adrivanio Baranoski
- Stem Cell, Cell Therapy and Toxicological Genetics Research Centre, Medical School, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79080-190, Brazil
| | - Syla Maria Farias Ferraz Klafke
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul 79804-970, Brazil
| | - Edson Lucas Dos Santos
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul 79804-970, Brazil
| | - Rodrigo Juliano Oliveira
- Stem Cell, Cell Therapy and Toxicological Genetics Research Centre, Medical School, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79080-190, Brazil
| | - Alexeia Barufatti
- Postgraduate Program in Environmental Science and Technology, Faculty of Exact Sciences and Technology, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul 79804-970, Brazil; Postgraduate Program in Biodiversity and Environment, Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul 79804-970, Brazil.
| |
Collapse
|
3
|
Liu H, Zhang W, Jin L, Liu S, Liang L, Wei Y. Plumbagin Exhibits Genotoxicity and Induces G2/M Cell Cycle Arrest via ROS-Mediated Oxidative Stress and Activation of ATM-p53 Signaling Pathway in Hepatocellular Cells. Int J Mol Sci 2023; 24:ijms24076279. [PMID: 37047251 PMCID: PMC10094147 DOI: 10.3390/ijms24076279] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone, PLB), a naturally occurring naphthoquinone mainly isolated from the plant Plumbago zeylanica L., has been proven to possess anticancer activities towards multiple types of cancer. Although there has been an increasing amount of research regarding its anticancer effects, the association between oxidative stress, genotoxicity and the cell cycle arrest induced by PLB still remains unclear. Therefore, it is important to investigate their potential connections and the involvement of DNA damage and the ataxia telangiectasia mutated protein (ATM)-p53 signaling pathway in PLB’s anticancer mechanism. The present study showed that PLB exposure significantly reduced HCC cell viability and colony formation. In addition, PLB-induced G2/M cell cycle arrest, oxidative stress, and DNA damage was detected, which could be almost blocked by NAC pretreatment. PLB could trigger a DNA damage response by activating cell cycle checkpoints such as ATM, checkpoint kinase 1 (Chk1), checkpoint kinase 2 (Chk2) and p53. Meanwhile, the key modulator of the G2/M transition factor, Cell Division Cycle 25C (cdc25C), was significantly downregulated in an ROS-dependent manner. Furthermore, pretreatment with ATM and p53 inhibitors (KU55933 and Pifithrin-α) could reduce the occurrence of G2/M cell cycle arrest by inhibiting the activation of the ATM-p53 pathway. Taken together, these results indicate that ROS-mediated oxidative stress plays a key role in PLB-induced G2/M cell cycle arrest mediated by the ATM-p53 pathway.
Collapse
Affiliation(s)
- Huan Liu
- Laboratory of Medical Molecular Biology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530024, China; (H.L.)
- Guangxi Key Laboratory of Molecular Biology of Preventive Medicine of Traditional Chinese Medicine, Nanning 530024, China
| | - Wenchao Zhang
- Research Center for Non-Food Biorefinery, Guangxi Academy of Science, Nanning 530001, China
| | - Lijie Jin
- Guangxi Key Laboratory of Molecular Biology of Preventive Medicine of Traditional Chinese Medicine, Nanning 530024, China
- Department of Physiology, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Shasha Liu
- Guangxi Key Laboratory of Molecular Biology of Preventive Medicine of Traditional Chinese Medicine, Nanning 530024, China
- Department of Physiology, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Liying Liang
- Laboratory of Medical Molecular Biology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530024, China; (H.L.)
