1
|
Widhalm R, Granitzer S, Natha B, Zoboli O, Derx J, Zeisler H, Salzer H, Weiss S, Schmitner N, Kimmel RA, Österreicher T, Oberle R, Hengstschläger M, Distel M, Gundacker C. Perfluorodecanoic acid (PFDA) increases oxidative stress through inhibition of mitochondrial β-oxidation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 367:125595. [PMID: 39734044 DOI: 10.1016/j.envpol.2024.125595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/04/2024] [Accepted: 12/25/2024] [Indexed: 12/31/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a large group of synthetic organic chemicals that are ubiquitous environmental pollutants. Among PFAS, perfluorodecanoic acid (PFDA) is one of the most toxic compounds, but the molecular basis behind its toxicity is not fully understood. In an interspecies comparison with placental cells (HTR-8/SVneo) and zebrafish embryos, we demonstrate that PFDA induces mitochondrial dysfunction and impairs fatty acid β-oxidation. Reduced β-oxidation leads to less TCA cycle activity, resulting in less NADH and consequently NADPH production. Thereby NADPH-dependent glutathione recycling is impaired, increasing cellular oxidative stress that can only be partially compensated by NRF2 activation.
Collapse
Affiliation(s)
- Raimund Widhalm
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria; Exposome Austria, Research Infrastructure and National EIRENE Hub, Austria.
| | - Sebastian Granitzer
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria; Exposome Austria, Research Infrastructure and National EIRENE Hub, Austria
| | - Benjamin Natha
- Zebrafish Platform Austria for Preclinical Drug Screening (ZANDR), St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Ottavia Zoboli
- Institute for Water Quality and Resource Management, TU Wien, Vienna, Austria
| | - Julia Derx
- Institute of Hydraulic Engineering and Water Resources Management, TU Wien, Vienna, Austria; Interuniversity Cooperation Centre Water and Health, Vienna, Austria
| | - Harald Zeisler
- Department of Obstetrics and Gynecology, Medical University Vienna, Austria
| | - Hans Salzer
- Clinic for Pediatrics and Adolescent Medicine, University Clinic Tulln, Tulln, Austria
| | | | - Nicole Schmitner
- Institute of Molecular Biology, Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University Innsbruck, Innsbruck, Austria
| | - Robin A Kimmel
- Institute of Molecular Biology, Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University Innsbruck, Innsbruck, Austria
| | - Tamina Österreicher
- Center for Pathobiochemistry and Genetics, Institute of Medical Chemistry and Pathobiochemistry, Medical University of Vienna, Vienna, Austria
| | - Raimund Oberle
- Center for Pathobiochemistry and Genetics, Institute of Medical Chemistry and Pathobiochemistry, Medical University of Vienna, Vienna, Austria
| | - Markus Hengstschläger
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Martin Distel
- Zebrafish Platform Austria for Preclinical Drug Screening (ZANDR), St. Anna Children's Cancer Research Institute, Vienna, Austria; Innovative Cancer Models, St. Anna Children's Cancer Research Institute, Vienna, Austria; Division of Pediatric Hematology and Oncology, Intermountain Primary Children's Hospital, Huntsman Cancer Institute, Spencer Fox Eccles School of Medicine at the University of Utah, Salt Lake City, USA
| | - Claudia Gundacker
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria; Exposome Austria, Research Infrastructure and National EIRENE Hub, Austria
| |
Collapse
|
2
|
Peixoto-Rodrigues MC, Monteiro-Neto JR, Teglas T, Toborek M, Soares Quinete N, Hauser-Davis RA, Adesse D. Early-life exposure to PCBs and PFAS exerts negative effects on the developing central nervous system. JOURNAL OF HAZARDOUS MATERIALS 2024; 485:136832. [PMID: 39689563 DOI: 10.1016/j.jhazmat.2024.136832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/18/2024] [Accepted: 12/08/2024] [Indexed: 12/19/2024]
Abstract
Persistent organic pollutants (POPs) are ubiquitous in the environment and display the capacity to bioaccumulate in living organisms, constituting a hazard to both wildlife and humans. Although restrictions have been applied to prohibit the production of several POPs since the 1960s, high levels of these compounds can still be detected in many environmental and biological matrices, due to their chemical properties and significantly long half-lives. Some POPs can be passed from mother to the fetus and can gain entry to the central nervous system (CNS), by crossing the blood-brain barrier (BBB), resulting in significant deleterious effects, including neurocognitive and psychiatric abnormalities, which may lead to long-term socio-economic burdens. A growing body of evidence obtained from clinical and experimental studies has increasingly indicated that these POPs may influence neurodevelopment through several cellular and molecular mechanisms. However, studies assessing their mechanisms of action are still incipient, requiring further research. Polychlorinated biphenyls (PCBs) and per- and polyfluoroalkyl substances (PFAS) are two of the main classes of POPs associated with disturbances in different human systems, mainly the nervous and endocrine systems. This narrative review discusses the main PCB and PFAS effects on the CNS, focusing on neuroinflammation and oxidative stress and their consequences for neural development and BBB integrity. Moreover, we propose which mechanisms could be involved in POP-induced neurodevelopmental defects. In this sense, we highlight potential cellular and molecular pathways by which these POPs can affect neurodevelopment and could be further explored to propose preventive therapies and formulate public health policies.
