1
|
Talavera Andújar B, Pereira SL, Busi SB, Usnich T, Borsche M, Ertan S, Bauer P, Rolfs A, Hezzaz S, Ghelfi J, Brüggemann N, Antony P, Wilmes P, Klein C, Grünewald A, Schymanski EL. Exploring environmental modifiers of LRRK2-associated Parkinson's disease penetrance: An exposomics and metagenomics pilot study on household dust. ENVIRONMENT INTERNATIONAL 2024; 194:109151. [PMID: 39571299 DOI: 10.1016/j.envint.2024.109151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 12/22/2024]
Abstract
Pathogenic variants in the Leucine-rich repeat kinase 2 (LRRK2) gene are a primary monogenic cause of Parkinson's disease (PD). However, the likelihood of developing PD with inherited LRRK2 pathogenic variants differs (a phenomenon known as "reduced penetrance"), with factors including age and geographic region, highlighting a potential role for lifestyle and environmental factors in disease onset. To investigate this, household dust samples from four different groups of individuals were analyzed using metabolomics/exposomics and metagenomics approaches: PD+/LRRK2+ (PD patients with pathogenic LRRK2 variants; n = 11), PD-/LRRK2+ (individuals with pathogenic LRRK2 variants but without PD diagnosis; n = 8), iPD (PD of unknown cause; n = 11), and a matched, healthy control group (n = 11). The dust was complemented with metabolomics and lipidomics of matched serum samples, where available. A total of 1,003 chemicals and 163 metagenomic operational taxonomic units (mOTUs) were identified in the dust samples, of which ninety chemicals and ten mOTUs were statistically significant (ANOVA p-value < 0.05). Reduced levels of 2-benzothiazolesulfonic acid (BThSO3) were found in the PD-/LRRK2+ group compared to the PD+/LRRK2+ . Among the significant chemicals tentatively identified in dust, two are hazardous chemical replacements: Bisphenol S (BPS), and perfluorobutane sulfonic acid (PFBuS). Furthermore, various lipids were found altered in serum including different lysophosphatidylethanolamines (LPEs), and lysophosphatidylcholines (LPCs), some with higher levels in the PD+/LRRK2+ group compared to the control group. A cellular study on isogenic neurons generated from a PD+/LRRK2+ patient demonstrated that BPS negatively impacts mitochondrial function, which is implicated in PD pathogenesis. This pilot study demonstrates how non-target metabolomics/exposomics analysis of indoor dust samples complemented with metagenomics can prioritize relevant chemicals that may be potential modifiers of LRRK2 penetrance.
Collapse
Affiliation(s)
- Begoña Talavera Andújar
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg.
| | - Sandro L Pereira
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Susheel Bhanu Busi
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg; UK Centre for Ecology and Hydrology, Wallingford, Oxfordshire, United Kingdom
| | - Tatiana Usnich
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Max Borsche
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany; Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Sibel Ertan
- School of Medicine, Department of Neurology, Koc University, Istanbul, Turkey
| | | | | | - Soraya Hezzaz
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Jenny Ghelfi
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Norbert Brüggemann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany; Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Paul Antony
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg; Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Anne Grünewald
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Emma L Schymanski
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg.
