1
|
Peters AE, Ford EA, Roman SD, Bromfield EG, Nixon B, Pringle KG, Sutherland JM. Impact of Bisphenol A and its alternatives on oocyte health: a scoping review. Hum Reprod Update 2024; 30:653-691. [PMID: 39277428 PMCID: PMC11532624 DOI: 10.1093/humupd/dmae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/11/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Bisphenol A (BPA) is an endocrine disrupting chemical released from plastic materials, including food packaging and dental sealants, persisting in the environment and ubiquitously contaminating ecosystems and human populations. BPA can elicit an array of damaging health effects and, alarmingly, 'BPA-free' alternatives mirror these harmful effects. Bisphenol exposure can negatively impact female fertility, damaging both the ovary and oocytes therein. Such damage can diminish reproductive capacity, pregnancy success, and offspring health. Despite global government regulations in place to indicate 'safe' BPA exposure levels, these policies have not considered the effects of bisphenols on oocyte health. OBJECTIVE AND RATIONALE This scoping review was conducted to evaluate evidence on the effects of BPA and BPA alternatives on standardized parameters of oocyte health. In doing so, this review addresses a critical gap in the literature providing a comprehensive, up-to-date synthesis of the effects of bisphenols on oocyte health. SEARCH METHODS This scoping review was conducted in accordance with PRISMA guidelines. Four databases, Medline, Embase, Scopus, and Web of Science, were searched twice (23 February 2022 and 1 August 2023) to capture studies assessing mammalian oocyte health post-bisphenol exposure. Search terms regarding oocytes, ovarian follicles, and bisphenols were utilized to identify relevant studies. Manuscripts written in English and reporting the effect of any bisphenol on mammalian oocyte health from all years were included. Parameters for toxicological studies were evaluated, including the number of bisphenol concentrations/doses tested, dosing regimen, biological replicates and/or animal numbers, and statistical information (for human studies). Standardized parameters of oocyte health including follicle counts, oocyte yield, oocyte meiotic capacity, morphology of oocyte and cumulus cells, and oocyte meiotic spindle integrity were extracted across the studies. OUTCOMES After screening 3147 studies, 107 studies of either humans or mammalian animal models or humans were included. Of the in vitro exposure studies, 96.3% (26/27) and 94.1% (16/17) found at least one adverse effect on oocyte health using BPA or BPA alternatives (including BHPF, BPAF, BPB, BPF, and BPS), respectively. These included increased meiotic cell cycle arrest, altered morphology, and abnormal meiotic spindle/chromosomal alignment. In vivo, 85.7% (30/35) of studies on BPA and 92.3% (12/13) on BPA alternatives documented adverse effects on follicle development, morphology, or spindle/chromosome alignment. Importantly, these effects were recorded using levels below those deemed 'safe' for human exposure. Over half (11/21) of all human observational studies showed associations between higher urinary BPA levels and reduced antral follicle counts or oocyte yield in IVF patients. Recommendations are presented based on the identified shortcomings of the current evidence, incorporating elements of FDA requirements for future research in the field. WIDER IMPLICATIONS These data highlight the detrimental impacts of low-level BPA and BPA alternative exposure, contributing to poor oocyte quality and reduced fertility. These outcomes are valuable in promoting the revision of current policies and guidelines pertaining to BPA exposure internationally. This study serves as a valuable resource to scientists, providing key recommendations on study design, reporting elements, and endpoint measures to strengthen future studies. Ultimately, this review highlights oocyte health as a fundamentally important endpoint in reproductive toxicological studies, indicating an important direction for future research into endocrine disrupting chemicals to improve fertility outcomes.