Collapse
Affiliation(s)
- Maria Carolina Peixoto-Rodrigues
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fiocruz, Brazil; Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Brazil
| | | | - Timea Teglas
- Research Institute of Sport Science, Hungarian University of Sports Science, Budapest, Hungary; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Hungarian University of Sports Science, Budapest, Hungary
| | - Michal Toborek
- Institute of Physiotherapy and Health Sciences, Blood-Brain Barrier Research Center, Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Natalia Soares Quinete
- Departament of Chemistry and Biochemistry & Institute of Environment, Florida International University, Miami, Florida, United States
| | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fiocruz, Brazil
| | - Daniel Adesse
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Brazil; Laboratory of Ocular Immunology and Transplantation, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States.
| |
Collapse
|
3
|
Li S, Qin S, Zeng H, Chou W, Oudin A, Kanninen KM, Jalava P, Dong G, Zeng X. Adverse outcome pathway for the neurotoxicity of Per- and polyfluoroalkyl substances: A systematic review. ECO-ENVIRONMENT & HEALTH 2024; 3:476-493. [PMID: 39605965 PMCID: PMC11599988 DOI: 10.1016/j.eehl.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 11/29/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are endocrine disruptors with unambiguous neurotoxic effects. However, due to variability in experimental models, population characteristics, and molecular endpoints, the elucidation of mechanisms underlying PFAS-induced neurotoxicity remains incomplete. In this review, we utilized the adverse outcome pathway (AOP) framework, a comprehensive tool for evaluating toxicity across multiple biological levels (molecular, cellular, tissue and organ, individual, and population), to elucidate the mechanisms of neurotoxicity induced by PFAS. Based on 271 studies, the reactive oxygen species (ROS) generation emerged as the molecular initiating event 1 (MIE1). Subsequent key events (KEs) at the cellular level include oxidative stress, neuroinflammation, apoptosis, altered Ca2+ signal transduction, glutamate and dopamine signaling dyshomeostasis, and reduction of cholinergic and serotonin. These KEs culminate in synaptic dysfunction at organ and tissue levels. Further insights were offered into MIE2 and upstream KEs associated with altered thyroid hormone levels, contributing to synaptic dysfunction and hypomyelination at the organ and tissue levels. The inhibition of Na+/I- symporter (NIS) was identified as the MIE2, initiating a cascade of KEs at the cellular level, including altered thyroid hormone synthesis, thyroid hormone transporters, thyroid hormone metabolism, and binding with thyroid hormone receptors. All KEs ultimately result in adverse outcomes (AOs), including cognition and memory impairment, autism spectrum disorders, attention deficit hyperactivity disorders, and neuromotor development impairment. To our knowledge, this review represents the first comprehensive and systematic AOP analysis delineating the intricate mechanisms responsible for PFAS-induced neurotoxic effects, providing valuable insights for risk assessments and mitigation strategies against PFAS-related health hazards.
Collapse
Affiliation(s)
- Shenpan Li
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shuangjian Qin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Huixian Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Weichun Chou
- Department of Environmental Sciences, College of Natural and Agricultural Sciences, University of California, Riverside, CA, United States
| | - Anna Oudin
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Katja M. Kanninen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pasi Jalava
- Department of Environmental and Biological Science, University of Eastern Finland, Kuopio, Finland
| | - Guanghui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaowen Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
4
|
Liu X, Chen R, Peng Y, Zhou Y, Xia M, Wu X, Wang Y, Yin W, Han Y, Yu M. Perfluorooctanoic acid (PFOA) induces cardiotoxicity by activating the Keap1/Nrf2 pathway in zebrafish (Danio rerio) embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117098. [PMID: 39366304 DOI: 10.1016/j.ecoenv.2024.117098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/15/2024] [Accepted: 09/21/2024] [Indexed: 10/06/2024]
Abstract
Perfluorooctanoic acid (PFOA), a perfluoroalkyl compound, is linked to congenital heart diseases, though its underlying mechanisms remain unclear. We hypothesized that PFOA induces cardiac defects through the inhibition of the Keap1/Nrf2 pathway, leading to oxidative damage in cardiomyocytes. In this study, zebrafish embryos exposed to PFOA showed significant cardiac malformations and dysfunction, characterized by excessive reactive oxygen species (ROS), malondialdehyde (MDA) production, decreased superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities. Additionally, we observed dysregulation in the expression of key cardiac development genes (vmhc, gata4, nkx2.5, and sox9b). PFOA also reduced the expression of keap1, nrf2, and ho-1. After overexpression of Nrf2, levels of ROS and MDA decreased, while levels of SOD, CAT, and GSH-Px increased. Additionally, cardiomyocyte apoptosis and cardiac malformations were alleviated. These findings have suggested that PFOA induces oxidative stress through Keap1/Nrf2 pathway inhibition, ultimately leading to cardiac defects.
