1
|
Kido T, Sugaya C, Hano H, Yanagisawa H, Suka M. Intratracheal administration of cross-linked water-soluble acrylic acid polymer is associated with inducible bronchi-related lymphoid tissue formation and allergic inflammation. Immunology 2024; 171:250-261. [PMID: 37960993 DOI: 10.1111/imm.13715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
In a Japanese chemical factory, lung diseases such as pneumoconiosis have been reported among workers handling cross-linked water-soluble acrylic acid polymers (CWAAP). Our previous study reported that a single intratracheal administration of CWAAP induces acute inflammation and fibrosis. In this study, we investigated the effects of multiple intratracheal administrations of CWAAP on inflammatory responses and pulmonary fibrosis along with inducible bronchus-associated lymphoid tissues (iBALT) formation, which is involved in allergic inflammation. Male F344 rats (190-200 g) received single or multiple intratracheal administrations of phosphate-buffered saline (PBS) or CWAAP. To assess inflammatory responses and pulmonary fibrosis, immunohistochemical and histological staining was performed. CD68, CD163, CD169, TGF-β, and collagen I positive cells/areas in the lungs of the CWAAP-group rats were significantly increased than those in the PBS group. Furthermore, the number of iBALT structures, CD4 + T cells, along with CD19, PAX5, IL-4, GATA-3, T-bet, and IgE-positive cells in the terminal bronchioles and blood vessels of the lungs were significantly increased in the CWAAP group. Moreover, pulmonary fibrosis, iBALT formation, and levels of specific IgG were significantly increased in rats who received multiple intratracheal administrations of CWAAP compared to those with single intratracheal administration. Multiple intratracheal administrations of CWAAP potentiated the classical fibrotic pathway (M2 macrophage-TGF-β-collagen I) more potently than single intratracheal administration. Furthermore, it was possible that iBALT was formed around terminal bronchioles and blood vessels and the number of immune cells was increased, resulting in enhanced allergic inflammation and pulmonary fibrosis.
Collapse
Affiliation(s)
- Takamasa Kido
- Department of Public Health and Environmental Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Chiemi Sugaya
- Department of Public Health and Environmental Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiroshi Hano
- The Jikei University School of Medicine, Tokyo, Japan
| | | | - Machi Suka
- Department of Public Health and Environmental Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Kheradmand F, Zhang Y, Corry DB. Contribution of adaptive immunity to human COPD and experimental models of emphysema. Physiol Rev 2023; 103:1059-1093. [PMID: 36201635 PMCID: PMC9886356 DOI: 10.1152/physrev.00036.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 02/01/2023] Open
Abstract
The pathophysiology of chronic obstructive pulmonary disease (COPD) and the undisputed role of innate immune cells in this condition have dominated the field in the basic research arena for many years. Recently, however, compelling data suggesting that adaptive immune cells may also contribute to the progressive nature of lung destruction associated with COPD in smokers have gained considerable attention. The histopathological changes in the lungs of smokers can be limited to the large or small airways, but alveolar loss leading to emphysema, which occurs in some individuals, remains its most significant and irreversible outcome. Critically, however, the question of why emphysema progresses in a subset of former smokers remained a mystery for many years. The recognition of activated and organized tertiary T- and B-lymphoid aggregates in emphysematous lungs provided the first clue that adaptive immune cells may play a crucial role in COPD pathophysiology. Based on these findings from human translational studies, experimental animal models of emphysema were used to determine the mechanisms through which smoke exposure initiates and orchestrates adaptive autoreactive inflammation in the lungs. These models have revealed that T helper (Th)1 and Th17 subsets promote a positive feedback loop that activates innate immune cells, confirming their role in emphysema pathogenesis. Results from genetic studies and immune-based discoveries have further provided strong evidence for autoimmunity induction in smokers with emphysema. These new findings offer a novel opportunity to explore the mechanisms underlying the inflammatory landscape in the COPD lung and offer insights for development of precision-based treatment to halt lung destruction.