| |
Collapse
|
2
|
Lamisa AB, Ahammad I, Bhattacharjee A, Hossain MU, Ishtiaque A, Chowdhury ZM, Das KC, Salimullah M, Keya CA. A meta-analysis of bulk RNA-seq datasets identifies potential biomarkers and repurposable therapeutics against Alzheimer's disease. Sci Rep 2024; 14:24717. [PMID: 39433822 PMCID: PMC11494203 DOI: 10.1038/s41598-024-75431-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/04/2024] [Indexed: 10/23/2024] Open
Abstract
Alzheimer's disease (AD) poses a major challenge due to its impact on the elderly population and the lack of effective early diagnosis and treatment options. In an effort to address this issue, a study focused on identifying potential biomarkers and therapeutic agents for AD was carried out. Using RNA-Seq data from AD patients and healthy individuals, 12 differentially expressed genes (DEGs) were identified, with 9 expressing upregulation (ISG15, HRNR, MTATP8P1, MTCO3P12, DTHD1, DCX, ST8SIA2, NNAT, and PCDH11Y) and 3 expressing downregulation (LTF, XIST, and TTR). Among them, TTR exhibited the lowest gene expression profile. Interestingly, functional analysis tied TTR to amyloid fiber formation and neutrophil degranulation through enrichment analysis. These findings suggested the potential of TTR as a diagnostic biomarker for AD. Additionally, druggability analysis revealed that the FDA-approved drug Levothyroxine might be effective against the Transthyretin protein encoded by the TTR gene. Molecular docking and dynamics simulation studies of Levothyroxine and Transthyretin suggested that this drug could be repurposed to treat AD. However, additional studies using in vitro and in vivo models are necessary before these findings can be applied in clinical applications.
Collapse
Affiliation(s)
- Anika Bushra Lamisa
- Department of Biochemistry and Microbiology, North South University, Bashundhara, Dhaka, 1229, Bangladesh
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Savar, Dhaka, 1349, Ashulia, Bangladesh
| | - Ishtiaque Ahammad
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Savar, Dhaka, 1349, Ashulia, Bangladesh
| | - Arittra Bhattacharjee
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Savar, Dhaka, 1349, Ashulia, Bangladesh
| | - Mohammad Uzzal Hossain
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Savar, Dhaka, 1349, Ashulia, Bangladesh
| | - Ahmed Ishtiaque
- Department of Biochemistry and Microbiology, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Zeshan Mahmud Chowdhury
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Savar, Dhaka, 1349, Ashulia, Bangladesh
| | - Keshob Chandra Das
- Molecular Biotechnology Division, National Institute of Biotechnology, Ganakbari, Savar, Dhaka, 1349, Ashulia, Bangladesh
| | - Md Salimullah
- Molecular Biotechnology Division, National Institute of Biotechnology, Ganakbari, Savar, Dhaka, 1349, Ashulia, Bangladesh
| | - Chaman Ara Keya
- Department of Biochemistry and Microbiology, North South University, Bashundhara, Dhaka, 1229, Bangladesh.
| |
Collapse
|
3
|
Yang Y, Wang X, Yang M, Wei S, Li Y. Integrated Analysis of Per- and Polyfluoroalkyl Substance Exposure and Metabolic Profiling of Elderly Residents Living near Industrial Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4104-4114. [PMID: 38373080 DOI: 10.1021/acs.est.3c09014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are widely used in industrial production, causing potential health risks to the residents living around chemical industrial plants; however, the lack of data on population exposure and adverse effects impedes our understanding and ability to prevent risks. In this study, we performed screening and association analysis on exogenous PFAS pollutants and endogenous small-molecule metabolites in the serum of elderly residents living near industrial plants. Exposure levels of 11 legacy and novel PFASs were determined. PFOA and PFOS were major contributors, and PFNA, PFHxS, and 6:2 Cl-PFESA also showed high detection frequencies. Association analysis among PFASs and 287 metabolites identified via non-target screening was performed with adjustments of covariates and false discovery rate. Strongly associated metabolites were predominantly lipid and lipid-like molecules. Steroid hormone biosynthesis, primary bile acid biosynthesis, and fatty-acid-related pathways, including biosynthesis of unsaturated fatty acids, linoleic acid metabolism, α-linolenic acid metabolism, and fatty acid biosynthesis, were enriched as the metabolic pathways associated with mixed exposure to multiple PFASs, providing metabolic explanation and evidence for the potential mediating role of adverse health effects as a result of PFAS exposure. Our study achieved a comprehensive screening of PFAS exposure and associated metabolic profiling, demonstrating the promising application for integrated analysis of exposome and metabolome.