Collapse
Affiliation(s)
- Xing Liu
- School of public health, Yangzhou University, Yangzhou 225009, China.
| | - Ruobing Chen
- School of public health, Yangzhou University, Yangzhou 225009, China
| | - Yuting Peng
- School of public health, Yangzhou University, Yangzhou 225009, China
| | - Yueyue Zhou
- School of public health, Yangzhou University, Yangzhou 225009, China
| | - Mingzhu Xia
- School of public health, Yangzhou University, Yangzhou 225009, China
| | - Xinyi Wu
- School of public health, Yangzhou University, Yangzhou 225009, China
| | - Yuchi Wang
- School of public health, Yangzhou University, Yangzhou 225009, China
| | - Wenjiao Yin
- School of public health, Yangzhou University, Yangzhou 225009, China
| | - Yuyang Han
- School of public health, Yangzhou University, Yangzhou 225009, China
| | - Meng Yu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
5
|
Marin M, Annunziato KM, Tompach MC, Liang W, Zahn SM, Li S, Doherty J, Lee J, Clark JM, Park Y, Timme-Laragy AR. Maternal PFOS exposure affects offspring development in Nrf2-dependent and independent ways in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 271:106923. [PMID: 38669778 PMCID: PMC11177596 DOI: 10.1016/j.aquatox.2024.106923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/29/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
Perfluorooctanesulfonic acid (PFOS) is a ubiquitous legacy environmental contaminant detected broadly in human samples and water supplies. PFOS can cross the placenta and has been detected in cord blood and breastmilk samples, underscoring the importance of understanding the impacts of maternal PFOS exposure during early development. This study aimed to investigate the effects of a preconception exposure to PFOS on developmental endpoints in offspring, as well as examine the role of the transcription factor Nuclear factor erythroid-2-related factor (Nrf2a) in mediating these effects. This transcription factor regulates the expression of several genes that protect cells against oxidative stress including during embryonic development. Adult female zebrafish were exposed to 0.02, 0.08 or 0.14 mg/L PFOS for 1 week (duration of one cycle of oocyte maturation) and then paired with unexposed males from Nrf2a mutant or wildtype strains. Embryos were collected for two weeks or until completion of 5 breeding events. PFOS was maternally transferred to offspring independent of genotype throughout all breeding events in a dose-dependent manner, ranging from 2.77 to 23.72 ng/embryo in Nrf2a wildtype and 2.40 to 15.80 ng/embryo in Nrf2a mutants. Although embryo viability at collection was not impacted by maternal PFOS exposure, developmental effects related to nutrient uptake, growth and pancreatic β-cell morphology were observed and differed based on genotype. Triglyceride levels were increased in Nrf2a wildtype eggs from the highest PFOS group. In Nrf2a wildtype larvae there was a decrease in yolk sac uptake while in Nrf2a mutants there was an increase. Additionally, there was a significant decrease in pancreatic β-cell (islet) area in wildtype larvae from the 0.14 mg/L PFOS accompanied by an increase in the prevalence of abnormal islet morphologies compared to controls. Abnormal morphology was also observed in the 0.02 and 0.08 mg/L PFOS groups. Interestingly, in Nrf2a mutants there was a significant increase in the pancreatic β-cell area in the 0.02 and 0.08 mg/L PFOS groups and no changes in the prevalence of abnormal islet morphologies. These results suggest that the regulation of processes like nutrient consumption, growth and pancreatic β-cell development are at least partially modulated by the presence of a functional Nrf2a transcriptomic response. Overall, preconception exposure to environmental pollutants, such as PFOS, may impact the maturing oocyte and cause subtle changes that can ultimately impact offspring health and development.