Collapse
Affiliation(s)
- Farrah Kheradmand
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
- Biology of Inflammation Center, Baylor College of Medicine, Houston, Texas
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, Texas
| | - Yun Zhang
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - David B Corry
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
- Biology of Inflammation Center, Baylor College of Medicine, Houston, Texas
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, Texas
| |
Collapse
|
3
|
Zhai K, Wang W, Zheng M, Khan GJ, Wang Q, Chang J, Dong Z, Zhang X, Duan H, Gong Z, Cao H. Protective effects of
Isodon Suzhouensis
extract and glaucocalyxin A on chronic obstructive pulmonary disease through SOCS3–JAKs/STATs pathway. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Kefeng Zhai
- Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province School of Biological and Food Engineering Suzhou University Suzhou 234000 China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education) Guizhou Medical University Guiyang 550004 China
| | - Wei Wang
- Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province School of Biological and Food Engineering Suzhou University Suzhou 234000 China
- School of Biological and Food Engineering Anhui Polytechnic University Wuhu 241000 China
| | - Mengqing Zheng
- Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province School of Biological and Food Engineering Suzhou University Suzhou 234000 China
| | - Ghulam Jilany Khan
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy University of Central Punjab Lahore 54000 Pakistan
| | - Qunbo Wang
- Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province School of Biological and Food Engineering Suzhou University Suzhou 234000 China
| | - Jingwen Chang
- Faculty of Pharmacy Bengbu Medical College Bengbu 233030 China
| | - Zeng Dong
- Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province School of Biological and Food Engineering Suzhou University Suzhou 234000 China
| | - Xingtao Zhang
- Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province School of Biological and Food Engineering Suzhou University Suzhou 234000 China
| | - Hong Duan
- Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province School of Biological and Food Engineering Suzhou University Suzhou 234000 China
- School of Biological and Food Engineering Anhui Polytechnic University Wuhu 241000 China
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education) Guizhou Medical University Guiyang 550004 China
| | - Hui Cao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology University of Vigo ‐ Ourense Campus Ourense E‐32004 Spain
| |
Collapse
|
4
|
Serré J, Tanjeko AT, Mathyssen C, Heigl T, Sacreas A, Cook DP, Verbeken E, Maes K, Verhaegen J, Pilette C, Vanoirbeek J, Gysemans C, Mathieu C, Vanaudenaerde B, Janssens W, Gayan-Ramirez G. Effects of repeated infections with non-typeable Haemophilus influenzae on lung in vitamin D deficient and smoking mice. Respir Res 2022; 23:40. [PMID: 35236342 PMCID: PMC8889723 DOI: 10.1186/s12931-022-01962-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 02/17/2022] [Indexed: 11/29/2022] Open
Abstract
Background In chronic obstructive pulmonary disease (COPD), exacerbations cause acute inflammatory flare-ups and increase the risk for hospitalization and mortality. Exacerbations are common in all disease stages and are often caused by bacterial infections e.g., non-typeable Heamophilus influenzae (NTHi). Accumulating evidence also associates vitamin D deficiency with the severity of COPD and exacerbation frequency. However, it is still unclear whether vitamin D deficiency when combined with cigarette smoking would worsen and prolong exacerbations caused by repeated infections with the same bacterial strain. Methods Vitamin D sufficient (VDS) and deficient (VDD) mice were exposed to nose-only cigarette smoke (CS) for 14 weeks and oropharyngeally instilled with NTHi at week 6, 10 and 14. Three days after the last instillation, mice were assessed for lung function, tissue remodeling, inflammation and immunity. The impact of VDD and CS on inflammatory cells and immunoglobulin (Ig) production was also assessed in non-infected animals while serum Ig production against NTHi and dsDNA was measured in COPD patients before and 1 year after supplementation with Vitamin D3. Results VDD enhanced NTHi eradication, independently of CS and complete eradication was reflected by decreased anti-NTHi Ig’s within the lung. In addition, VDD led to an increase in total lung capacity (TLC), lung compliance (Cchord), MMP12/TIMP1 ratio with a rise in serum Ig titers and anti-dsDNA Ig’s. Interestingly, in non-infected animals, VDD exacerbated the CS-induced anti-NTHi Ig’s, anti-dsDNA Ig’s and inflammatory cells within the lung. In COPD patients, serum Ig production was not affected by vitamin D status but anti-NTHi IgG increased after vitamin D3 supplementation in patients who were Vitamin D insufficient before treatment. Conclusion During repeated infections, VDD facilitated NTHi eradication and resolution of local lung inflammation through production of anti-NTHi Ig, independently of CS whilst it also promoted autoantibodies. In COPD patients, vitamin D supplementation could be protective against NTHi infections in vitamin D insufficient patients. Future research is needed to decipher the determinants of dual effects of VDD on adaptive immunity. Trail registration ClinicalTrials, NCT00666367. Registered 23 April 2008, https://www.clinicaltrials.gov/ct2/show/study/NCT00666367. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-01962-6.
Collapse
Affiliation(s)
- Jef Serré
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Herestraat 49, O&NI bis, box 706, 3000, Leuven, Belgium
| | - Ajime Tom Tanjeko
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Herestraat 49, O&NI bis, box 706, 3000, Leuven, Belgium
| | - Carolien Mathyssen
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Herestraat 49, O&NI bis, box 706, 3000, Leuven, Belgium
| | - Tobias Heigl
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Herestraat 49, O&NI bis, box 706, 3000, Leuven, Belgium
| | - Annelore Sacreas
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Herestraat 49, O&NI bis, box 706, 3000, Leuven, Belgium
| | - Dana Paulina Cook
- Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Erik Verbeken
- Translational Cell & Tissue Research, Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
| | - Karen Maes
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Herestraat 49, O&NI bis, box 706, 3000, Leuven, Belgium
| | - Jan Verhaegen
- Laboratory of Clinical Bacteriology and Mycology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Charles Pilette
- Institute of Experimental & Clinical Research, Pole of Pneumology, ENT and Dermatology, and Cliniques Universitaires Saint-Luc, Department of Pulmonology, Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Jeroen Vanoirbeek
- Centre of Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Conny Gysemans
- Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Bart Vanaudenaerde
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Herestraat 49, O&NI bis, box 706, 3000, Leuven, Belgium
| | - Wim Janssens
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Herestraat 49, O&NI bis, box 706, 3000, Leuven, Belgium
| | - Ghislaine Gayan-Ramirez
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Herestraat 49, O&NI bis, box 706, 3000, Leuven, Belgium.