Collapse
Affiliation(s)
- Yajing Yang
- School of Environmental Science and Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Xuebing Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Minmin Yang
- Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, Shandong 266041, People's Republic of China
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Yuqian Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| |
Collapse
|
4
|
Wen X, Xiao Y, Xiao H, Tan X, Wu B, Li Z, Wang R, Xu X, Li T. Bisphenol S induces brown adipose tissue whitening and aggravates diet-induced obesity in an estrogen-dependent manner. Cell Rep 2023; 42:113504. [PMID: 38041811 DOI: 10.1016/j.celrep.2023.113504] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/06/2023] [Accepted: 11/10/2023] [Indexed: 12/04/2023] Open
Abstract
Bisphenol S (BPS) exposure has been implied epidemiologically to increase obesity risk, but the underlying mechanism is unclear. Here, we propose that BPS exposure at an environmentally relevant dose aggravates diet-induced obesity in female mice by inducing brown adipose tissue (BAT) whitening. We explored the underlying mechanism by which KDM5A-associated demethylation of the trimethylation of lysine 4 on histone H3 (H3K4me3) in thermogenic genes is overactivated in BAT upon BPS exposure, leading to the reduced expression of thermogenic genes. Further studies have suggested that BPS activates KDM5A transcription in BAT by binding to glucocorticoid receptor (GR) in an estrogen-dependent manner. Estrogen-estrogen receptors facilitate the accessibility of the KDM5A gene promoter to BPS-activated GR by recruiting the activator protein 1 (AP-1) complex. These results indicate that BAT is another important target of BPS and that targeting KDM5A-related signals may serve as an approach to counteract the BPS-induced susceptivity to obesity.
Collapse
Affiliation(s)
- Xue Wen
- Department of Plastic and Burn Surgery, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China; Department of Anesthesiology, Laboratory of Mitochondria and Metabolism, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yang Xiao
- Department of Plastic and Burn Surgery, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Haitao Xiao
- Department of Plastic and Burn Surgery, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xueqin Tan
- Department of Plastic and Burn Surgery, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China; Department of Anesthesiology, Laboratory of Mitochondria and Metabolism, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Beiyi Wu
- Department of Plastic and Burn Surgery, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China; Department of Anesthesiology, Laboratory of Mitochondria and Metabolism, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Zehua Li
- Department of Plastic and Burn Surgery, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China; Department of Anesthesiology, Laboratory of Mitochondria and Metabolism, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ru Wang
- Department of Plastic and Burn Surgery, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xuewen Xu
- Department of Plastic and Burn Surgery, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Tao Li
- Department of Anesthesiology, Laboratory of Mitochondria and Metabolism, West China Hospital of Sichuan University, Chengdu 610041, China.
| |
Collapse
|
5
|
Quaratesi I, Micu MC, Rebba E, Carsote C, Proietti N, Di Tullio V, Porcaro R, Badea E. Cleaner Leather Tanning and Post-Tanning Processes Using Oxidized Alginate as Biodegradable Tanning Agent and Nano-Hydroxyapatite as Potential Flame Retardant. Polymers (Basel) 2023; 15:4676. [PMID: 38139929 PMCID: PMC10747597 DOI: 10.3390/polym15244676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
In this study, sodium alginate (SA) was oxidized with potassium periodate to produce an alginate-based tanning agent. Using OSA as a biodegradable tanning agent and a nano-hydroxyapatite (nano-HAp) low concentration suspension to give flame retardancy to leather, eco-design concepts were applied to establish a chrome-, aldehyde-, and phenol-free tanning process. Micro-DSC, 1H unilateral nuclear magnetic resonance (NMR), attenuated total reflection mode Fourier transform infrared spectroscopy (FTIR-ATR), and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS) were used to investigate the complex matrix collagen-OSA-nano-HAp. Micro-differential scanning calorimetry (micro-DSC) was used to assess OSA's ability to interact with collagen and stabilize the collagen-OSA matrix, while 1H unilateral (NMR) was used to investigate the aqueous environment and its limitations around collagen molecules caused by their association with OSA and nano-HAp. Industrial standard tests were used to assess the mechanical properties and fire resistance of the new leather prototype. The findings reported here indicate that both OSA and nano-HAp are suitable alternatives for cleaner tanning technologies and more sustainable leather.