Collapse
Affiliation(s)
- Marjorie Marin
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA; Biotechnology Training Program, University of Massachusetts, Amherst, MA, USA
| | - Kate M Annunziato
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Madeline C Tompach
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA; Biotechnology Training Program, University of Massachusetts, Amherst, MA, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Wenle Liang
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Sarah M Zahn
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Sida Li
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Jeffery Doherty
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, USA
| | - Jonghwa Lee
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, USA
| | - John M Clark
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Alicia R Timme-Laragy
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
6
|
Sun T, Ji C, Li F, Wu H. Time Is Ripe for Targeting Per- and Polyfluoroalkyl Substances-Induced Hormesis: Global Aquatic Hotspots and Implications for Ecological Risk Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9314-9327. [PMID: 38709515 DOI: 10.1021/acs.est.4c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Globally implemented ecological risk assessment (ERA) guidelines marginalize hormesis, a biphasic dose-response relationship characterized by low-dose stimulation and high-dose inhibition. The present study illuminated the promise of hormesis as a scientific dose-response model for ERA of per- and polyfluoroalkyl substances (PFAS) represented by perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS). A total of 266 hormetic dose-response relationships were recompiled from 1237 observations, covering 30 species from nine representative taxonomic groups. The standardized hormetic amplitudes followed the log-normal probability distribution, being subject to the limits of biological plasticity but independent of stress inducers. The SHapley Additive exPlanations algorithm revealed that the target endpoint was the most important variable explaining the hormetic amplitudes. Subsequently, quantitative frameworks were established to incorporate hormesis into the predicted no-effect concentration levels, with a lower induction dose and a zero-equivalent point but a broader hormetic zone for PFOS. Realistically, 10,117 observed concentrations of PFOA and PFOS were gathered worldwide, 4% of which fell within hormetic zones, highlighting the environmental relevance of hormesis. Additionally, the hormesis induction potential was identified in other legacy and emerging PFAS as well as their alternatives and mixtures. Collectively, it is time to incorporate the hormesis concept into PFAS studies to facilitate more realistic risk characterizations.
Collapse
Affiliation(s)
- Tao Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, P. R. China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, P. R. China
- Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, P. R. China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, P. R. China
- Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, P. R. China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, P. R. China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, P. R. China
- Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, P. R. China
| |
Collapse
|
7
|
Yang J, Wang Y, Xia Y, Ren Y, Wang Z, Meng X, Li S, Liu X, Shao J. PFOS Elicits Cytotoxicity in Neuron Through Astrocyte-Derived CaMKII-DLG1 Signaling In Vitro Rat Hippocampal Model. Neurochem Res 2024; 49:1226-1238. [PMID: 38393622 DOI: 10.1007/s11064-024-04109-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024]
Abstract
Both epidemiological investigation and animal experiments demonstrated that pre-/postnatal exposure to perfluorooctane sulfonic acid (PFOS) could induce neurodevelopmental disorders. Previous studies showed that astrocyte was involved in PFOS-induced neurotoxicity, while little information is available. In the present study, the role of astrocyte-derived calmodulin-dependent protein kinase II (CaMKII)-phosphorylated discs large homolog 1 (DLG1) signaling in PFOS eliciting cytotoxicity in neuron was explored with primary cultured hippocampal astrocyte and neuron. The application of PFOS showed a decreased cell viability, synapse length and glutamate transporter 1 (GLT-1) expression, but an increased CaMKII, DLG1 and cyclic AMP response element binding protein (CREB) expression in primary cultured astrocyte. With 2-(2-hydroxyethylamino)-6-aminohexylcarbamic acid tert-butyl ester-9-isopropylpurine (CK59), the CaMKII inhibitor, the disturbed cell viability and molecules induced by PFOS could be alleviated (CREB expression was excluded) in astrocytes. The cytotoxic effect of neuron exposed to astrocyte conditional medium collected from PFOS (PFOS-ACM) pretreated with CK59 was also decreased. These results indicated that PFOS mediated GLT-1 expression through astrocyte-derived CaMKII-DLG signaling, which might be associated with injuries on neurons. The present study gave an insight in further exploration of mechanism in PFOS-induced neurotoxicity.