| |
Collapse
|
5
|
Rodríguez-Arce I, Morales X, Ariz M, Euba B, López-López N, Esparza M, Hood DW, Leiva J, Ortíz-de-Solórzano C, Garmendia J. Development and multimodal characterization of an elastase-induced emphysema mouse disease model for the COPD frequent bacterial exacerbator phenotype. Virulence 2021; 12:1672-1688. [PMID: 34252004 PMCID: PMC8276669 DOI: 10.1080/21505594.2021.1937883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/20/2021] [Accepted: 05/30/2021] [Indexed: 11/03/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) patients undergo infectious exacerbations whose frequency identifies a clinically meaningful phenotype. Mouse models have been mostly used to separately study both COPD and the infectious processes, but a reliable model of the COPD frequent exacerbator phenotype is still lacking. Accordingly, we first established a model of single bacterial exacerbation by nontypeable Haemophilus influenzae (NTHi) infection on mice with emphysema-like lesions. We characterized this single exacerbation model combining both noninvasive in vivo imaging and ex vivo techniques, obtaining longitudinal information about bacterial load and the extent of the developing lesions and host responses. Bacterial load disappeared 48 hours post-infection (hpi). However, lung recovery, measured using tests of pulmonary function and the disappearance of lung inflammation as revealed by micro-computed X-ray tomography, was delayed until 3 weeks post-infection (wpi). Then, to emulate the frequent exacerbator phenotype, we performed two recurrent episodes of NTHi infection on the emphysematous murine lung. Consistent with the amplified infectious insult, bacterial load reduction was now observed 96 hpi, and lung function recovery and disappearance of lesions on anatomical lung images did not happen until 12 wpi. Finally, as a proof of principle of the use of the model, we showed that azithromycin successfully cleared the recurrent infection, confirming this macrolide utility to ameliorate infectious exacerbation. In conclusion, we present a mouse model of recurrent bacterial infection of the emphysematous lung, aimed to facilitate investigating the COPD frequent exacerbator phenotype by providing complementary, dynamic information of both infectious and inflammatory processes.
Collapse
Affiliation(s)
- Irene Rodríguez-Arce
- Instituto De Agrobiotecnología, CSIC (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
| | - Xabier Morales
- Department of Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), Laboratory of Preclinical Models and Analytical Tools, Pamplona, Spain
- Laboratory of Preclinical Models and Analytical Tools, Division of Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Mikel Ariz
- Department of Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), Laboratory of Preclinical Models and Analytical Tools, Pamplona, Spain
- Laboratory of Preclinical Models and Analytical Tools, Division of Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Begoña Euba
- Instituto De Agrobiotecnología, CSIC (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
| | - Nahikari López-López
- Instituto De Agrobiotecnología, CSIC (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
| | - Maider Esparza
- Department of Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), Laboratory of Preclinical Models and Analytical Tools, Pamplona, Spain
- Laboratory of Preclinical Models and Analytical Tools, Division of Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Derek W. Hood
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, UK
| | - José Leiva
- Instituto De Investigación Sanitaria De Navarra (IdiSNA), Pamplona, Spain
- Servicio De Microbiología, Clínica Universidad De Navarra, Pamplona, Spain
| | - Carlos Ortíz-de-Solórzano
- Department of Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), Laboratory of Preclinical Models and Analytical Tools, Pamplona, Spain
- Laboratory of Preclinical Models and Analytical Tools, Division of Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Instituto De Investigación Sanitaria De Navarra (IdiSNA), Pamplona, Spain
| | - Junkal Garmendia
- Instituto De Agrobiotecnología, CSIC (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
- Centro De Investigación Biomédica En Red De Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
6
|
Ritzmann F, Borchardt K, Vella G, Chitirala P, Angenendt A, Herr C, Menger MD, Hoth M, Lis A, Bohle RM, Bals R, Beisswenger C. Blockade of PD-1 decreases neutrophilic inflammation and lung damage in experimental COPD. Am J Physiol Lung Cell Mol Physiol 2021; 320:L958-L968. [PMID: 33759577 DOI: 10.1152/ajplung.00121.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Chronic obstructive lung disease (COPD) and lung cancer are both caused by smoking and often occur as comorbidity. The programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) axis is an important canonic immunoregulatory pathway, and antibodies that specifically block PD-1 or PD-L1 have demonstrated efficacy as therapeutic agents for non-small cell lung cancer. The role of the PD-1/PD-L1 axis in the pathogenesis of COPD is unknown. Here, we analyzed the function of the PD-1/PD-L1 axis in preclinical COPD models and evaluated the concentrations of PD-1 and PD-L1 in human serum and bronchoalveolar lavage (BAL) fluids as biomarkers for COPD. Anti-PD-1 treatment decreased lung damage and neutrophilic inflammation in mice chronically exposed to cigarette smoke (CS) or nontypeable Haemophilus influenzae (NTHi). Ex vivo stimulated macrophages obtained from anti-PD-1-treated mice released reduced amounts of inflammatory cytokines. PD-L1 concentrations correlated positively with PD-1 concentrations in human serum and BAL fluids. Lung sections obtained from patients with COPD stained positive for PD-L1. Our data indicate that the PD-1/PD-L1 axis is involved in developing inflammation and tissue destruction in COPD. Inflammation-induced activation of the PD-1 pathway may contribute to disease progression.