Collapse
Affiliation(s)
- Ilaria Quaratesi
- National Research and Development Institute for Textile and Leather (INCDTP), Research Institute for Leather and Footwear Branch (ICPI), Ion Minulescu Str. 93, 031215 Bucharest, Romania; (I.Q.); (M.C.M.)
| | - Maria Cristina Micu
- National Research and Development Institute for Textile and Leather (INCDTP), Research Institute for Leather and Footwear Branch (ICPI), Ion Minulescu Str. 93, 031215 Bucharest, Romania; (I.Q.); (M.C.M.)
| | - Erica Rebba
- Department of Chemistry, NIS Interdepartmental and INSTM Reference Centre, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy;
| | - Cristina Carsote
- National Museum of Romanian History, Calea Victoriei Str. 12, 030026 Bucharest, Romania;
| | - Noemi Proietti
- Istituto di Scienze del Patrimonio Culturale (ISPC), Consiglio Nazionale delle Ricerche (CNR), Area della Ricerca di Roma 1, 00015 Monterotondo, RM, Italy; (N.P.); (V.D.T.)
| | - Valeria Di Tullio
- Istituto di Scienze del Patrimonio Culturale (ISPC), Consiglio Nazionale delle Ricerche (CNR), Area della Ricerca di Roma 1, 00015 Monterotondo, RM, Italy; (N.P.); (V.D.T.)
| | - Rita Porcaro
- KEMIA TAU SRL, Via Torino 56/64, 10040 La Cassa, TO, Italy;
| | - Elena Badea
- National Research and Development Institute for Textile and Leather (INCDTP), Research Institute for Leather and Footwear Branch (ICPI), Ion Minulescu Str. 93, 031215 Bucharest, Romania; (I.Q.); (M.C.M.)
- Department of Chemistry, Faculty of Sciences, University of Craiova, Calea Bucuresti Str. 107 I, 200512 Craiova, Romania
| |
Collapse
|
6
|
Moreno-Gómez-Toledano R, Delgado-Marín M, Cook-Calvete A, González-Cucharero C, Alcharani N, Jiménez-Guirado B, Hernandez I, Ramirez-Carracedo R, Tesoro L, Botana L, Sánchez-Esteban S, Diez-Mata J, Zamorano JL, Bosch RJ, Zaragoza C, Saura M. New environmental factors related to diabetes risk in humans: Emerging bisphenols used in synthesis of plastics. World J Diabetes 2023; 14:1301-1313. [PMID: 37664470 PMCID: PMC10473949 DOI: 10.4239/wjd.v14.i8.1301] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/21/2023] [Accepted: 06/05/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is one of the largest global health emergencies of the 21st century. In recent years, its connection with environmental pollutants, such as bisphenol A (BPA), has been demonstrated; consequently, new structurally similar molecules are used to replace BPA in the plastics industry (BPS, BPF and BPAF). AIM To carry out a systematic review to allow coherent evaluation of the state of the art. Subsequently, a meta-analysis was performed to unify the existing quantitative data. METHODS Firstly, a systematic review was carried out, using the terms "(bisphenol) AND (Diabetes OR Hyperglycemia)", to maximize the number of results. Subsequently, three authors analyzed the set of articles. Finally, a meta-analysis was performed for each BP, using RevMan software. In addition, funnel plots were developed to study publication bias. RESULTS The systematic analysis of the literature revealed 13 recent articles (2017-2023) related to the study paradigm. The qualitative analysis showed interesting data linking diabetes to the three most widely used substitute BPs in the industry: BPS, BPF and BPAF. Finally, the meta-analysis determined a positive relationship with BPS, BPF and BPAF, which was only statistically significant with BPS. CONCLUSION There is a need to apply the precautionary principle, regulating the use of new BPs. Therefore, replacing BPA with BPS, BPF or BPAF is unlikely to protect the population from potential health risks, such as DM.
