1
|
Lahiri SK, Azimi Dijvejin Z, Gholamreza F, Shabanian S, Khatir B, Wotherspoon L, Golovin K. Liquidlike, Low-Friction Polymer Brushes for Microfibre Release Prevention from Textiles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400580. [PMID: 38529758 DOI: 10.1002/smll.202400580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/12/2024] [Indexed: 03/27/2024]
Abstract
During synthetic textile washing, rubbing between fibres or against the washing machine, exacerbated by the elevated temperature, initiates the release of millions of microplastic fibres into the environment. A general tribological strategy is reported that practically eliminates the release of microplastic fibres from laundered apparel. The two-layer fabric finishes combine low-friction, liquidlike polymer brushes with "molecular primers", that is, molecules that durably bond the low-friction layers to the surface of the polyester or nylon fabrics. It is shown that when the coefficient of friction is below a threshold of 0.25, microplastic fibre release is substantially reduced, by up to 96%. The fabric finishes can be water-wicking or water-repellent, and their comfort properties are retained after coating, indicating a tunable and practical strategy toward a sustainable textile industry and plastic-free oceans and marine foodstuffs.
Collapse
Affiliation(s)
- Sudip Kumar Lahiri
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Zahra Azimi Dijvejin
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Farzan Gholamreza
- School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Sadaf Shabanian
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
- School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Behrooz Khatir
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Lauren Wotherspoon
- Department of Materials Science & Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Kevin Golovin
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
- Department of Materials Science & Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| |
Collapse
|
2
|
Frank YA, Sotnikova YS, Tsygankov VY, Rednikin AR, Donets MM, Karpova EV, Belanov MA, Rakhmatullina S, Borovkova AD, Polovyanenko DN, Vorobiev DS. Pollution of Beach Sands of the Ob River (Western Siberia) with Microplastics and Persistent Organic Pollutants. J Xenobiot 2024; 14:989-1002. [PMID: 39189170 PMCID: PMC11348125 DOI: 10.3390/jox14030055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/28/2024] Open
Abstract
Microplastics (MPs) in aquatic environments can be associated with various substances, including persistent organic pollutants, which add to the problem of plastic ecotoxicity. The abundance of 1-5 mm microplastics and concentrations of particle-adsorbed organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in sandy sediments from three beaches in recreational areas along the upper Ob River in Western Siberia were assessed. MP pollution levels in the Ob River beach sands ranged from 24 ± 20.7 to 104 ± 46.2 items m-2 or, in terms of mass concentration, from 0.26 ± 0.21 to 1.22 ± 0.39 mg m-2. The average abundance of MP particles reached 0.67 ± 0.58 items kg-1 or 8.22 ± 6.13 μg kg-1 in the studied sediments. MP concentrations were significantly higher in number (p < 0.05) and mass (p < 0.01) at the riverbank site downstream of the Novosibirsk wastewater treatment plant (WWTP) outfall compared to these at the upstream and more distant beaches. Most MPs (70-100%) were represented by irregularly shaped fragments. The polymer composition of MPs varied between sites, with a general predominance of polyethylene (PE). The study revealed associations of MPs with PCBs and OCPs not previously detected in the riverbed and beach sediments, suggesting that these substances are circulating in the Ob River basin. Although MP concentrations were higher downstream of the WWTP, the maximum levels of particle-associated OCPs were observed in the beach sands of the site farthest from the urban agglomeration. The pesticides γ-HCH, 4,4-DDT, and 4,4-DDE were detected on MPs at relatively low concentrations. PCBs were more abundant in the studied samples, including 118 dioxin-like congener. The results obtained indicate that the Ob River is susceptible to plastic and persistent organic pollutant (POP) contamination and serve as a starting point for further studies and practical solutions to the problem.
Collapse
Affiliation(s)
- Yulia A. Frank
- Biological Institute, Tomsk State University, 36 Lenin Ave., 634050 Tomsk, Russia (D.S.V.)
| | - Yulia S. Sotnikova
- N.N. Vorozhtsov Institute, Organic Chemistry, Siberian Branch, Russian Academy of Sciences (SB RAS), 9 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (Y.S.S.); (E.V.K.); (D.N.P.)
| | - Vasiliy Yu. Tsygankov
- Pacific Geographical Institute, Far-Eastern Branch, Russian Academy of Sciences (FEB RAS), 7 Radio Street, 690041 Vladivostok, Russia; (V.Y.T.)
| | - Aleksey R. Rednikin
- Biological Institute, Tomsk State University, 36 Lenin Ave., 634050 Tomsk, Russia (D.S.V.)
| | - Maksim M. Donets
- Pacific Geographical Institute, Far-Eastern Branch, Russian Academy of Sciences (FEB RAS), 7 Radio Street, 690041 Vladivostok, Russia; (V.Y.T.)