Collapse
Affiliation(s)
- Felix Ritzmann
- Department of Internal Medicine V-Pulmonology, Allergology, and Respiratory Critical Care Medicine, Saarland University, Homburg, Saarland, Germany
| | - Kai Borchardt
- Department of Internal Medicine V-Pulmonology, Allergology, and Respiratory Critical Care Medicine, Saarland University, Homburg, Saarland, Germany
| | - Giovanna Vella
- Department of Internal Medicine V-Pulmonology, Allergology, and Respiratory Critical Care Medicine, Saarland University, Homburg, Saarland, Germany
| | - Praneeth Chitirala
- Department of Internal Medicine V-Pulmonology, Allergology, and Respiratory Critical Care Medicine, Saarland University, Homburg, Saarland, Germany
| | - Adrian Angenendt
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Saarland, Germany
| | - Christian Herr
- Department of Internal Medicine V-Pulmonology, Allergology, and Respiratory Critical Care Medicine, Saarland University, Homburg, Saarland, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University Medical Center, Homburg, Saarland, Germany
| | - Markus Hoth
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Saarland, Germany
| | - Annette Lis
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Saarland, Germany
| | - Rainer M Bohle
- Department of Pathology, Saarland University, Homburg, Saarland, Germany
| | - Robert Bals
- Department of Internal Medicine V-Pulmonology, Allergology, and Respiratory Critical Care Medicine, Saarland University, Homburg, Saarland, Germany
| | - Christoph Beisswenger
- Department of Internal Medicine V-Pulmonology, Allergology, and Respiratory Critical Care Medicine, Saarland University, Homburg, Saarland, Germany
| |
Collapse
|
7
|
Rhodiola rosea L. Attenuates Cigarette Smoke and Lipopolysaccharide-Induced COPD in Rats via Inflammation Inhibition and Antioxidant and Antifibrosis Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6103158. [PMID: 33747104 PMCID: PMC7943302 DOI: 10.1155/2021/6103158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 01/19/2021] [Accepted: 01/28/2021] [Indexed: 01/05/2023]
Abstract
The root cause behind the development of chronic obstructive pulmonary disease (COPD) is cigarette smoke that induces the inflammation of the lung tissue and alveolar destruction. Long-term cigarette smoking can lead to deterioration in lung parenchymal function and cause structural changes in the lung, further resulting in pulmonary fibrosis. Rhodiola rosea L., a traditional medicinal perennial herb, is well known for its numerous pharmacological benefits, including anti-inflammation, antioxidant, antifatigue, antidepressive, and antifibrotic properties. Here, we evaluated the pharmacological effects and mechanisms of the Rhodiola rosea L. (RRL) macroporous resin extract on COPD caused by lipopolysaccharide (LPS) and cigarette smoke (CS) in rats. The RRL significantly improved the pathological structure of the lung tissue. Additionally, RRL decreased the infiltration of inflammatory cells and, subsequently, oxidative stress. Furthermore, the RNAseq assay indicated that RRL attenuated the CS and LPS-induced COPD via anti-inflammatory, antifibrotic, and antiapoptotic activities. Western blot analysis substantiated that the RRL resulted in upregulated levels of Nrf2 and HO-1 as well as downregulated levels of IκBα, NF-κB p65, α-SMA, and TGF-β1. Interestingly, the RRL could protect rats from CS and LPS-induced COPD by inhibiting the ERK1/2 and Smad3 signaling pathways and apoptosis. Thus, the RRL could attenuate CS and LPS-induced COPD through inflammation inhibition and antioxidant and antifibrosis pathways.
Collapse
|
8
|
Cárdenes N, Sembrat J, Noda K, Lovelace T, Álvarez D, Bittar HET, Philips BJ, Nouraie M, Benos PV, Sánchez PG, Rojas M. Human ex vivo lung perfusion: a novel model to study human lung diseases. Sci Rep 2021; 11:490. [PMID: 33436736 PMCID: PMC7804395 DOI: 10.1038/s41598-020-79434-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022] Open
Abstract
Experimental animal models to predict physiological responses to injury and stress in humans have inherent limitations. Therefore, the development of preclinical human models is of paramount importance. Ex vivo lung perfusion (EVLP) has typically been used to recondition donor lungs before transplantation. However, this technique has recently advanced into a model to emulate lung mechanics and physiology during injury. In the present study, we propose that the EVLP of diseased human lungs is a well-suited preclinical model for translational research on chronic lung diseases. Throughout this paper, we demonstrate this technique's feasibility in pulmonary arterial hypertension (PAH), idiopathic pulmonary fibrosis (IPF), emphysema, and non-disease donor lungs not suitable for transplantation. In this study, we aimed to perfuse the lungs for 6 h with the EVLP system. This facilitated a robust and continuous assessment of airway mechanics, pulmonary hemodynamics, gas exchange, and biochemical parameters. We then collected at different time points tissue biopsies of lung parenchyma to isolate RNA and DNA to identify each disease's unique gene expression. Thus, demonstrating that EVLP could successfully serve as a clinically relevant experimental model to derive essential insights into pulmonary pathophysiology and various human lung diseases.