- Guangxi Key Laboratory of Molecular Biology of Preventive Medicine of Traditional Chinese Medicine, Nanning 530024, China
| | - Yanfei Wei
- Guangxi Key Laboratory of Molecular Biology of Preventive Medicine of Traditional Chinese Medicine, Nanning 530024, China
- Department of Physiology, Guangxi University of Chinese Medicine, Nanning 530200, China
- Correspondence:
| |
Collapse
|
4
|
The Effectiveness of Isoplumbagin and Plumbagin in Regulating Amplitude, Gating Kinetics, and Voltage-Dependent Hysteresis of erg-mediated K+ Currents. Biomedicines 2022; 10:biomedicines10040780. [PMID: 35453530 PMCID: PMC9029050 DOI: 10.3390/biomedicines10040780] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Isoplumbagin (isoPLB, 5-hydroxy-3-methyl-1,4-naphthoquinone), a naturally occurring quinone, has been observed to exercise anti-inflammatory, antimicrobial, and antineoplastic activities. Notably, whether and how isoPLB, plumbagin (PLB), or other related compounds impact transmembrane ionic currents is not entirely clear. In this study, during GH3-cell exposure to isoPLB, the peak and sustained components of an erg (ether-à-go-go related gene)-mediated K+ current (IK(erg)) evoked with long-lasting-step hyperpolarization were concentration-dependently decreased, with a concomitant increase in the decaying time constant of the deactivating current. The presence of isoPLB led to a differential reduction in the peak and sustained components of deactivating IK(erg) with effective IC50 values of 18.3 and 2.4 μM, respectively, while the KD value according to the minimum binding scheme was estimated to be 2.58 μM. Inhibition by isoPLB of IK(erg) was not reversed by diazoxide; however, further addition of isoPLB, during the continued exposure to 4,4′-dithiopyridine, did not suppress IK(erg) further. The recovery of IK(erg) by a two-step voltage pulse with a geometric progression was slowed in the presence of isoPLB, and the decaying rate of IK(erg) activated by the envelope-of-tail method was increased in its presence. The strength of the IK(erg) hysteresis in response to an inverted isosceles-triangular ramp pulse was diminished by adding isoPLB. A mild inhibition of the delayed-rectifier K+ current (IK(DR)) produced by the presence of isoPLB was seen in GH3 cells, while minimal changes in the magnitude of the voltage-gated Na+ current were demonstrated in its presence. Moreover, the IK(erg) identified in MA-10 Leydig tumor cells was blocked by adding isoPLB. Therefore, the effects of isoPLB or PLB on ionic currents (e.g., IK(erg) and IK(DR)) demonstrated herein would be upstream of our previously reported perturbations on mitochondrial morphogenesis or respiration. Taken together, the perturbations of ionic currents by isoPLB or PLB demonstrated herein are likely to contribute to the underlying mechanism through which they, or other structurally similar compounds, result in adjustments in the functional activities of different neoplastic cells (e.g., GH3 and MA-10 cells), presuming that similar in vivo observations occur.
Collapse
|
5
|
Qais FA, Khan MS, Ahmad I, Husain FM, Al-Kheraif AA, Arshad M, Alam P. Plumbagin inhibits quorum sensing-regulated virulence and biofilms of Gram-negative bacteria: in vitro and in silico investigations. BIOFOULING 2021; 37:724-739. [PMID: 34396840 DOI: 10.1080/08927014.2021.1955250] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
The global rise in antimicrobial resistance and lack of discovery of new antimicrobials have created serious concerns. Targeting quorum sensing (QS) and biofilms of pathogenic bacteria is considered a promising approach in antimicrobial drug discovery. This study explored the inhibitory effect of plumbagin against biofilms and QS of Chromobacterium violaceum, Serratia marcescens and Pseudomonas aeruginosa. Violacein production in C. violaceum 12472 was reduced by >80%. The virulent traits of P. aeruginosa PAO1 such as pyocyanin, rhamnolipid and proteases were also inhibited at sub-minimum inhibitory concentrations. Moreover, the biofilms of the test bacteria were reduced by 56-70%. Plumbagin reduced the bacterial adherence and colonization on solid surface. Computational studies gave closer insights regarding the possible modes of action. Molecular dynamics simulations revealed that the protein complexes were quite stable under physiological conditions. This study provides both experimental and computational evidence regarding the efficacy of plumbagin against biofilms and the QS-controlled virulence factors of Gram-negative bacteria.