Collapse
Affiliation(s)
- Alexandra E Peters
- School of Biomedical Science and Pharmacy, College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Program and Women's Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Emmalee A Ford
- School of Biomedical Science and Pharmacy, College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Program and Women's Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- The Research Centre, Family Planning Australia, Newington, NSW, Australia
| | - Shaun D Roman
- Department of Research, NSW Health Pathology, Newcastle, NSW, Australia
| | - Elizabeth G Bromfield
- Faculty of Science, School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, VIC, Australia
- School of Environmental and Life Sciences, College of Engineering, Science, and Environment, University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Brett Nixon
- School of Environmental and Life Sciences, College of Engineering, Science, and Environment, University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Kirsty G Pringle
- School of Biomedical Science and Pharmacy, College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Program and Women's Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jessie M Sutherland
- School of Biomedical Science and Pharmacy, College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Program and Women's Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
2
|
Gezer A, Üstündağ H, Kılıç Baygutalp N, Erbaş E, Özkaraca M. The Protective Effect of Gallic Acid Against Bisphenol A-Induced Ovarian Toxicity and Endocrine Disruption in Female Rats. J Med Food 2024; 27:651-660. [PMID: 38975681 DOI: 10.1089/jmf.2024.0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Purpose: This study aimed to investigate the protective effects of gallic acid (GA) against ovarian damage induced by bisphenol A (BPA) exposure in female rats. We evaluated whether GA can mitigate the adverse effects of BPA on ovarian structure, inflammatory markers, oxidative stress, apoptosis, and reproductive hormone levels. Methods: Thirty-two female rats were categorized into four groups: control, GA, BPA, and GA+BPA. Histopathological evaluations of ovarian tissue were performed using hematoxylin-eosin staining. The immunohistochemical analysis was conducted for inflammatory, oxidative DNA damage, and apoptotic markers (Tumor necrosis factor alpha [TNFα], cyclooxygenase-2 [COX2], interleukin-1 beta [IL-1β], 8-hydroxydeoxyguanosine [8-OHdG], and caspase 3). Oxidative stress was assessed by measuring malondialdehyde and superoxide dismutase levels. Furthermore, follicle-stimulating hormone (FSH), luteinizing hormone (LH), estrogen, and progesterone levels were quantified using enzyme-linked immunosorbent assay. Results: Histopathological outcomes revealed that BPA significantly induced follicular degeneration, which was effectively mitigated by GA treatment (P < 0.05). Immunohistochemical analysis highlighted the exacerbation of inflammatory responses and oxidative DNA damage and apoptosis (TNFα, COX-2, IL-1β, 8-OHdG, and caspase 3) in BPA-exposed tissues, which were reduced in the presence of GA (P < 0.05). The assessment of oxidative stress demonstrated that GA could significantly decrease lipid peroxidation and partially restore antioxidant defense mechanisms disrupted by BPA (P < 0.05). Hormonal profiling indicated that BPA exposure altered the levels of FSH, LH, estrogen, and progesterone, with GA treatment showing a capacity to modulate these changes, especially in progesterone levels (P < 0.05). Conclusions: The findings suggest that GA exhibits protective properties against BPA-induced ovarian damage through its antioxidative and anti-inflammatory activities, alongside its ability to modulate hormonal imbalances. This research underscores the therapeutic potential of GA in safeguarding reproductive health against environmental toxicants.
Collapse
Affiliation(s)
- Arzu Gezer
- Vocational School of Health Services, Atatürk University, Erzurum, Türkiye
- Pharmaceutical Research and Development, Graduate School of Natural and Applied Sciences, Atatürk University, Erzurum, Türkiye
| | - Hilal Üstündağ
- Department of Physiology, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Türkiye
| | | | - Elif Erbaş
- Department of Histology and Embryology, Faculty of Veterinary, Atatürk University, Erzurum, Türkiye
| | - Mustafa Özkaraca
- Department of Pathology, Faculty of Veterinary, Cumhuriyet University, Sivas, Türkiye
| |
Collapse
|
3
|
Wang J, Zhang L, He Y, Ji R. Biodegradation of phenolic pollutants and bioaugmentation strategies: A review of current knowledge and future perspectives. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133906. [PMID: 38430590 DOI: 10.1016/j.jhazmat.2024.133906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/28/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
The widespread use of phenolic compounds renders their occurrence in various environmental matrices, posing ecological risks especially the endocrine disruption effects. Biodegradation-based techniques are efficient and cost-effective in degrading phenolic pollutants with less production of secondary pollution. This review focuses on phenol, 4-nonylphenol, 4-nitrophenol, bisphenol A and tetrabromobisphenol A as the representatives, and summarizes the current knowledge and future perspectives of their biodegradation and the enhancement strategy of bioaugmentation. Biodegradation and isolation of degrading microorganisms were mainly investigated under oxic conditions, where phenolic pollutants are typically hydroxylated to 4-hydroxybenzoate or hydroquinone prior to ring opening. Bioaugmentation efficiencies of phenolic pollutants significantly vary under different application conditions (e.g., increased degradation by 10-95% in soil and sediment). To optimize degradation of phenolic pollutants in different matrices, the factors that influence biodegradation capacity of microorganisms and performance of bioaugmentation are discussed. The use of immobilization strategy, indigenous degrading bacteria, and highly competent exogenous bacteria are proposed to facilitate the bioaugmentation process. Further studies are suggested to illustrate 1) biodegradation of phenolic pollutants under anoxic conditions, 2) application of microbial consortia with synergistic effects for phenolic pollutant degradation, and 3) assessment on the uncertain ecological risks associated with bioaugmentation, resulting from changes in degradation pathway of phenolic pollutants and alterations in structure and function of indigenous microbial community.