Collapse
Affiliation(s)
- Nayra Cárdenes
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh School of Medicine, W1244 BST Tower, 200 Lothrop Street, Pittsburgh, PA, 15261, USA.,Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John Sembrat
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh School of Medicine, W1244 BST Tower, 200 Lothrop Street, Pittsburgh, PA, 15261, USA.,Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kentaro Noda
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Tyler Lovelace
- Department of Computational Biology, University of Pittsburgh, Pittsburgh, PA, USA.,Joint CMU-Pitt Ph.D. Program in Computational Biology, Pittsburgh, PA, USA
| | - Diana Álvarez
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Humberto E Trejo Bittar
- Department of Pathology, Thoracic and Autopsy Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Brian J Philips
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Mehdi Nouraie
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh School of Medicine, W1244 BST Tower, 200 Lothrop Street, Pittsburgh, PA, 15261, USA.,Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Panayiotis V Benos
- Department of Computational Biology, University of Pittsburgh, Pittsburgh, PA, USA.,Joint CMU-Pitt Ph.D. Program in Computational Biology, Pittsburgh, PA, USA
| | - Pablo G Sánchez
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Mauricio Rojas
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh School of Medicine, W1244 BST Tower, 200 Lothrop Street, Pittsburgh, PA, 15261, USA. .,Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Vella G, Ritzmann F, Wolf L, Kamyschnikov A, Stodden H, Herr C, Slevogt H, Bals R, Beisswenger C. IL-17C contributes to NTHi-induced inflammation and lung damage in experimental COPD and is present in sputum during acute exacerbations. PLoS One 2021; 16:e0243484. [PMID: 33411748 PMCID: PMC7790230 DOI: 10.1371/journal.pone.0243484] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/21/2020] [Indexed: 12/20/2022] Open
Abstract
Neutrophilic inflammation results in loss of lung function in chronic obstructive pulmonary disease (COPD). Gram-negative bacteria, such as nontypeable Haemophilus influenzae (NTHi), trigger acute exacerbations of COPD (AECOPD) and contribute to chronic lung inflammation. The pro-inflammatory cytokine interleukin-17C (IL-17C) is expressed by airway epithelial cells and regulates neutrophilic chemotaxis. Here, we explored the function of IL-17C in NTHi- and cigarette smoke (CS)-induced models of COPD. Neutrophilic inflammation and tissue destruction were decreased in lungs of IL-17C-deficient mice (Il-17c-/-) chronically exposed to NTHi. Numbers of pulmonary neutrophils were decreased in Il-17c-/- mice after acute exposure to the combination of NTHi and CS. However, Il-17c-/- mice were not protected from CS-induced lung inflammation. In a preliminary patient study, we show that IL-17C is present in sputum samples obtained during AECOPD and associates with disease severity. Concentrations of IL-17C were significantly increased during advanced COPD (GOLD III/IV) compared to moderate COPD (GOLD I/II). Concentrations of IL-17A and IL-17E did not associate with disease severity. Our data suggest that IL-17C promotes harmful pulmonary inflammation triggered by bacteria in COPD.
Collapse
Affiliation(s)
- Giovanna Vella
- Department of Internal Medicine V – Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg, Germany
| | - Felix Ritzmann
- Department of Internal Medicine V – Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg, Germany
| | - Lisa Wolf
- Department of Internal Medicine V – Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg, Germany
| | - Andreas Kamyschnikov
- Department of Internal Medicine V – Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg, Germany
| | - Hannah Stodden
- Department of Internal Medicine V – Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg, Germany
| | - Christian Herr
- Department of Internal Medicine V – Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg, Germany
| | - Hortense Slevogt
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Robert Bals
- Department of Internal Medicine V – Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg, Germany
| | - Christoph Beisswenger
- Department of Internal Medicine V – Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg, Germany
| |
Collapse
|
10
|
Giordano L, Farnham A, Dhandapani PK, Salminen L, Bhaskaran J, Voswinckel R, Rauschkolb P, Scheibe S, Sommer N, Beisswenger C, Weissmann N, Braun T, Jacobs HT, Bals R, Herr C, Szibor M. Alternative Oxidase Attenuates Cigarette Smoke-induced Lung Dysfunction and Tissue Damage. Am J Respir Cell Mol Biol 2019; 60:515-522. [PMID: 30339461 PMCID: PMC6503618 DOI: 10.1165/rcmb.2018-0261oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/18/2018] [Indexed: 12/11/2022] Open
Abstract
Cigarette smoke (CS) exposure is the predominant risk factor for the development of chronic obstructive pulmonary disease (COPD) and the third leading cause of death worldwide. We aimed to elucidate whether mitochondrial respiratory inhibition and oxidative stress are triggers in its etiology. In different models of CS exposure, we investigated the effect on lung remodeling and cell signaling of restoring mitochondrial respiratory electron flow using alternative oxidase (AOX), which bypasses the cytochrome segment of the respiratory chain. AOX attenuated CS-induced lung tissue destruction and loss of function in mice exposed chronically to CS for 9 months. It preserved the cell viability of isolated mouse embryonic fibroblasts treated with CS condensate, limited the induction of apoptosis, and decreased the production of reactive oxygen species (ROS). In contrast, the early-phase inflammatory response induced by acute CS exposure of mouse lung, i.e., infiltration by macrophages and neutrophils and adverse signaling, was unaffected. The use of AOX allowed us to obtain novel pathomechanistic insights into CS-induced cell damage, mitochondrial ROS production, and lung remodeling. Our findings implicate mitochondrial respiratory inhibition as a key pathogenic mechanism of CS toxicity in the lung. We propose AOX as a novel tool to study CS-related lung remodeling and potentially to counteract CS-induced ROS production and cell damage.