| | - Elena V. Karpova
- N.N. Vorozhtsov Institute, Organic Chemistry, Siberian Branch, Russian Academy of Sciences (SB RAS), 9 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (Y.S.S.); (E.V.K.); (D.N.P.)
| | - Maksim A. Belanov
- Pacific Geographical Institute, Far-Eastern Branch, Russian Academy of Sciences (FEB RAS), 7 Radio Street, 690041 Vladivostok, Russia; (V.Y.T.)
| | - Svetlana Rakhmatullina
- Biological Institute, Tomsk State University, 36 Lenin Ave., 634050 Tomsk, Russia (D.S.V.)
| | - Aleksandra D. Borovkova
- Pacific Geographical Institute, Far-Eastern Branch, Russian Academy of Sciences (FEB RAS), 7 Radio Street, 690041 Vladivostok, Russia; (V.Y.T.)
| | - Dmitriy N. Polovyanenko
- N.N. Vorozhtsov Institute, Organic Chemistry, Siberian Branch, Russian Academy of Sciences (SB RAS), 9 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (Y.S.S.); (E.V.K.); (D.N.P.)
| | - Danil S. Vorobiev
- Biological Institute, Tomsk State University, 36 Lenin Ave., 634050 Tomsk, Russia (D.S.V.)
| |
Collapse
|
3
|
Alizadeh Sani M, Khezerlou A, McClements DJ. Zeolitic imidazolate frameworks (ZIFs): Advanced nanostructured materials to enhance the functional performance of food packaging materials. Adv Colloid Interface Sci 2024; 327:103153. [PMID: 38604082 DOI: 10.1016/j.cis.2024.103153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/01/2024] [Accepted: 04/06/2024] [Indexed: 04/13/2024]
Abstract
Zeolite imidazole framework (ZIF) materials are a class of metallic organic framework (MOF) materials that have several potential applications in the food and other industries. They consist of metal ions or clusters of metal ions coordinated with imidazole-based organic linkers, creating a three-dimensional solid structure with well-defined pores and channels. ZIFs possess several important features, including high porosity, tunable pore sizes, high surface areas, adjustable surface chemistries, and good stabilities. These characteristics make them highly versatile materials that can be used in a variety of applications, including smart and active food packaging. Based on their controllable compositions, dimensions, and pore sizes, the properties of ZIFs can be tailored for a diverse range of applications, including energy storage, sensing, separation, encapsulation, and catalysis. In this article, we focus on recent progress and potential applications of ZIFs in food packaging materials. Previous studies have shown that ZIFs can significantly improve the optical, mechanical, barrier, thermal, sustainability, and preservative properties of packaging materials. Moreover, ZIFs can be used as carriers to encapsulate, protect, and control the release of bioactive agents in packaging materials. ZIFs are capable of selectively adsorbing and releasing molecules based on their size, shape, and surface properties. These unique characteristics make them particularly suitable for smart or active food packaging applications. By selectively removing gases (such as oxygen, carbon dioxide, water, or ethylene) ZIFs can improve the shelf life and quality of packaged foods. In addition, they can be employed to control the growth of spoilage microorganisms and minimize oxidation reactions, thereby enhancing the freshness and extending the shelf life of foods. They may also be used to create sensors capable of detecting and indicating food spoilage. For instance, ZIFs that change color or release specific compounds when spoilage products are present can provide visual or chemical indications of food deterioration. This feature is especially valuable in ensuring the safety and quality of packaged food, as it enables consumers and retailers to easily identify spoiled products. ZIFs can be functionalized using various additives, including antioxidants, antimicrobials, pigments, and flavors, which can improve the preservative and sensory properties of packaged foods. Moreover, ZIF-based packaging materials offer sustainability benefits. Unlike traditional plastic packaging, ZIFs are biodegradable and can easily be disposed of without causing harm to the environment, thereby reducing the adverse effects of plastic waste materials. The application of ZIFs in smart/active food packaging offers exciting possibilities for enhancing the shelf life, quality, and safety of foods. With further research and development, ZIF-based packaging could become a sustainable alternative to plastic-based packaging in the food industry. An important aim of this review article is to stimulate further research on the development and application of ZIFs within food packaging materials.
