1
|
Chelomin VP, Istomina AA, Mazur AA, Slobodskova VV, Zhukovskaya AF, Dovzhenko NV. New Insights into the Mechanisms of Toxicity of Aging Microplastics. TOXICS 2024; 12:726. [PMID: 39453146 PMCID: PMC11510949 DOI: 10.3390/toxics12100726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
Nowadays, synthetic polymer (plastic) particles are ubiquitous in the environment. It is known that for several decades microplastics (MPs) have been accumulating in the World Ocean, becoming available to a large variety of marine organisms. Particularly alarming is the accumulation of aging plastic particles, as the degradation processes of such particles increase their toxicity. The diverse display of negative properties of aging MPs and its effect on biota are still poorly understood. In this study, in vitro experiments modeling the interaction of pristine and UV-irradiated aging polypropylene (PP) fragments with hemocytes and mitochondria of bivalve mollusks Mytilus sp. were performed. The appearance of free radicals in the environment was recorded by spectral characteristics of indicator dyes-methylene blue (MB) and nitroblue tetrazolium (NBT). It was found that due to photooxidation, aging PP fragments sorbed more than threefold MB on their modified surface compared to pristine samples of this polymer. Using NBT, the formation of reactive oxygen species in seawater in the presence of pristine and photoactivated PP was recorded. It was also found that photodegraded PP fragments largely stimulated the development of lipid peroxidation processes in mitochondrial membranes and reduced the stability of hemocyte lysosome membranes compared to pristine PP fragments. In general, the results obtained concretize and supplement with experimental data the previously stated hypothesis of toxicity of aging MPs.
Collapse
|
2
|
Chelomin VP, Slobodskova VV, Dovzhenko NV, Mazur AA, Kukla SP. Photoaging Elevated the Genotoxicity of Polystyrene Microplastics to Marine Mussel Mytilus trossulus (Gould, 1850). Int J Mol Sci 2024; 25:5740. [PMID: 38891928 PMCID: PMC11171553 DOI: 10.3390/ijms25115740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Micro-sized particles of synthetic polymers (microplastics) are found in all parts of marine ecosystems. This fact requires intensive study of the degree of danger of such particles to the life activity of hydrobionts and needs additional research. It is evident that hydrobionts in the marine environment are exposed to microplastics modified by biotic and abiotic degradation. To assess the toxic potential of aging microplastic, comparative studies were conducted on the response of cytochemical and genotoxic markers in hemocytes of the mussel Mytilus trossulus (Gould, 1850) after exposure to pristine and photodegraded (UV irradiation) polystyrene microparticles (µPS). The results of cytochemical tests showed that UV-irradiated µPS strongly reduced metabolism and destabilized lysosome membranes compared to pristine µPS. Using a Comet assay, it was shown that the nuclear DNA of mussel hemocytes showed high sensitivity to exposure to both types of plastics. However, the level of DNA damage was significantly higher in mussels exposed to aging µPS. It is suggested that the mechanism of increased toxicity of photo-oxidized µPS is based on free-radical reactions induced by the UV irradiation of polymers. The risks of toxic effects will be determined by the level of physicochemical degradation of the polymer, which can significantly affect the mechanisms of toxicity.
Collapse
Affiliation(s)
| | | | | | - Andrey Alexandrovich Mazur
- Il’ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | | |
Collapse
|
3
|
Liu J, Li H, Guo Z, Xiao X, Viscardi A, Xiang R, Liu H, Lin X, Han J. The changes and correlation of IL-6 and oxidative stress levels in RAW264.7 macrophage cells induced by PAHs in PM 2.5. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:61. [PMID: 38281271 DOI: 10.1007/s10653-023-01851-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024]
Abstract
The objective of this study was to investigate the effects of anthracene (Ant) with 3 rings, benzo[a]anthracene (BaA) with 4 rings and benzo[b]fluoranthene (BbF) with 5 rings in fine particulate matter (PM2.5) at different exposure times (4 h and 24 h) and low exposure levels (0 pg/mL, 0.1 pg/mL, 1 pg/mL, 100 pg/mL and 10,000 pg/mL) on RAW264.7 cells. The changes of interleukin-6 (IL-6) and oxidative stress levels in RAW264.7 cells were investigated by methyl-thiazolyl-tetrazolium (MTT) and enzyme-linked immunosorbent assay (ELISA). Pearson correlation analysis was used to analyze the correlation between variables. Ant, BaA and BbF induced the secretion of IL-6 and the occurrence of oxidative stress in RAW264.7 cells. The inflammatory effect and oxidative damage were exacerbated with prolonged exposure time, increasing exposure concentration and increasing number of PAH rings. At the same time, IL-6 was found to have a certain correlation with the levels of ROS, MDA and SOD. Exposure to atmospheric PAHs at low concentrations can also produce toxic effects on cells, IL-6 and oxidative stress work together in cell damage. The study is expected to provide a theoretical and experimental basis for air pollution control and human health promotion.