Collapse
Affiliation(s)
- Luca Giordano
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Excellence Cluster Cardio-Pulmonary System, University of Giessen, Giessen, Germany
- Marburg Lung Center, Member of the German Center for Lung Research, Justus Liebig University, Giessen, Germany
| | - Antoine Farnham
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Praveen K. Dhandapani
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Laura Salminen
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Jahnavi Bhaskaran
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Robert Voswinckel
- Bürgerhospital Friedberg, Klinik für Innere Medizin, Friedberg, Germany
| | - Peter Rauschkolb
- Excellence Cluster Cardio-Pulmonary System, University of Giessen, Giessen, Germany
- Marburg Lung Center, Member of the German Center for Lung Research, Justus Liebig University, Giessen, Germany
| | - Susan Scheibe
- Excellence Cluster Cardio-Pulmonary System, University of Giessen, Giessen, Germany
- Marburg Lung Center, Member of the German Center for Lung Research, Justus Liebig University, Giessen, Germany
| | - Natascha Sommer
- Excellence Cluster Cardio-Pulmonary System, University of Giessen, Giessen, Germany
- Marburg Lung Center, Member of the German Center for Lung Research, Justus Liebig University, Giessen, Germany
| | - Christoph Beisswenger
- Department of Internal Medicine V–Pulmonology, Allergology, Intensive Care Medicine, Saarland University, Homburg/Saar, Germany; and
| | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary System, University of Giessen, Giessen, Germany
- Marburg Lung Center, Member of the German Center for Lung Research, Justus Liebig University, Giessen, Germany
| | - Thomas Braun
- Department I Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Howard T. Jacobs
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Robert Bals
- Department of Internal Medicine V–Pulmonology, Allergology, Intensive Care Medicine, Saarland University, Homburg/Saar, Germany; and
| | - Christian Herr
- Department of Internal Medicine V–Pulmonology, Allergology, Intensive Care Medicine, Saarland University, Homburg/Saar, Germany; and
| | - Marten Szibor
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Department I Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
11
|
Higham A, Quinn AM, Cançado JED, Singh D. The pathology of small airways disease in COPD: historical aspects and future directions. Respir Res 2019; 20:49. [PMID: 30832670 PMCID: PMC6399904 DOI: 10.1186/s12931-019-1017-y] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 02/25/2019] [Indexed: 12/16/2022] Open
Abstract
Small airways disease (SAD) is a cardinal feature of chronic obstructive pulmonary disease (COPD) first recognized in the nineteenth century. The diverse histopathological features associated with SAD underpin the heterogeneous nature of COPD. Our understanding of the key molecular mechanisms which drive the pathological changes are not complete. In this article we will provide a historical overview of key histopathological studies which have helped shape our understanding of SAD and discuss the hallmark features of airway remodelling, mucous plugging and inflammation. We focus on the relationship between SAD and emphysema, SAD in the early stages of COPD, and the mechanisms which cause SAD progression, including bacterial colonization and exacerbations. We discuss the need to specifically target SAD to attenuate the progression of COPD.
Collapse
Affiliation(s)
- Andrew Higham
- The University of Manchester Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK.
| | - Anne Marie Quinn
- Department of Histopathology, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | | | - Dave Singh
- The University of Manchester Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK.,Medicines Evaluation Unit, The Langley Building, Southmoor Road, Manchester, UK
| |
Collapse
|
12
|
Xu X, Chen Y, Zhang M, Wang D, Wu J, Yao Z, Wu Q, Fang W. Huatanjiangqi Capsule Upregulating NRF2 and MRP1 Expression in Chronic Obstructive Pulmonary Disease in Rats. Pharm Chem J 2018. [DOI: 10.1007/s11094-018-1771-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Bhat TA, Kalathil SG, Bogner PN, Miller A, Lehmann PV, Thatcher TH, Phipps RP, Sime PJ, Thanavala Y. Secondhand Smoke Induces Inflammation and Impairs Immunity to Respiratory Infections. THE JOURNAL OF IMMUNOLOGY 2018; 200:2927-2940. [PMID: 29555783 DOI: 10.4049/jimmunol.1701417] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/16/2018] [Indexed: 12/29/2022]
Abstract
Despite advocacy to reduce smoking-related diseases, >1 billion people worldwide continue to smoke. Smoking is immunosuppressive and an important etiological factor in the development of several human disorders including respiratory diseases like chronic obstructive pulmonary disease. However, there is a critical gap in the knowledge of the role of secondhand smoke (SHS) in inflammation and immunity. We therefore studied the influence of SHS on pulmonary inflammation and immune responses to respiratory infection by nontypeable Haemophilus influenzae (NTHI) recurrently found in chronic obstructive pulmonary disease patients. Chronic SHS-exposed mice were chronically infected with NTHI and pulmonary inflammation was evaluated by histology. Immune cell numbers and cytokines were measured by flow cytometry and ELISA, respectively. Chronic SHS exposure impaired NTHI P6 Ag-specific B and T cell responses following chronic NTHI infection as measured by ELISPOT assays, reduced the production of Abs in serum and bronchoalveolar lavage, and enhanced albumin leak into the bronchoalveolar lavage as determined by ELISA. Histopathological examination of lungs revealed lymphocytic accumulation surrounding airways and bronchovasculature following chronic SHS exposure and chronic infection. Chronic SHS exposure enhanced the levels of inflammatory cytokines IL-17A, IL-6, IL-1β, and TNF-α in the lungs, and impaired the generation of adaptive immunity following either chronic infection or P6 vaccination. Chronic SHS exposure diminished bacterial clearance from the lungs after acute NTHI challenge, whereas P6 vaccination improved clearance equivalent to the level seen in air-exposed, non-vaccinated mice. Our study provides unequivocal evidence that SHS exposure has long-term detrimental effects on the pulmonary inflammatory microenvironment and immunity to infection and vaccination.