Collapse
Affiliation(s)
- Jiawei Yang
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Ying Wang
- Department of Urology, Second Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Yuyan Xia
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Yajie Ren
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Zhi Wang
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Xin Meng
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Shuangyue Li
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Xiaohui Liu
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, 116044, China.
| | - Jing Shao
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
8
|
Mokra K, Kaczmarska I, Bukowska B. Perfluorooctane sulfonate (PFOS) and its selected analogs induce various cell death types in peripheral blood mononuclear cells. CHEMOSPHERE 2024; 354:141664. [PMID: 38485001 DOI: 10.1016/j.chemosphere.2024.141664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Abstract
The perfluoalkyl substance (PFASs) perfluorooctane sulfonate (PFOS) has been widely used in industry. However, PFOS is a persistent organic pollutant and has been gradually replaced by its short-chain analogs, perfluorohexane sulfonate (PFHxS) and perfluorobutane sulfonate (PFBS). PFASs are extremely persistent and are very frequently detected among the general population. The aim of the study was to determine the effect of selected PFASs on peripheral blood mononuclear cells (PBMCs) and the mechanisms of their action. PBMCs were exposed to PFOS, PFBS and PFHxS at concentrations ranging from 0.02 to 400 μM for 24 h, they were then tested for viability, apoptosis (changes in cytosolic calcium ions level and caspase-3, -8 and -9 activation), ferroptosis (changes in chelatable iron ions level and lipid peroxidation), and autophagy (LC3-II and Raptor level assay). PFOS exposure decreased cell viability, increased calcium ion level and caspase-8 activation; it also enhanced lipid peroxidation and increased the intracellular pool of chelatable iron ions as well as LC3-II protein content. In contrast, short-chain PFBS and PFHxS induced significant changes in the markers of apoptosis but had no substantial impact on ferroptosis or autophagy markers over a wide range of concentrations. Our results indicate that only PFOS demonstrated pro-ferroptotic and pro-autophagic potential but observed changes occurred at relatively high exposure. A short-chain substitute (PFBS) exhibited strong pro-apoptotic potential at concentrations related to occupational exposure. While the short-chain PFASs strongly affected the mitochondrial pathway of apoptosis, apoptosis itself was only induced by PFBS via the intrinsic and extrinsic pathways. It seems that the length of the carbon chain in PFASs appears to determine the cell death mechanisms activated in human PBMCs following exposure. Our findings provide a new insight into the immune toxicity mechanism induced by these compounds.
Collapse
Affiliation(s)
- Katarzyna Mokra
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biophysics of Environmental Pollution, 141/143 Pomorska St., 90-236, Lodz, Poland.
| | - Izabela Kaczmarska
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biophysics of Environmental Pollution, 141/143 Pomorska St., 90-236, Lodz, Poland
| | - Bożena Bukowska
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biophysics of Environmental Pollution, 141/143 Pomorska St., 90-236, Lodz, Poland
| |
Collapse
|
9
|
Ma X, Ren X, Zhang X, Wang G, Liu H, Wang L. Rutin ameliorate PFOA induced renal damage by reducing oxidative stress and improving lipid metabolism. J Nutr Biochem 2024; 123:109501. [PMID: 37890710 DOI: 10.1016/j.jnutbio.2023.109501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/09/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a persistent environmental pollutant that can accumulate in the kidneys and eventually cause kidney damage. Rutin (RUTIN) is a natural flavonoid with multiple biological activities, and its use in against kidney damage has been widely studied in recent years. It is not yet known whether rutin protects against kidney damage caused by PFOA. In this study, 30 ICR mice were randomly divided into three groups: CTRL group, PFOA group and PFOA+RUTIN group. The mice were fed continuously by gavage for 28 days. Renal pathological changes were assessed by HE and PASM staining, and serum renal function and lipid indicators were measured. RNA-seq and enrichment analysis using GO, KEGG and PPI to detect differential expression of genes in treatment groups. Kidney tissue protein expression was determined by Western blot. Research has shown that rutin can improve glomerular and tubular structural damage, and increase serum CREA, HDL-C levels and decrease LDH, LDL-C levels. The expression of AQP1 and ACOT1 was up-regulated after rutin treatment. Transcriptomic analysis indicated that PFOA and rutin affect the transcriptional expression of genes related to lipid metabolism and oxidative stress, and may affected by PI3K-Akt, PPAR, NRF2/KEAP1 signaling pathways. In conclusion, rutin ameliorated renal damage caused by PFOA exposure, and this protective effect may be exerted by ameliorating oxidative stress and regulating lipid metabolism.