Collapse
Affiliation(s)
- Faizan Abul Qais
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohammad Shavez Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Iqbal Ahmad
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz Abdullah Al-Kheraif
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Arshad
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Al-kharj, Kingdom of Saudi Arabia
| |
Collapse
|
6
|
Frazão Câmara JV, Araujo TT, Mendez DAC, da Silva NDG, de Medeiros FF, Santos LA, de Souza Carvalho T, Reis FN, Martini T, Moraes SM, Shibao PYT, Groisman S, Magalhães AC, Henrique-Silva F, Buzalaf MAR. Effect of a sugarcane cystatin on the profile and viability of microcosm biofilm and on dentin demineralization. Arch Microbiol 2021; 203:4133-4139. [PMID: 34059945 DOI: 10.1007/s00203-021-02403-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/27/2022]
Abstract
To analyze the effect of a sugarcane cystatin (CaneCPI-5) on the microbial profile and viability, as well as on the prevention of dentin demineralization using a microcosm biofilm model. Ninety bovine dentine specimens were divided into five experimental groups according with the solution they were treated for 60 s: (1) PBS (negative control), (2) 0.12% chlorhexidine (positive control), (3) Fluoride (500 ppm F, as NaF), (4) 0.025 mg/ml CaneCPI-5, and (5) 0.05 mg/ml CaneCPI-5. Specimens were incubated with inoculum (McBain's saliva plus human saliva) in the first 8 h, and from then on, they were exposed to McBain saliva containing sucrose and daily treated (60 s) with the solutions for 5 days. Resazurin and colony-forming unit counting assays were performed. Dentin demineralization was measured by transverse micro-radiography (TMR). 0.12% chlorhexidine significantly reduced the metabolic activity of the microcosm biofilm in relation to the negative control and treated groups (p < 0.01). CHX and F significantly reduced the counts of total microorganisms, mutans group streptococci, and lactobacilli when compared with the negative control. None of the treatments was able to significantly reduce dentin demineralization in comparison with the negative control. In the model evaluated, CaneCPI-5 neither altered the microcosm biofilm profile and viability nor protected dentin against demineralization.
Collapse
Affiliation(s)
- João Victor Frazão Câmara
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Regina, Bauru, SP, 17011-220, Brazil.
| | - Tamara Teodoro Araujo
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Regina, Bauru, SP, 17011-220, Brazil
| | - Daniela Alejandra Cusicanqui Mendez
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Regina, Bauru, SP, 17011-220, Brazil
| | - Natara Dias Gomes da Silva
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Regina, Bauru, SP, 17011-220, Brazil
| | - Felipe Fávaro de Medeiros
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Regina, Bauru, SP, 17011-220, Brazil
| | - Lethycia Almeida Santos
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Regina, Bauru, SP, 17011-220, Brazil
| | - Thamyris de Souza Carvalho
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Regina, Bauru, SP, 17011-220, Brazil
| | - Fabiana Navas Reis
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Regina, Bauru, SP, 17011-220, Brazil
| | - Tatiana Martini
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Regina, Bauru, SP, 17011-220, Brazil
| | - Samanta Mascarenhas Moraes
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Regina, Bauru, SP, 17011-220, Brazil
| | | | - Sonia Groisman
- School of Dentistry, Federal University of Rio de Janeiro, Cidade Universitária da Universidade Federal Do Rio de Janeiro, R. Prof. Rodolpho Paulo Rocco, 325, Rio de Janeiro, RJ, 21941-617, Brazil
| | - Ana Carolina Magalhães
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Regina, Bauru, SP, 17011-220, Brazil
| | - Flavio Henrique-Silva
- Federal University of São Carlos, Rod. Washington Luiz, s/n, São Carlos, SP, 13565-905, Brazil
| | - Marília Afonso Rabelo Buzalaf
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Regina, Bauru, SP, 17011-220, Brazil
| |
Collapse
|
7
|
Zhang R, Wang Z, You W, Zhou F, Guo Z, Qian K, Xiao Y, Wang X. Suppressive effects of plumbagin on the growth of human bladder cancer cells via PI3K/AKT/mTOR signaling pathways and EMT. Cancer Cell Int 2020; 20:520. [PMID: 33117085 PMCID: PMC7590591 DOI: 10.1186/s12935-020-01607-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