Collapse
Affiliation(s)
- Rafael Moreno-Gómez-Toledano
- Universidad de Alcalá,Department of Biological Systems/Physiology, Alcalá de Henares 28871, Spain
- Cardiology Department, University Hospital Ramón y Cajal, Madrid 28034, Spain
- Laboratory of Cardiovascular Pathophysiology, Joint Translational Research Unit, University Francisco de Vitoria School of Medicine, Madrid 28034, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria-IRYCIS, Madrid 28034, Spain
| | - María Delgado-Marín
- Universidad de Alcalá,Department of Biological Systems/Physiology, Alcalá de Henares 28871, Spain
| | - Alberto Cook-Calvete
- Universidad de Alcalá,Department of Biological Systems/Physiology, Alcalá de Henares 28871, Spain
| | - Claudia González-Cucharero
- Cardiology Department, University Hospital Ramón y Cajal, Madrid 28034, Spain
- Laboratory of Cardiovascular Pathophysiology, Joint Translational Research Unit, University Francisco de Vitoria School of Medicine, Madrid 28034, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria-IRYCIS, Madrid 28034, Spain
| | - Nunzio Alcharani
- Cardiology Department, University Hospital Ramón y Cajal, Madrid 28034, Spain
- Laboratory of Cardiovascular Pathophysiology, Joint Translational Research Unit, University Francisco de Vitoria School of Medicine, Madrid 28034, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria-IRYCIS, Madrid 28034, Spain
| | - Beatriz Jiménez-Guirado
- Cardiology Department, University Hospital Ramón y Cajal, Madrid 28034, Spain
- Laboratory of Cardiovascular Pathophysiology, Joint Translational Research Unit, University Francisco de Vitoria School of Medicine, Madrid 28034, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria-IRYCIS, Madrid 28034, Spain
| | - Ignacio Hernandez
- Cardiology Department, University Hospital Ramón y Cajal, Madrid 28034, Spain
- Laboratory of Cardiovascular Pathophysiology, Joint Translational Research Unit, University Francisco de Vitoria School of Medicine, Madrid 28034, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria-IRYCIS, Madrid 28034, Spain
| | - Rafael Ramirez-Carracedo
- Cardiology Department, University Hospital Ramón y Cajal, Madrid 28034, Spain
- Laboratory of Cardiovascular Pathophysiology, Joint Translational Research Unit, University Francisco de Vitoria School of Medicine, Madrid 28034, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria-IRYCIS, Madrid 28034, Spain
| | - Laura Tesoro
- Cardiology Department, University Hospital Ramón y Cajal, Madrid 28034, Spain
- Laboratory of Cardiovascular Pathophysiology, Joint Translational Research Unit, University Francisco de Vitoria School of Medicine, Madrid 28034, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria-IRYCIS, Madrid 28034, Spain
| | - Laura Botana
- Cardiology Department, University Hospital Ramón y Cajal, Madrid 28034, Spain
- Laboratory of Cardiovascular Pathophysiology, Joint Translational Research Unit, University Francisco de Vitoria School of Medicine, Madrid 28034, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria-IRYCIS, Madrid 28034, Spain
| | - Sandra Sánchez-Esteban
- Universidad de Alcalá,Department of Biological Systems/Physiology, Alcalá de Henares 28871, Spain
| | - Javier Diez-Mata
- Cardiology Department, University Hospital Ramón y Cajal, Madrid 28034, Spain
- Laboratory of Cardiovascular Pathophysiology, Joint Translational Research Unit, University Francisco de Vitoria School of Medicine, Madrid 28034, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria-IRYCIS, Madrid 28034, Spain
| | - Jose Luis Zamorano
- Cardiology Department, University Hospital Ramón y Cajal, Madrid 28034, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria-IRYCIS, Madrid 28034, Spain
| | - Ricardo J. Bosch
- Universidad de Alcalá,Department of Biological Systems/Physiology, Alcalá de Henares 28871, Spain
| | - Carlos Zaragoza
- Cardiology Department, University Hospital Ramón y Cajal, Madrid 28034, Spain