Collapse
Affiliation(s)
- Jiacheng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lidan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yujie He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Quanzhou 362000, China.
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Quanzhou 362000, China
| |
Collapse
|
4
|
Harada M. Cellular senescence in the pathogenesis of ovarian dysfunction. J Obstet Gynaecol Res 2024; 50:800-808. [PMID: 38412992 DOI: 10.1111/jog.15918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/17/2024] [Indexed: 02/29/2024]
Abstract
The follicular microenvironment is crucial for normal ovarian function, and intra-ovarian factors, in coordination with gonadotropins, contribute to its regulation. Recent research has revealed that the accumulation of senescent cells worsens the adverse environment of various tissues and plays critical roles in chronological aging and various pathological conditions. Cellular senescence involves cell-cycle arrest, a senescence-associated secretory phenotype (SASP), macromolecular damage, and dysmetabolism. In this review, I summarize the latest knowledge regarding the role of cellular senescence in pathological conditions in the ovary, in the context of reproduction. Specifically, cellular senescence is known to impair follicular and oocyte health in cisplatin- and cyclophosphamide-induced primary ovarian insufficiency and to contribute to the pathogenesis of polycystic ovary syndrome (PCOS). In addition, cellular senescence is induced during the decline in ovarian reserve that is associated with chronological aging, endometriosis, psychological stress, and obesity, but it remains unclear whether it plays a causative role in these conditions. Finally, I discuss the potential for use of cellular senescence as a novel therapeutic target. The modification of SASP using a senomorphic and/or the elimination of senescent cells using a senolytic represent promising therapeutic strategies. Further elucidation of the role of cellular senescence in the effects of various insults on ovarian reserve, including chronological aging, as well as in pathogenesis of ovarian pathologies, including PCOS, may facilitate a new era of reproductive medicine.
Collapse
Affiliation(s)
- Miyuki Harada
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
El-Kossi DMMH, Ibrahim SS, Hassanin KMA, Hamad N, Rashed NA, Abdel-Wahab A. Ameliorative Effects of Zinc Oxide, in Either Conventional or Nanoformulation, Against Bisphenol A Toxicity on Reproductive Performance, Oxidative Status, Gene Expression and Histopathology in Adult Male Rats. Biol Trace Elem Res 2024; 202:2143-2157. [PMID: 37682394 PMCID: PMC10954980 DOI: 10.1007/s12011-023-03830-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023]
Abstract
Bisphenol A (BPA) is a widely used endocrine disruptor that represents a significant risk to male reproductive function. Zinc (Zn) is vital for appropriate development of testes and to guarantee optimal testicular function and spermatogenesis. Our goal was to investigate if zinc oxide (ZnO), either in conventional or nanoformulation, could safeguard adult male rats' reproductive performance against the damaging effects of BPA. Signaling expression of CYP11A1 and Nrf-2 in the testis, testicular oxidant-antioxidant status, Bax/Bcl-2 apoptotic ratio, and histological examination of various reproductive organs were all evaluated. Twenty-eight adult male albino rats were divided randomly into 4 groups (7 animals each) including the control, BPA, conventional zinc oxide (cZnO) + BPA, and zinc oxide nanoparticles (ZnO-NPs) + BPA groups. The study was extended for 2 successive months. Our findings revealed strong negative effects of BPA on sperm cell characteristics such as sperm motility, viability, concentration and abnormalities. Additionally, BPA reduced serum levels of testosterone, triiodothyronine (T3), and thyroxine (T4). Also, it evoked marked oxidative stress in the testes; elevating malondialdehyde (MDA) and reducing total antioxidant capacity (TAC). BPA significantly downregulated testicular mRNA relative expression levels of CYP11A1 and Nrf-2, compared to control. Testicular apoptosis was also prompted by increasing Bax/ Bcl-2 ratio in testicular tissue. Histopathological findings in the testes, epididymis, prostate gland, and seminal vesicle confirmed the detrimental effects of BPA. Interestingly, cZnO and ZnO-NPs significantly alleviated all negative effects of BPA, but ZnO-NPs performed better. In conclusion, our findings point to ZnO, specifically ZnO-NPs, as a viable treatment for BPA-induced testicular dysfunction.