Collapse
Affiliation(s)
- Xinzhuang Ma
- School of Public Health, Bengbu Medical College, Bengbu, PR China
| | - Xijuan Ren
- School of Public Health, Bengbu Medical College, Bengbu, PR China
| | - Xuemin Zhang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine; Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, PR China
| | - Guangyin Wang
- School of Public Health, Bengbu Medical College, Bengbu, PR China
| | - Hui Liu
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine; Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, PR China.
| | - Li Wang
- School of Public Health, Bengbu Medical College, Bengbu, PR China.
| |
Collapse
|
10
|
Robarts DR, Dai J, Lau C, Apte U, Corton JC. Hepatic Transcriptome Comparative In Silico Analysis Reveals Similar Pathways and Targets Altered by Legacy and Alternative Per- and Polyfluoroalkyl Substances in Mice. TOXICS 2023; 11:963. [PMID: 38133364 PMCID: PMC10748317 DOI: 10.3390/toxics11120963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are a large class of fluorinated carbon chains that include legacy PFAS, such as perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorohexane sulfonate (PFHxS). These compounds induce adverse health effects, including hepatotoxicity. Potential alternatives to the legacy PFAS (HFPO-DA (GenX), HFPO4, HFPO-TA, F-53B, 6:2 FTSA, and 6:2 FTCA), as well as a byproduct of PFAS manufacturing (Nafion BP2), are increasingly being found in the environment. The potential hazards of these new alternatives are less well known. To better understand the diversity of molecular targets of the PFAS, we performed a comparative toxicogenomics analysis of the gene expression changes in the livers of mice exposed to these PFAS, and compared these to five activators of PPARα, a common target of many PFAS. Using hierarchical clustering, pathway analysis, and predictive biomarkers, we found that most of the alternative PFAS modulate molecular targets that overlap with legacy PFAS. Only three of the 11 PFAS tested did not appreciably activate PPARα (Nafion BP2, 6:2 FTSA, and 6:2 FTCA). Predictive biomarkers showed that most PFAS (PFHxS, PFOA, PFOS, PFNA, HFPO-TA, F-53B, HFPO4, Nafion BP2) activated CAR. PFNA, PFHxS, PFOA, PFOS, HFPO4, HFPO-TA, F-53B, Nafion BP2, and 6:2 FTSA suppressed STAT5b, activated NRF2, and activated SREBP. There was no apparent relationship between the length of the carbon chain, type of head group, or number of ether linkages and the transcriptomic changes. This work highlights the similarities in molecular targets between the legacy and alternative PFAS.
Collapse
Affiliation(s)
- Dakota R. Robarts
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Christopher Lau
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - J. Christopher Corton
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| |
Collapse
|
11
|
Zhang H, Zhang C, Xu D, Wang Q, Xu D. Effects of subchronic exposure of perfluorooctane sulfonate on cognitive function of mice and its mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121650. [PMID: 37062406 DOI: 10.1016/j.envpol.2023.121650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is an emerging persistent organic pollutant, and its potential impact on cognitive function remains unclear. We adopted the C57BL/6J mouse model to investigate the effect of PFOS on cognitive function, as well as the underlying mechanisms. Subchronic exposure was performed by administering PFOS via drinking water for 6 months (at doses of 0, 0.2, and 2.0 mg/kg/day), starting from 10.5 months old. The object recognition ability was tested at 2, 4, and 6 months of exposure, and spatial learning and memory were assessed at endpoint. The apoptosis of neurons and astrocytes in the cortex and hippocampus was analyzed, as well as the potential apoptotic signaling pathways. Our results showed that exposure to PFOS for 6 months caused a decrease in object recognition ability and a decline in learning and spatial memory. PFOS selectively increased apoptosis in neurons of the cerebral cortex and specifically activated the endoplasmic reticulum stress PERK/CHOP signaling pathway. In conclusion, our results confirmed that subchronic exposure to PFOS can lead to cognitive impairment in mice, which might be closely associated with the specific activation of an endoplasmic reticulum stress-induced pro-apoptosis pathway in the cerebral cortex neurons.
Collapse
Affiliation(s)
- Haijing Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Chao Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Donggang Xu
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Qin Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Dongqun Xu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China.
| |
Collapse
|
12
|
Li X, Huang X, Fan S, Su C, Ding F, Wen S, Li D, Chen M. Effects of perfluoroalkyl substances on the operational efficiency, microbial communities, and key metabolic pathways of constructed rapid infiltration system with coke as filler layer. BIORESOURCE TECHNOLOGY 2023; 378:128998. [PMID: 37011846 DOI: 10.1016/j.biortech.2023.128998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/17/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Influences of perfluoroalkyl substances on the performance and microbial metabolic pathways of constructed rapid infiltration systems are not fully understood. In this study, wastewater containing different concentrations of perfluorooctanoic acid (PFOA)/perfluorobutyric acid (PFBA) was treated in constructed rapid infiltration systems with coke as filler. The addition of 5 and 10 mg/L PFOA inhibited the removal of chemical oxygen demand (COD) (80.42%, 89.27%), ammonia nitrogen (31.32%, 41.14%), and total phosphorus (TP) (43.30%, 39.34%). Meanwhile, 10 mg/L PFBA inhibited TP removal of the systems. Based on X-ray photoelectron spectroscopy, the percentages of F- within the PFOA and PFBA groups were 12.91% and 48.46%, respectively. PFOA transformed Proteobacteria (71.79%) into the dominant phyla of the systems, whereas PFBA enriched Actinobacteria (72.51%). The PFBA up-regulated the coding gene of 6-phosphofructokinase by 14.44%, whereas PFOA down-regulated it by 4.76%. These findings provide insights into the toxicity of perfluoroalkyl substances on constructed rapid infiltration systems.