- Laboratory of Cardiovascular Pathophysiology, Joint Translational Research Unit, University Francisco de Vitoria School of Medicine, Madrid 28034, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria-IRYCIS, Madrid 28034, Spain
| | - Marta Saura
- Universidad de Alcalá,Department of Biological Systems/Physiology, Alcalá de Henares 28871, Spain
| |
Collapse
|
7
|
Huang W, Shi X, Chen Y, Zhang Q, Peng J, Zheng S, Wu K. Comparative pharyngeal cartilage developmental toxicity of bisphenol A, bisphenol S and bisphenol AF to zebrafish (Danio rerio) larvae: A combination of morphometry and global transcriptome analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161702. [PMID: 36681333 DOI: 10.1016/j.scitotenv.2023.161702] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/17/2022] [Accepted: 01/15/2023] [Indexed: 01/21/2023]
Abstract
Exposure to BPA is recently shown to affect cartilage development in teleost fishes; whether BPS and BPAF, its two most frequently used phenolic analogues have similar effect, however, remains unclear. Here, we utilize zebrafish (Danio rerio) as an in-vivo larval model for systematic comparison of the pharyngeal arch-derived cartilage developmental toxicity of BPA, BPS and BPAF. Zebrafish are continuously exposed to three bisphenol analogues (3-BPs) at a range of concentrations since the embryonic stage (0.5 hpf), and identified cartilage malformations of the mandibular and hyoid pharyngeal arches at larval stage (120 hpf). BPA and BPAF prolong length and broaden cartilage angles; however, BPS shortens length and narrows the angles of skull cartilages. The results of the comparative transcriptome show that FoxO and MAPK signaling pathways are closely associated with the toxicity of BPA and BPAF, while BPS exposure affects energy metabolism-related pathways. Moreover, exposure to 3-BPs have an impact on the oxidative stress status. Our data collectively indicate that BPS and BPAF may not be safer than BPA regarding the impact on pharyngeal cartilage development in fish model, the mechanisms still need explorations, and that these two analogues should be applied with caution.
Collapse
Affiliation(s)
- Wenlong Huang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Xiaoling Shi
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yuequn Chen
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Qiong Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Jiajun Peng
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Shukai Zheng
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
8
|
Makowska K, Gonkowski S. Changes Caused by Bisphenols in the Chemical Coding of Neurons of the Enteric Nervous System of Mouse Stomach. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5125. [PMID: 36982030 PMCID: PMC10049369 DOI: 10.3390/ijerph20065125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/04/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Bisphenol A (BPA), an organic chemical compound which is widely used in the production of plastics, can severely damage live organisms. Due to these findings, the plastic industry has started to replace it with other substances, most often with bisphenol S (BPS). Therefore, during the present investigation, with the use of double immunofluorescence labeling, we compared the effect of BPA and BPS on the enteric nervous system (ENS) in the mouse corpus of the stomach. The obtained results show that both studied toxins impact the amount of nerve cells immunoreactive to substance P (SP), galanin (GAL), vesicular acetylcholine transporter (VAChT is used here as a marker of cholinergic neurons) and vasoactive intestinal polypeptide (VIP). Changes observed under the impact of both bisphenols depended on the neuronal factor, the type of the enteric ganglion and the doses of bisphenols studied. Generally, the increase in the percentage of neurons immunoreactive to SP, GAL and/or VIP, and the decrease in the percentage of VAChT-positive neurons, was noted. Severity of changes was more visible after BPA administration. However, the study has shown that long time exposure to BPS also significantly affects the ENS.