Collapse
Affiliation(s)
- Dina M M H El-Kossi
- Physiology Department, Faculty of Veterinary Medicine, Minia University, El-Minia, 61519, Egypt
| | - Shawky S Ibrahim
- Physiology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Kamel M A Hassanin
- Biochemistry Department, Faculty of Veterinary Medicine, Minia University, El-Minia, 61519, Egypt
| | - Nashwa Hamad
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71515, Egypt
| | - Noha A Rashed
- Department of Human Anatomy and Embryology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Ahmed Abdel-Wahab
- Physiology Department, Faculty of Veterinary Medicine, Minia University, El-Minia, 61519, Egypt.
| |
Collapse
|
6
|
Lyu L, Tao Y, Abaakil K, Gu Y, Zhong G, Hu Y, Zhang Y. Novel insights into DEHP-induced zebrafish spleen damage: Cellular apoptosis, mitochondrial dysfunction, and innate immunity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169324. [PMID: 38145680 DOI: 10.1016/j.scitotenv.2023.169324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/15/2023] [Accepted: 12/10/2023] [Indexed: 12/27/2023]
Abstract
DEHP (Di(2-ethylhexyl) phthalate) is the most abundant phthalate component detected in environmental samples as it is widely used in the manufacturing of children's toys, medical devices and furniture. Due to its wide prevalence and propensity to accumulate in the food chain, significant concerns have risen about the safety profile of DEHP. Here, we used a zebrafish model to investigate the toxicity mechanisms of DEHP. Our results indicated that exposure to DEHP altered the ROS content in zebrafish spleen and inhibited the activities of antioxidant enzymes SOD and CAT, detoxification enzyme GSH-Px and induced histopathological damage. In addition, elucidated the mechanism of DEHP significantly promoted apoptosis and caused damage in spleen cells through the bax/bcl-2 pathway. Further genetic testing demonstrated significant alterations in mitochondrial biogenesis, fission, and fusion-related genes and suggested potential mechanistic pathways, including GM10532/m6A/FIS1 axis, the STAT3/POA1 axis, and the NFR1/TFAM axis. Serological and genomic analysis indicated that DEHP exposure activated the C3 complement cascade immune pathway and interfered with innate immune function. IBRv2 analysis proposes that innate immunity may serve as a signal indicator of early toxic responses to DEHP pollutants. This study provided comprehensive cellular and genetic data for DEHP toxicity studies and emphasized the need for future management and remediation of DEHP contamination. It also provides data to specifically support the health risk assessments of DEHP, as well as contributing to broader health and environmental research.
Collapse
Affiliation(s)
- Liang Lyu
- College of Resources and Environment, Northeast Agricultural University, Changjiang Street 600, Harbin 150030, PR China; Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, SW7 2AZ London, UK.
| | - Yue Tao
- College of Resources and Environment, Northeast Agricultural University, Changjiang Street 600, Harbin 150030, PR China
| | - Kaoutar Abaakil
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, SW7 2AZ London, UK.
| | - Yanyan Gu
- College of Resources and Environment, Northeast Agricultural University, Changjiang Street 600, Harbin 150030, PR China
| | - Guanyu Zhong
- College of Resources and Environment, Northeast Agricultural University, Changjiang Street 600, Harbin 150030, PR China
| | - Yang Hu
- College of Resources and Environment, Northeast Agricultural University, Changjiang Street 600, Harbin 150030, PR China
| | - Ying Zhang
- College of Resources and Environment, Northeast Agricultural University, Changjiang Street 600, Harbin 150030, PR China.