Collapse
Affiliation(s)
- Tariq A Bhat
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | | | - Paul N Bogner
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Austin Miller
- Department of Biostatistics, Roswell Park Cancer Institute, Buffalo, NY 14263
| | | | - Thomas H Thatcher
- Department of Medicine, University of Rochester, Rochester, NY 14620; and
| | - Richard P Phipps
- Department of Medicine, University of Rochester, Rochester, NY 14620; and.,Department of Environmental Medicine, University of Rochester, Rochester, NY 14620
| | - Patricia J Sime
- Department of Medicine, University of Rochester, Rochester, NY 14620; and.,Department of Environmental Medicine, University of Rochester, Rochester, NY 14620
| | - Yasmin Thanavala
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263;
| |
Collapse
|
14
|
Liu R, Wang P, Wu C, Chen J, Li C, Xie Y, Wang Q, Liu J, He H, Zhu J. Therapeutic effects of Hedyotis diffusa Willd in a COPD mouse model challenged with LPS and smoke. Exp Ther Med 2018; 15:3385-3391. [PMID: 29545859 PMCID: PMC5840915 DOI: 10.3892/etm.2018.5851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 01/10/2018] [Indexed: 01/25/2023] Open
Abstract
Hedyotis diffusa Willd (HDW) is a constituent of several Chinese medicines used clinically to treat inflammatory diseases, including airway inflammation. The aim of the present study was to investigate whether HDW serves a protective role in suppressing chronic airway inflammation and its underlying mechanisms. A mouse model of chronic smoking was induced via exposure to cigarette smoke (CS) for 30 days, increasing the exposure time for up to 5 min per day and the administration of lipopolysaccharide (LPS). Mice were gavaged with HDW (50 or 100 mg/kg body weight), dexamethasone (1 mg/kg body weight) or normal saline (NS, 0.9%) 1 h prior to CS challenge. Compared with CS and LPS (SL)-induced mice, the levels of interleukin (IL)-1β, tumor necrosis factor-α and transforming growth factor-β in bronchoalveolar lavage fluid from HDW+SL mice were significantly decreased and IL-10 was markedly reduced. Histological examination of the lung tissues revealed that HDW treatment alleviates airway inflammation. In addition, the administration of HDW to human bronchial epithelial BEAS-2B cells suppressed the activity of the nuclear factor (NF)-κB signaling pathway. The results of the present study demonstrate that HDW has a therapeutic effect in COPD and the underlying mechanism may be attributed to inhibition of the NF-κB pathway.
Collapse
Affiliation(s)
- Renping Liu
- Medical Experiment Education Department, Medical College of Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Peihong Wang
- Medical Experiment Education Department, Medical College of Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Caiqing Wu
- Medical Experiment Education Department, Medical College of Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Juan Chen
- Medical Experiment Education Department, Medical College of Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Chengxin Li
- Medical Experiment Education Department, Medical College of Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Yongtao Xie
- Medical Experiment Education Department, Medical College of Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Qi Wang
- Medical Experiment Education Department, Medical College of Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Jianming Liu
- Department of Pharmacology, Jiangxi Medical College, Shangrao, Jiangxi 334000, P.R. China
| | - Huan He
- Department of Pharmacology, Fuzhou Medical College of Nanchang University, Fuzhou, Fujian 344000, P.R. China
| | - Jing Zhu
- Medical Experiment Education Department, Medical College of Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| |
Collapse
|
15
|
Roos AB, Stampfli MR. Targeting Interleukin-17 signalling in cigarette smoke-induced lung disease: Mechanistic concepts and therapeutic opportunities. Pharmacol Ther 2017; 178:123-131. [PMID: 28438639 DOI: 10.1016/j.pharmthera.2017.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
It is widely accepted that compromised lung function in chronic obstructive pulmonary disease (COPD) is, at least in part, a consequence of persistent airway inflammation caused by particles and noxious gases present in cigarette smoke and indoor air pollution from burning biomass fuel. Currently, the World Health Organization estimates that 80 million people have moderate or severe COPD worldwide. While there is a global need for effective medical treatment, current therapeutic interventions have shown limited success in preventing disease pathology and progression. This is, in large part, due to the complexity and heterogeneity of COPD, and an incomplete understanding of the molecular mechanisms governing inflammatory processes in individual patients. This review discusses recent discoveries related to the pro-inflammatory cytokine interleukin (IL)-17A, and its potential role in the pathogenesis of COPD. We propose that an intervention strategy targeting IL-17 signalling offers an exciting opportunity to mitigate inflammatory processes, and prevent the progression of tissue pathologies associated with COPD.