Background Novel chemotherapeutic drugs with good anti-tumor activity are of pressing need for bladder cancer treatment. In this study, plumbagin (PL), a natural plant-derived drug extracted from Chinese herbals, was identified as a promising candidate for human bladder cancer (BCa) chemotherapy. Methods The anti-tumor activity of PL was evaluated using a series of in vitro experiments, such as MTT, transwell assay, flow cytometry, quantitative real-time PCR (qRT-PCR) and western blotting. We established xenograft tumors in nude mice by subcutaneous injection with the human bladder cancer T24 cells. Results The results showed that PL could inhibit the proliferation, migration and survival of BCa cells (T24 and UMUC3 cells) in a time- and dose-dependent way. We found PL promotes the cell cycle arrest and apoptosis by inhibiting PI3K/AKT/mTOR signaling pathway, which inhibits cell proliferation. In vivo, anti-tumor activity of PL was further investigated using a BCa cell xenograft mice model. To simulate clinical chemotherapy, the PL were intravenously injected with a dose of 10 mg/kg for 10 times. Compared with the blank control, the tumor weight in PL treated group decreased significantly from 0.57 ± 0.04 g to 0.21 ± 0.06 g (P < 0.001). Conclusions In our study. We found PL inhibits the proliferation of T24 and UMUC3 cells in vivo and in vitro, which may play a role through several downstream effectors of PI3K/AKT/mTOR signaling pathway to promote the cell cycle arrest and apoptosis. Meanwhile, we consider that PL may inhibit the migration of bladder cancer cells via EMT suppression and induce ROS generation to make cell apoptosis. This work screened out a novel chemotherapeutic drug (plumbagin) with relatively good anti-tumor activity, which possessed great potential in BCa chemotherapy.
Collapse
Affiliation(s)
- Renjie Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 People's Republic of China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071 People's Republic of China.,Cancer Precision Diagnosis and Treatment and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071 People's Republic of China
| | - Zijian Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 People's Republic of China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071 People's Republic of China.,Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 People's Republic of China
| | - Wenjie You
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 People's Republic of China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071 People's Republic of China
| | - Fengfang Zhou
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 People's Republic of China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071 People's Republic of China
| | - Zicheng Guo
- Department of Urology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, 445000 People's Republic of China
| | - Kaiyu Qian
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 People's Republic of China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071 People's Republic of China.,Research Center of Wuhan for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071 People's Republic of China
| | - Yu Xiao
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071 People's Republic of China.,Cancer Precision Diagnosis and Treatment and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071 People's Republic of China.,Research Center of Wuhan for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071 People's Republic of China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 People's Republic of China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071 People's Republic of China.,Cancer Precision Diagnosis and Treatment and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071 People's Republic of China.,Research Center of Wuhan for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071 People's Republic of China
| |
Collapse
|
8
|
Souza PMS, Sommaggio LRD, Marin-Morales MA, Morales AR. PBAT biodegradable mulch films: Study of ecotoxicological impacts using Allium cepa, Lactuca sativa and HepG2/C3A cell culture. CHEMOSPHERE 2020; 256:126985. [PMID: 32445994 DOI: 10.1016/j.chemosphere.2020.126985] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 05/06/2023]
Abstract
Biodegradable mulch films are an alternative to polyethylene films used in agriculture for weed control, improving crop productivity. This change could minimize the residue production and costs related to the final disposal. Nevertheless, the environmental safety of these biodegradable products is scarcely investigated. In this work, samples of poly(butylene adipate-co-terephthalate)-PBAT mulch films, with and without UV stabilizer additives, were prepared. Aqueous extracts of soil samples, where mulch films were disposed, were investigated using bioassays with Lactuca sativa, Allium cepa, and cell culture HepG2/C3A. As PBAT is expected to suffer photodegradation and biodegradation, soil samples mixed with films before and after these processes were evaluated. Soil aqueous extracts promoted root grown (mainly hypocotyl) of L. sativa, probably due to presence of nutrients. So, to evaluate toxicity potential, in this case it was necessary to use aqueous extract prepared with soil instead of ultrapure water as the control. After doing this analysis it was observed that no adverse impacts due to PBAT films occurred. No chromosomal abnormalities were observed in A. cepa bioassay for any of tested samples. The absence of genotoxic potential was confirmed by comet assay and micronucleus test using human hepatocarcinoma cell line HepG2/C3A. These results showed that the soil did not induce damage to the tested organisms, before and after degradation of PBAT films.