Collapse
Affiliation(s)
- Jiaxin Liu
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 712000, Shaanxi, China
- Xi'an Gem Flower Chang Qing Hospital, Xi'an, 710200, China
| | - Hongqiu Li
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 712000, Shaanxi, China
| | - Ziwei Guo
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 712000, Shaanxi, China
- Xi'an Gem Flower Chang Qing Hospital, Xi'an, 710200, China
| | - Xiang Xiao
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 712000, Shaanxi, China
- Xi'an Gem Flower Chang Qing Hospital, Xi'an, 710200, China
| | - Angelo Viscardi
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 712000, Shaanxi, China
| | - Rongqi Xiang
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 712000, Shaanxi, China
| | - Haobiao Liu
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 712000, Shaanxi, China
| | - Xue Lin
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 712000, Shaanxi, China
| | - Jing Han
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 712000, Shaanxi, China.
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, China.
- Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
4
|
Zhou Y, Xu R, Gao Z, Miao J, Pan L. Insights into mechanism of DNA damage and repair-apoptosis in digestive gland of female scallop Chlamys farreri under benzo[a]pyrene exposure during reproductive stage. Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109738. [PMID: 37661044 DOI: 10.1016/j.cbpc.2023.109738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
As one of the most carcinogenic persistent organic pollutants (POPs), benzo[a]pyrene (B [a]P) brings high toxicity to marine bivalves. Digestive gland is the most important metabolism-related organ of aquatic animals. This study conducted the digestive gland transcriptome of Chlamys farreri under B[a]P treatment at reproductive stages. And the reproductive-stage dependence metabolism-DNA repair-apoptosis process of scallops under 0, 0.04, 0.4 and 4 μg/L B[a]P was studied by qRT-PCR. The results demonstrated that the detoxification metabolism was disturbed after ovulation except for CYP3A4. In antioxidant system, antioxidant enzyme CAT and GPX, and GGT1 (one of the non-enzymatic antioxidants synthesis gene) continuously served the function of antioxidant defense. Three types of DNA repair were activated under B[a]P stress, however, DNA strand breaks were still serious. B[a]P exposure weakened death receptor pathway as well as enhanced mitochondrial pathway, surprisingly suppressing apoptosis in scallops. In addition, ten indicators were screened by Spearman correlation analysis. This study will provide sound theoretical basis for bivalve toxicology and contribute to the biomonitoring of marine POPs pollution.
Collapse
Affiliation(s)
- Yueyao Zhou
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Ruiyi Xu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Zhongyuan Gao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
5
|
Nayak S, Patnaik L. Histopathological and Biochemical Changes in the Gills of Anabas testudineus on Exposure to Polycyclic Aromatic Hydrocarbon Naphthalene. Appl Biochem Biotechnol 2022; 195:2414-2431. [PMID: 36383310 DOI: 10.1007/s12010-022-04214-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/17/2022]
Abstract
Naphthalene, a polycyclic aromatic hydrocarbon, is generated by various distillation, petroleum, and coal-tar production units and is used worldwide as mothballs, soil fumigants, and toilet deodorants. Considering the susceptibility of aquatic animals to different types of stressors in several water bodies, this study was carried out to evaluate the impact of naphthalene on the architecture of gill tissue including response of various enzymes like cholinesterase (ChE) activity, lactate dehydrogenase (LDH) activity, and lipid peroxidation (LPX) level of the freshwater fish Anabas testudineus. Activities of antioxidants like catalase (CAT), glutathione peroxidase (GPx), and glutathione (GSH) were also evaluated. Constant loss of gill structure and secondary lamellar fusion was observed in fishes exposed to various concentrations of naphthalene. ChE, LDH, LPx, CAT, Gpx and GSH activities indicated significant variation (p < 0.05) between the control and experimental groups. ChE activity was lowered in experimental fishes; however, LDH activity, LPx levels, and CAT activity were elevated in response to various concentrations of naphthalene as compared to control group. Both GPx and GSH activities decreased in the gill tissue of the experimental fishes. Thus, a conclusion was drawn that naphthalene is a potent toxicant capable of inflicting tissue damage leading to physiological changes in the exposed fishes.
Collapse
Affiliation(s)
- Susri Nayak
- Environmental Science Laboratory, Department of Zoology, Centre of Excellence in Environment and Public Health, Ravenshaw University, Cuttack, 753008, Odisha, India
| | - Lipika Patnaik
- Environmental Science Laboratory, Department of Zoology, Centre of Excellence in Environment and Public Health, Ravenshaw University, Cuttack, 753008, Odisha, India.
| |
Collapse
|