Collapse
Affiliation(s)
- Mahmood Alizadeh Sani
- Department of Food Science and Technology, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezou Khezerlou
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
4
|
Liu B, Guo K, Yue Q, Gao Y, Gao B. New insights into the fate and interaction mechanisms of hydrolyzed aluminum-titanium species in the removal of aged polystyrene. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:133010. [PMID: 37984144 DOI: 10.1016/j.jhazmat.2023.133010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/01/2023] [Accepted: 11/12/2023] [Indexed: 11/22/2023]
Abstract
Polyaluminum-titanium chloride composite coagulant (PATC) has been demonstrated to be a promising coagulant in microplastics (MPs) treatment. However, the interaction process between the dominant species of PATC and MPs remains unclear, which will hinder our understanding of the coagulation mechanisms. Here, the species transformation of PATC during its interaction with aged polystyrene powder (APSp) was studied. The results showed that the rise of O-containing functional groups in APSp increased the possibility of forming C-O-M coordination bonds and hydrogen bonds between APSp and PATC, which improved the removal of PSp. Furthermore, Al13(OH)53Ti13O17(H2O)204+ (Al13Ti13) was considered to be the most effective species of PATC. At pH 4, electrostatic attraction brought Al13Ti13 approached APSp first, followed by hydrogen bonding and complexation occurred, respectively. However, the Al13Ti13-APSp complexes were easily converted to monomers and dimers during coagulation, which influenced the coagulation efficiency. With the increase of pH, OH- in the solution would further polymerize the depolymerized Al2Ti into oligomers and mesomers. Under weakly acid conditions, the diversity of PATC hydrolysates and the increase in APSp binding sites correspondingly led to the maximum APSp removal of 75%. When the pH further increased to 10, PATC interacted with APSp mainly by hydrogen bonding and sweeping effect.
Collapse
Affiliation(s)
- Beibei Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 26600, PR China
| | - Kangying Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 26600, PR China
| | - Qinyan Yue
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 26600, PR China
| | - Yue Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 26600, PR China.
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 26600, PR China.
| |
Collapse
|
5
|
Filipe S, Mourão PM, Couto N, Tranchida D. Towards a Sustainable Future: Advancing an Integrated Approach for the Recycling and Valorization of Agricultural Plastics. Polymers (Basel) 2023; 15:4529. [PMID: 38231954 PMCID: PMC11080938 DOI: 10.3390/polym15234529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 01/19/2024] Open
Abstract
Plastic pollution has become a pressing environmental issue. The agricultural sector, in particular, is a significant contributor to this problem, given the widespread use of plastics in farming practices and a lack of and/or use of inefficient approaches for the recycling and valorization of agricultural plastic waste. This has resulted in the accumulation of these residues in landfills and/or their improper disposal, which has exacerbated their environmental impact, leading to negative consequences on soil, water, and ecosystems. This work provides an overview on the current methodologies available to address the challenges associated with inadequate management of agricultural plastics and highlights the need for a comprehensive and systematic methodology, involving material development, polymer processing, waste collection, sorting, and valorization. It emphasizes the importance of collaboration between polymer producers, polymer manufacturers, farmers, policymakers, waste management companies, and recyclers to develop effective, technical, and economically viable recycling and valorization schemes. This paper addresses gaps and provides guidance on possible solutions, specifically polymer development, policy instruments, regulatory frameworks, collection schemes, and the technical approaches required for the adequate valorization of agricultural plastic waste. Furthermore, it highlights the associated barriers and benefits of the different presented approaches. It also aims to promote awareness on agricultural plastic waste and provide guidance on the best approaches to reduce its environmental impact.
Collapse
Affiliation(s)
- Susana Filipe
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Paulo Mira Mourão
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Departamento de Química e Bioquímica, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal;
| | - Nazaré Couto
- CENSE—Center for Environmental and Sustainability Research & CHANGE—Global Change and Sustainability Institute, Department of Environmental Sciences and Engineering, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal;
| | - Davide Tranchida
- Competence Center Advanced Polymer Characterisation, Borealis GmbH, Sankt Peter Strasse 25, 4021 Linz, Austria;
| |
Collapse
|
6
|
Pastorino P, Barceló D. Microplastics and their environmental effects. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 104:104324. [PMID: 38000685 DOI: 10.1016/j.etap.2023.104324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
Microplastics (MPs) are acknowledged as emerging contaminants that pose a substantial threat to the environment. The adverse impacts of MP pollution extend across marine, freshwater, and terrestrial ecosystems, covering regions from the Tropics to the Poles. Although our comprehension of MP behavior has progressed in recent years, it is still difficult to predict exposure hotspots or exposure scenarios. Despite a noteworthy increase in data concerning MP occurrence in different environmental compartments and species, there is a noticeable scarcity of experimental data on MP uptake, accumulation, and effects. This Virtual Special Issue (VSI) received a total of 19 contributions from 11 countries, with a significant majority originating from Italy, India, Spain, and China. These contributions were categorized into three main themes: the occurrence and effects of MPs on aquatic and terrestrial organisms, the presence of chemical additives in plastics, and review articles summarizing previously published research on MPs.
Collapse
Affiliation(s)
- Paolo Pastorino
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, 10154 Torino, Italy.
| | - Damià Barceló
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain.
| |
Collapse
|