| |
Collapse
|
7
|
Pan J, Liu P, Yu X, Zhang Z, Liu J. The adverse role of endocrine disrupting chemicals in the reproductive system. Front Endocrinol (Lausanne) 2024; 14:1324993. [PMID: 38303976 PMCID: PMC10832042 DOI: 10.3389/fendo.2023.1324993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/26/2023] [Indexed: 02/03/2024] Open
Abstract
Reproductive system diseases pose prominent threats to human physical and mental well-being. Besides being influenced by genetic material regulation and changes in lifestyle, the occurrence of these diseases is closely connected to exposure to harmful substances in the environment. Endocrine disrupting chemicals (EDCs), characterized by hormone-like effects, have a wide range of influences on the reproductive system. EDCs are ubiquitous in the natural environment and are present in a wide range of industrial and everyday products. Currently, thousands of chemicals have been reported to exhibit endocrine effects, and this number is likely to increase as the testing for potential EDCs has not been consistently required, and obtaining data has been limited, partly due to the long latency of many diseases. The ability to avoid exposure to EDCs, especially those of artificially synthesized origin, is increasingly challenging. While EDCs can be divided into persistent and non-persistent depending on their degree of degradation, due to the recent uptick in research studies in this area, we have chosen to focus on the research pertaining to the detrimental effects on reproductive health of exposure to several EDCs that are widely encountered in daily life over the past six years, specifically bisphenol A (BPA), phthalates (PAEs), polychlorinated biphenyls (PCBs), parabens, pesticides, heavy metals, and so on. By focusing on the impact of EDCs on the hypothalamic-pituitary-gonadal (HPG) axis, which leads to the occurrence and development of reproductive system diseases, this review aims to provide new insights into the molecular mechanisms of EDCs' damage to human health and to encourage further in-depth research to clarify the potentially harmful effects of EDC exposure through various other mechanisms. Ultimately, it offers a scientific basis to enhance EDCs risk management, an endeavor of significant scientific and societal importance for safeguarding reproductive health.
Collapse
Affiliation(s)
- Jing Pan
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Pengfei Liu
- Gynecology Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| | - Xiao Yu
- Gynecology Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| | - Zhongming Zhang
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Jinxing Liu
- Gynecology Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| |
Collapse
|
8
|
Hu M, Zhang Y, Zhang X, Zhang X, Huang X, Lu Y, Li Y, Brännström M, Sferruzzi-Perri AN, Shao LR, Billig H. Defective Uterine Spiral Artery Remodeling and Placental Senescence in a Pregnant Rat Model of Polycystic Ovary Syndrome. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1916-1935. [PMID: 37689383 DOI: 10.1016/j.ajpath.2023.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/28/2023] [Accepted: 08/23/2023] [Indexed: 09/11/2023]
Abstract
Pregnancy-related problems have been linked to impairments in maternal uterine spiral artery (SpA) remodeling. The mechanisms underlying this association are still unclear. It is also unclear whether hyperandrogenism and insulin resistance, the two common manifestations of polycystic ovary syndrome, affect uterine SpA remodeling. We verified previous work in which exposure to 5-dihydrotestosterone (DHT) and insulin (INS) in rats during pregnancy resulted in hyperandrogenism, insulin intolerance, and higher fetal mortality. Exposure to DHT and INS dysregulated the expression of angiogenesis-related genes in the uterus and placenta and also decreased expression of endothelial nitric oxide synthase and matrix metallopeptidases 2 and 9, increased fibrotic collagen deposits in the uterus, and reduced expression of marker genes for SpA-associated trophoblast giant cells. These changes were related to a greater proportion of unremodeled uterine SpAs and a smaller proportion of highly remodeled arteries in DHT + INS-exposed rats. Placentas from DHT + INS-exposed rats exhibited decreased basal and labyrinth zone regions, reduced maternal blood spaces, diminished labyrinth vascularity, and an imbalance in the abundance of vascular and smooth muscle proteins. Furthermore, placentas from DHT + INS-exposed rats showed expression of placental insufficiency markers and a significant increase in cell senescence-associated protein levels. Altogether, this work demonstrates that increased pregnancy complications in polycystic ovary syndrome may be mediated by problems with uterine SpA remodeling, placental functionality, and placental senescence.
