Molavinia S, Moosavi M, Hejazi S, Azadnasab R, Mansouri E, Khodayar MJ. Metformin alleviates sodium arsenite-induced hepatotoxicity and glucose intolerance in mice by suppressing oxidative stress, inflammation, and apoptosis.
J Trace Elem Med Biol 2023;
80:127299. [PMID:
37690370 DOI:
10.1016/j.jtemb.2023.127299]
[Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND
Epidemiological studies have shown that exposure to sodium arsenite (NaAsO2) causes diabetes and hepatotoxicity. Metformin (MET), an oral hypoglycemic agent, has long been used in diabetes therapy. In addition, MET has been shown to have hepatoprotective effects. In this study, we investigated the effects of MET on NaAsO2-induced hepatotoxicity and glucose intolerance in mice.
METHODS
Mice were divided into four groups: Groups I and II received distilled water and NaAsO2 (10 mg/kg, p.o.) for five weeks, respectively. Groups III and IV were treated with NaAsO2 (10 mg/kg, p.o.) for three weeks, followed by MET (125 and 250 mg/kg, p.o.) for the last two weeks before NaAsO2. A glucose tolerance test was performed on day 35. The serum and tissue parameters were also evaluated.
RESULTS
Histopathological examination revealed NaAsO2-induced liver and pancreatic damage. NaAsO2 caused hyperglycemia, glucose intolerance, and a significant increase in liver function enzymes. Administration of NaAsO2 significantly reduced hepatic superoxide dismutase, catalase, glutathione peroxidase, and total thiol levels and increased the content of reactive thiobarbituric acid substances. In addition, it led to an increase in liver nitric oxide levels and protein expression of tumor necrosis factor-α, nuclear factor kappa B, and cysteine-aspartic proteases-3. In contrast, treatment with MET (250 mg/kg) significantly improved NaAsO2-induced biochemical and histopathological changes.
CONCLUSION
Our findings suggest that the significant effects of MET against NaAsO2-induced hepatotoxicity and glucose intolerance may be exerted via the regulation of oxidative stress, followed by suppression of inflammation and apoptosis.
Collapse