Collapse
Affiliation(s)
- Patrícia Moraes Sinohara Souza
- Department of Materials Engineering and Bioprocess, School of Chemical Engineering, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | | | - Ana Rita Morales
- Department of Materials Engineering and Bioprocess, School of Chemical Engineering, State University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
9
|
Quadros APOD, Almeida LM, Petreanu M, Niero R, Rosa PCP, Sawaya ACHF, Mantovani MS, Gaivão IODM, Maistro EL. Risk assessment via genotoxicity, metabolism, apoptosis, and cell growth effects in a HepG2/C3A cell line upon treatment with Rubus rosifolius (Rosaceae) leaves extract. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:495-508. [PMID: 32568621 DOI: 10.1080/15287394.2020.1779888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sm. (Rosaceae) is a plant traditionally used in Brazil and some other countries to treat diarrhea, stomach diseases, and as an analgesic, antimicrobial, antihypertensive, and as well as other pharmacological properties. The aim of this study was to examine cytotoxic and genotoxic effects of R. rosifolius leaves extract on HepG2/C3A cells and correlate these findings with the expression of mRNA to underlying mechanisms of action. At concentrations between 0.01 and 100 µg/ml, cytotoxic effects were not detected by the MTT assay. This was confirmed by mRNA induction of the CYP3A4 gene (by RT-qPCR assay). However, genotoxic effects occurred at treatments from 1 µg/ml extract (comet and micronucleus test). An increase in the number of cells in S phase was observed at 100 µg/ml, and an elevation in apoptotic cell number was found for all tested concentrations (10, 20, or 100 µg/ml) (cell cycle and apoptosis analysis by flow cytometry). The genotoxicity induced by the extract was the main cause of the rise in the number of cells undergoing apoptosis, as indicated by rise in mRNA of CASP7 gene, and elevation of cells in the S phase of the cell cycle at the higher tested concentrations, as an attempt to repair genetic damage that occurred. These observations suggest that, despite its pharmacological potential, the use of R. rosifolius leaves extract may pose a risk to the integrity of the genetic material of human cells.
Collapse
Affiliation(s)
- Ana Paula Oliveira De Quadros
- Post-Graduate Program on General and Applied Biology, São Paulo State University - UNESP - Biosciences Institute , Botucatu, SP, Brazil
- Departamento de Biomedicina, Centro Universitário De Rio Preto - UNIRP - São José Do Rio Preto , SP, Brasil
| | - Laíza Moura Almeida
- Marilia Medical School , Marilia, SP, Brazil
- Speech and Hearing Therapy Department, São Paulo State University - UNESP - Faculty of Philosophy and Sciences Marília, SP, Brazil
| | - Marcel Petreanu
- Department of Biological Sciences, Vale Do Itajaí University (UNIVALI) , Itajaí, SC, Brazil
| | - Rivaldo Niero
- Department of Biological Sciences, Vale Do Itajaí University (UNIVALI) , Itajaí, SC, Brazil
| | - Paulo Cesar Pires Rosa
- Faculty of Pharmaceutical Sciences, University of Campinas , Campinas, São Paulo, Brazil
| | | | | | | | - Edson Luis Maistro
- Post-Graduate Program on General and Applied Biology, São Paulo State University - UNESP - Biosciences Institute , Botucatu, SP, Brazil
- Marilia Medical School , Marilia, SP, Brazil
- Speech and Hearing Therapy Department, São Paulo State University - UNESP - Faculty of Philosophy and Sciences Marília, SP, Brazil
| |
Collapse
|