Collapse
Affiliation(s)
- Min Hu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Institute of Integrated Traditional Chinese Medicine and Western Medicine, Guangzhou Medical University, Guangzhou, China; Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Yuehui Zhang
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xu Zhang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - XiuYing Zhang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinyue Huang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Institute of Integrated Traditional Chinese Medicine and Western Medicine, Guangzhou Medical University, Guangzhou, China
| | - Yaxing Lu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Institute of Integrated Traditional Chinese Medicine and Western Medicine, Guangzhou Medical University, Guangzhou, China
| | - Yijia Li
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Institute of Integrated Traditional Chinese Medicine and Western Medicine, Guangzhou Medical University, Guangzhou, China
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Linus R Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Håkan Billig
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
9
|
Khan NG, Tungekar B, Adiga D, Chakrabarty S, Rai PS, Kabekkodu SP. Alterations induced by Bisphenol A on cellular organelles and potential relevance on human health. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119505. [PMID: 37286138 DOI: 10.1016/j.bbamcr.2023.119505] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/29/2023] [Accepted: 05/26/2023] [Indexed: 06/09/2023]
Abstract
Bisphenol A (BPA) is a chemical partially soluble in water and exists in a solid state. Its structural similarity with estrogen makes it an endocrine-disrupting chemical. BPA can disrupt signaling pathways at very low doses and may cause organellar stress. According to in vitro and in vivo studies, BPA interacts with various cell surface receptors to cause organellar stress, producing free radicals, cellular toxicity, structural changes, DNA damage, mitochondrial dysfunction, cytoskeleton remodeling, centriole duplication, and aberrant changes in several cell signaling pathways. The current review summarizes the impact of BPA exposure on the structural and functional aspects of subcellular components of cells such as the nucleus, mitochondria, endoplasmic reticulum, lysosome, ribosome, Golgi apparatus, and microtubules and its consequent impact on human health.
Collapse
Affiliation(s)
- Nadeem G Khan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Bushra Tungekar
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India; Center for DNA Repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Padmalatha S Rai
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India; Center for DNA Repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
10
|
Prabhu NB, Vasishta S, Bhat SK, Joshi MB, Kabekkodu SP, Satyamoorthy K, Rai PS. Distinct metabolic signatures in blood plasma of bisphenol A-exposed women with polycystic ovarian syndrome. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:64025-64035. [PMID: 37060405 PMCID: PMC10172238 DOI: 10.1007/s11356-023-26820-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/31/2023] [Indexed: 04/16/2023]
Abstract
Polycystic ovarian syndrome (PCOS) is a complicated endocrinopathy with an unclear etiology that afflicts fertility status in women. Although the underlying causes and pathophysiology of PCOS are not completely understood, it is suspected to be driven by environmental factors as well as genetic and epigenetic factors. Bisphenol A (BPA) is a weak estrogenic endocrine disruptor known to cause adverse reproductive outcomes in women. A growing relevance supports the notion that BPA may contribute to PCOS pathogenesis. Due to the indeterminate molecular mechanisms of BPA in PCOS endocrinopathy, we sought liquid chromatography with tandem mass spectrometry (LC-MS/MS), a metabolomics strategy that could generate a metabolic signature based on urinary BPA levels of PCOS and healthy individuals. Towards this, we examined urinary BPA levels in PCOS and healthy women by ELISA and performed univariate and chemometric analysis to distinguish metabolic patterns among high and low BPA in PCOS and healthy females, followed by pathway and biomarker analysis employing MetaboAnalyst 5.0. Our findings indicated aberrant levels of certain steroids, sphingolipids, and others, implying considerable disturbances in steroid hormone biosynthesis, linoleic, linolenic, sphingolipid metabolism, and various other pathways across target groups in comparison to healthy women with low BPA levels. Collectively, our findings provide insight into metabolic signatures of BPA-exposed PCOS women, which can potentially improve management strategies and precision medicine.
Collapse
Affiliation(s)
- Navya B Prabhu
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Sampara Vasishta
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Shashikala K Bhat
- Department of Obstetrics and Gynaecology, Dr. TMA Pai Hospital, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal, 576101, India
| | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Padmalatha S Rai
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|