Collapse
Affiliation(s)
- Krystyna Makowska
- Department of Clinical Diagnostics, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-957 Olsztyn, Poland
| | - Slawomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-957 Olsztyn, Poland
| |
Collapse
|
9
|
Jala A, Dutta R, Josyula JVN, Mutheneni SR, Borkar RM. Environmental phenol exposure associates with urine metabolome alteration in young Northeast Indian females. CHEMOSPHERE 2023; 317:137830. [PMID: 36640981 DOI: 10.1016/j.chemosphere.2023.137830] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/12/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Urinary biomonitoring delivers the most accurate environmental phenols exposure assessment. However, environmental phenol exposure-related biomarkers are required to improve risk assessment to understand the internal processes perturbed, which may link exposure to specific health outcomes. This study aimed to investigate the association between environmental phenols exposure and the metabolome of young adult females from India. Urinary metabolomics was performed using liquid chromatography-mass spectrometry. Environmental phenols-related metabolic biomarkers were investigated by comparing the low and high exposure of environmental phenols. Seven potential biomarkers, namely histidine, cysteine-s-sulfate, 12-KETE, malonic acid, p-hydroxybenzoic acid, PE (36:2), and PS (36:0), were identified, revealing that environmental phenol exposure altered the metabolic pathways such as histidine metabolism, beta-Alanine metabolism, glycerophospholipid metabolism, and other pathways. This study also conceived an innovative strategy for the early prediction of diseases by combining urinary metabolomics with machine learning (ML) algorithms. The differential metabolites predictive accuracy by ML models was >80%. This is the first mass spectrometry-based metabolomics study on young adult females from India with environmental phenols exposure. The study is valuable in demonstrating multiple urine metabolic changes linked to environmental phenol exposure and a better understanding of the mechanisms behind environmental phenol-induced effects in young female adults.
Collapse
Affiliation(s)
- Aishwarya Jala
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Guwahati, 781101, Assam, India
| | - Ratul Dutta
- Down Town Hospital, Guwahati, Assam, 781106, India
| | | | - Srinivasa Rao Mutheneni
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, Telangana, India
| | - Roshan M Borkar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Guwahati, 781101, Assam, India.
| |
Collapse
|
10
|
The Comparison of the Influence of Bisphenol A (BPA) and Its Analogue Bisphenol S (BPS) on the Enteric Nervous System of the Distal Colon in Mice. Nutrients 2022; 15:nu15010200. [PMID: 36615857 PMCID: PMC9824883 DOI: 10.3390/nu15010200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Bisphenol A (BPA), commonly used as a plasticizer in various branches of industry has a strong negative effect on living organisms. Therefore, more and more often it is replaced in production of plastics by other substances. One of them is bisphenol S (BPS). This study for the first time compares the impact of BPA and BPS on the enteric neurons using double immunofluorescence technique. It has been shown that both BPA and BPS affect the number of enteric neurons containing substance P (SP), galanin (GAL), vasoactive intestinal polypeptide (VIP), neuronal isoform of nitric oxide synthase (nNOS-a marker of nitrergic neurons) and/or vesicular acetylcholine transporter (VAChT- a marker of cholinergic neurons). The changes noted under the impact of both bisphenols are similar and consisted of an increase in the number of enteric neurons immunoreactive to all neuronal factors studied. The impact of BPS on some populations of neurons was stronger than that noted under the influence of BPA. The obtained results clearly show that BPS (similarly to BPA) administered for long time is not neutral for the enteric neurons even in relatively low doses and may be more potent than BPA for certain neuronal populations.