Collapse
Affiliation(s)
- Xinjuan Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Xian Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Shuo Fan
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Chengyuan Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China; College of Environment and Resources, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| | - Fengxiu Ding
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Shitong Wen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Daoning Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Menglin Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| |
Collapse
|
13
|
Ehrlich V, Bil W, Vandebriel R, Granum B, Luijten M, Lindeman B, Grandjean P, Kaiser AM, Hauzenberger I, Hartmann C, Gundacker C, Uhl M. Consideration of pathways for immunotoxicity of per- and polyfluoroalkyl substances (PFAS). Environ Health 2023; 22:19. [PMID: 36814257 PMCID: PMC9944481 DOI: 10.1186/s12940-022-00958-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/30/2022] [Indexed: 05/02/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are of public health concern, because of their ubiquitous and extremely persistent occurrence, and depending on their structure, their bio-accumulative, mobile and toxic properties. Human health effects associated with exposure to PFAS include adverse effects on the immune system. In 2020, EFSA (the European Food Safety Authority) defined adverse effects on the immune system as the most critical effect for human health risk assessment, based on reduced antibody responses to childhood vaccines and similar effects observed in experimental animal studies. Likewise, the U.S. EPA (Environmental Protection Agency) considers PFAS-induced immunotoxicity, especially in children, as the critical effect for risk assessment. However, the mechanisms by which antibody concentrations are impacted are not completely understood. Furthermore, other targets of the immune system functions have been reported in the literature. OBJECTIVE The aim of this review is to explore PFAS-associated immune-related effects. This includes, relevant mechanisms that may underlie the observed effects on the immune system, immunosuppression as well as immunoenhancement, such as i) modulation of cell signalling and nuclear receptors, such as NF-κB and PPARs; ii) alteration of calcium signalling and homoeostasis in immune cells; iii) modulation of immune cell populations; iv) oxidative stress and v) impact on fatty acid metabolism & secondary effects on the immune system. METHODS A literature research was conducted using three databases (Web of Science, PubMed, and Scopus), which were searched in July 2021 for relevant studies published in the time frame from 2018 to 2021. In total, 487 publications were identified as potentially eligible and following expert-based judgement, articles relevant for mechanisms of PFAS induced immunotoxicity are discussed. CONCLUSIONS Taken together, we show that there is substantial evidence from both in vitro and in vivo experimental as well as epidemiological studies, supporting that various PFAS, not only PFOA and PFOS, affect multiple aspects of the immune system. Timing of exposure is critical, because the developing immune system is especially vulnerable to toxic insults, resulting in a higher risk of particularly adverse immune effects but also other organs later in life.
Collapse
Affiliation(s)
- Veronika Ehrlich
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090, Vienna, Austria
| | - Wieneke Bil
- Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Rob Vandebriel
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Berit Granum
- Division of Climate and Environment Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Mirjam Luijten
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Birgitte Lindeman
- Division of Climate and Environment Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Philippe Grandjean
- Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Andreas-Marius Kaiser
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090, Vienna, Austria
| | - Ingrid Hauzenberger
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090, Vienna, Austria
| | - Christina Hartmann
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090, Vienna, Austria
| | - Claudia Gundacker
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Maria Uhl
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090, Vienna, Austria.
| |
Collapse
|
14
|
Di Nisio A, Trevisan M, Dall’Acqua S, Pannella M, Pappalardo C, Ferlin A, Foresta C, De Toni L. Experimental evidence of a limited impact of new-generation perfluoroalkyl substance C6O4 on differentiating human dopaminergic neurons from induced pluripotent stem cells. Toxicol Rep 2022; 10:40-44. [PMID: 36578672 PMCID: PMC9791692 DOI: 10.1016/j.toxrep.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 12/14/2022] Open
Abstract
Perfluoroalkyl substances (PFASs) are persistent pollutants, raising concerns for human health. Legacy PFAS perfluoro-octanoic acid (PFOA) accumulate in brains of people at high environmental exposure, especially in areas enriched with dopaminergic neurons (DN). In vitro exposure to 10 ng/mL PFOA for 24 h was also associated with an altered molecular and functional phenotype of DN differentiated from human induced pluripotent stem cells (hiPSCs). Acetic acid, 2,2-difluoro-2-((2,2,4,5-tetrafluoro-5(trifluoromethoxy)- 1,3-dioxolan-4-yl)oxy)-ammonium salt (1:1), known as C6O4, is a new generation PFAS proposed to have a safer profile. Here we investigated the effect of C6O4 exposure on the molecular phenotype of hiPSC-derived DN. Cells were exposed to C6O4 for 24 h, at the concentration of 10 ng/mL, at neuronal commitment (DP1), neuronal precursor (DP2) and the mature dopaminergic (DP3) phases of differentiation. Liquid-chromatography/mass-spectrometry showed negligible cell accumulation of C6O4 at each differentiation stage and by staining with Merocyanine-540 we observed unaltered cell membrane fluidity. Immunofluorescence showed that the expression of tyrosine hydroxylase (TH) and βIII-Tubulin was unaffected by the exposure to C6O4 at each differentiation phase (respectively: DP1, p = 0.332; DP2, p = 0.623; DP3, p = 0.816, with respect to control unexposed conditions). Exposure to C6O4 is presumed to have minor effects on cell molecular/functional phenotype of developing human DN cells, requiring confirm on in vivo models.
Collapse
Affiliation(s)
- Andrea Di Nisio
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - Marta Trevisan
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Stefano Dall’Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | | - Claudia Pappalardo
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - Alberto Ferlin
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - Carlo Foresta
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
- Corresponding author.
| | - Luca De Toni
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| |
Collapse
|
15
|
Marques E, Pfohl M, Wei W, Tarantola G, Ford L, Amaeze O, Alesio J, Ryu S, Jia X, Zhu H, Bothun GD, Slitt A. Replacement per- and polyfluoroalkyl substances (PFAS) are potent modulators of lipogenic and drug metabolizing gene expression signatures in primary human hepatocytes. Toxicol Appl Pharmacol 2022; 442:115991. [PMID: 35337807 PMCID: PMC9036616 DOI: 10.1016/j.taap.2022.115991] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/03/2022] [Accepted: 03/18/2022] [Indexed: 01/12/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of environmental toxicants, and some, such as perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), have been associated with hepatic steatosis in rodents and monkeys. It was hypothesized that perfluorosulfonic acids (C4, 6, 8), perfluorocarboxylic acids (C4-14), perfluoro(2-methyl-3-oxahexanoic) acid (HFPO-DA), 1H, 1H, 2H, 2H-perfluorooctanesulfonic acid (6:2 FTS) along with 3 PFOS precursors could induce expression of lipid metabolism genes and lipid deposition in human hepatocytes. Five-donor pooled cryopreserved human hepatocytes were cultured and treated with 0.1% DMSO vehicle or various PFAS (0.25 to 25 μM) in media. After a 48-h treatment, mRNA transcripts related to lipid transport, metabolism, and synthesis were measured using a Quantigene Plex assay. After 72-h treatments, hepatocytes were stained with Nile Red dye to quantify intracellular lipids. Overall, PFAS were transcriptionally active at 25 μM. In this model, lipid accumulation was not observed with C8-C12 treatments. Shorter chain PFAS (C4-C5), 6:2 FTS, and PFOS precursor, metFOSA, induced significant liver lipid accumulation, and gene activation at lower concentrations than legacy PFAS. In summary short chain PFAS and other alternative PFAS were more potent gene inducers, and potential health effects of replacement PFAS should be critically evaluated in humans.
Collapse
Affiliation(s)
- Emily Marques
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Marisa Pfohl
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Wei Wei
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Giuseppe Tarantola
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Lucie Ford
- Department of Biology and Biomedical Sciences, Salve Regina University, Newport, RI 02840, USA
| | - Ogochukwu Amaeze
- Department of Clinical Pharmacy & Biopharmacy, Faculty of Pharmacy, University of Lagos, Nigeria
| | - Jessica Alesio
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI, USA
| | - Sangwoo Ryu
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI, USA
| | - Xuelian Jia
- The Rutgers Center for Computational and Integrative Biology, Camden, NJ, USA
| | - Hao Zhu
- The Rutgers Center for Computational and Integrative Biology, Camden, NJ, USA; Department of Chemistry, Rutgers University, Camden, NJ, USA
| | - Geoffrey D Bothun
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI, USA
| | - Angela Slitt
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA.
| |
Collapse
|