Collapse
|
11
|
Huang H, Liang J, Tang P, Yu C, Fan H, Liao Q, Long J, Pan D, Zeng X, Liu S, Huang D, Qiu X. Associations of bisphenol exposure with thyroid hormones in pregnant women: a prospective birth cohort study in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:87170-87183. [PMID: 35802331 DOI: 10.1007/s11356-022-21817-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Bisphenols are endocrine disruptor chemicals that disrupt thyroid hormone homeostasis. However, evidence on the effects of bisphenol mixtures on thyroid hormones are insufficient. Therefore, the present study aimed to explore the effects of bisphenol substitutes and bisphenol mixtures on thyroid hormones during pregnancy. The study was conducted among 446 pregnant women in the Guangxi Zhuang Birth Cohort (GZBC), China. In multiple linear regressions, compared with the low-exposure group, bisphenol S (BPS) concentrations in the middle-exposure group led to a 10.90% (95% CI: - 18.16%, - 2.99%) decrease in triiodothyronine (T3) levels in the first trimester; tetrabromobisphenol A (TBBPA) levels in the middle-exposure group led to an 8.26% (95% CI: - 15.82%, - 0.01%) decrease in T3 levels in the first trimester; bisphenol B (BPB) levels in the middle-exposure group led to higher free thyroxine (FT4) levels (9.84%; 95% CI: 1.73%, 18.60%) in the second trimester; bisphenol F (BPF) in the middle-exposure group led to higher FT4 levels (8.59%, 95% CI: 0.53%, 17.31%) in the second trimester; and TBBPA levels in the high-exposure group led to a 9.39% (95% CI: 1.46%, 17.93%) increase in FT4 levels in the second trimester. The Bayesian kernel machine regression (BKMR) and restricted cubic spline (RCS) models showed a U-shaped dose-response relationship between bisphenol A (BPA) and free triiodothyronine (FT3) (p < 0.01) as well as BPS and FT4 (p < 0.05). Nonlinear relationships were also observed between the bisphenol mixture and FT3. Overall, maternal bisphenol exposure affected thyroid hormone levels during pregnancy. This study provides evidence that BPB, BPF, BPS, and TBBPA are unsafe substitutes for BPA, as well as the overall effect of bisphenols on adverse health in human beings.
Collapse
Affiliation(s)
- Huishen Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No.22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Jun Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No.22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Peng Tang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No.22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Chuanxiang Yu
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, No.22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Haoran Fan
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, No.22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Qian Liao
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No.22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Jinghua Long
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No.22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Dongxiang Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No.22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Xiaoyun Zeng
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No.22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Shun Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Guangxi Medical University, No.22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Dongping Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, No.22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Xiaoqiang Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No.22 Shuangyong Road, Nanning, 530021, Guangxi, China.
| |
Collapse
|
12
|
Ao J, Liu Y, Tang W, Zhang J. Bisphenol S exposure induces intestinal inflammation: An integrated metabolomic and transcriptomic study. CHEMOSPHERE 2022; 292:133510. [PMID: 34979203 DOI: 10.1016/j.chemosphere.2021.133510] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
As a typical substitute for bisphenol A (BPA), bisphenol S (BPS) is raising concerns due to the potential adverse effects on human health. Limit evidence is available to understand the toxicity of BPS to the digestive system, especially for intestine. In this study, we aimed to investigate the potential effects and underlying mechanisms of BPS exposure on human colon mucosal epithelial cells (NCM460). Our results showed that BPS exposure significantly increased the production of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ) and interleukin-17A (IL-17A). The tight junctions of the cells has been destroyed by BPS exposure, which was characterized by a down-regulation of the tight junction proteins (Claudin1 and zonula occluden 1 (ZO1)). A multi-omics study explored the underlying mechanisms based on the metabolomic and transcriptomic responses. A variety of neurotransmitters increased significantly after exposure to BPS. The top enriched pathway was "glutamatergic synapse", which was activated by BPS exposure, resulting in the up-regulation of l-glutamine. Links were observed among the altered metabolites, genes and cytokines. Our results indicate that exposure to BPS may disturb the balance of gut-brain axis, leading to the production of inflammatory cytokines and the destruction of tight junction in NCM460 cells. It provides new clue for the development of intestinal inflammation in terms of the environmental pollutants.
Collapse
Affiliation(s)
- Junjie Ao
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Yongjie Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Weifeng Tang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; School of Public Health, Shanghai Jiao Tong University, Shanghai, 200025, China
| |
Collapse
|