Collapse
Affiliation(s)
- Abraham B Roos
- Respiratory, Inflammation and Autoimmunity, Innovative Medicines, AstraZeneca R&D, Mölndal, Sweden and
| | - Martin R Stampfli
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada; Department of Medicine, Firestone Institute of Respiratory Health at St. Joseph's Health Care, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
16
|
The Effects of Resveratrol on Inflammation and Oxidative Stress in a Rat Model of Chronic Obstructive Pulmonary Disease. Molecules 2017; 22:molecules22091529. [PMID: 28895883 PMCID: PMC6151812 DOI: 10.3390/molecules22091529] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/06/2017] [Indexed: 11/20/2022] Open
Abstract
Oxidative stress and inflammation are hypothesized to contribute to the pathogenesis of chronic obstructive pulmonary disease (COPD). Resveratrol (trans-3,5,4′-trihydroxystilbene) is known for its antioxidant and anti-inflammatory properties. The study aimed to investigate the effects of resveratrol in a rat model with COPD on the regulation of oxidative stress and inflammation via the activation of Sirtuin1 (SIRTl) and proliferator-activated receptor-γ coactivator-1α (PGC-1α). Thirty Wistar rats were randomly divided into three groups: control group, COPD group and resveratrol intervention group. The COPD model was established by instilling with lipopolysaccharide (LPS) and challenging with cigarette smoke (CS). The levels of interleukin-6 (IL-6) and interleukin-8 (IL-8) in serum were measured. The levels of malondialdehyde (MDA) and the activity of superoxide dismutase (SOD) were measured. The expression levels of SIRT1 and PGC-1α in the lung tissues were examined by immunohistochemistry as well as real-time reverse transcriptase polymerase chain reaction (real-time RT-PCR) and western blotting analysis. After the treatment with resveratrol (50 mg/kg), compared with the COPD group, alleviation of inflammation and reconstruction in the small airways of the lungs were seen. Resveratrol might be correlated not only with the lower level of MDA and the higher activity of SOD, but also with the upregulation of SIRT1 and PGC-1α expression. Resveratrol treatment decreased serum levels of IL-6 and IL-8. Our findings indicate that resveratrol had a therapeutic effect in our rat COPD model, which is related to the inhibition of oxidative stress and inflammatory response. The mechanism may be related to the activation and upgrading of the SIRT1/PGC-1α signaling pathways. Thus resveratrol might be a therapeutic modality in COPD.
Collapse
|
17
|
Receptor for advanced glycation endproducts (RAGE) maintains pulmonary structure and regulates the response to cigarette smoke. PLoS One 2017; 12:e0180092. [PMID: 28678851 PMCID: PMC5497997 DOI: 10.1371/journal.pone.0180092] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 06/09/2017] [Indexed: 12/15/2022] Open
Abstract
The receptor for advanced glycation endproducts (RAGE) is highly expressed in the lung but its physiological functions in this organ is still not completely understood. To determine the contribution of RAGE to physiological functions of the lung, we analyzed pulmonary mechanics and structure of wildtype and RAGE deficient (RAGE-/-) mice. RAGE deficiency spontaneously resulted in a loss of lung structure shown by an increased mean chord length, increased respiratory system compliance, decreased respiratory system elastance and increased concentrations of serum protein albumin in bronchoalveolar lavage fluids. Pulmonary expression of RAGE was mainly localized on alveolar epithelial cells and alveolar macrophages. Primary murine alveolar epithelial cells isolated from RAGE-/- mice revealed an altered differentiation and defective barrier formation under in vitro conditions. Stimulation of interferone-y (IFNy)-activated alveolar macrophages deficient for RAGE with Toll-like receptor (TLR) ligands resulted in significantly decreased release of proinflammatory cytokines and chemokines. Exposure to chronic cigarette smoke did not affect emphysema-like changes in lung parenchyma in RAGE-/- mice. Acute cigarette smoke exposure revealed a modified inflammatory response in RAGE-/- mice that was characterized by an influx of macrophages and a decreased keratinocyte-derived chemokine (KC) release. Our data suggest that RAGE regulates the differentiation of alveolar epithelial cells and impacts on the development and maintenance of pulmonary structure. In cigarette smoke-induced lung pathology, RAGE mediates inflammation that contributes to lung damage.
Collapse
|
18
|
Jungnickel C, Schmidt LH, Bittigkoffer L, Wolf L, Wolf A, Ritzmann F, Kamyschnikow A, Herr C, Menger MD, Spieker T, Wiewrodt R, Bals R, Beisswenger C. IL-17C mediates the recruitment of tumor-associated neutrophils and lung tumor growth. Oncogene 2017; 36:4182-4190. [PMID: 28346430 DOI: 10.1038/onc.2017.28] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 12/07/2016] [Accepted: 01/09/2017] [Indexed: 12/18/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is associated with an increased risk for lung cancer and an aberrant microbiota of the lung. Microbial colonization contributes to chronic neutrophilic inflammation in COPD. Nontypeable Haemophilus influenzae (NTHi) is frequently found in lungs of stable COPD patients and is the major pathogen triggering exacerbations. The epithelial cytokine interleukin-17C (IL-17C) promotes the recruitment of neutrophils into inflamed tissues. The purpose of this study was to investigate the function of IL-17C in the pulmonary tumor microenvironment. We subjected mice deficient for IL-17C (IL-17C-/-) and mice double deficient for Toll-like receptor 2 and 4 (TLR-2/4-/-) to a metastatic lung cancer model. Tumor proliferation and growth as well as the number of tumor-associated neutrophils was significantly decreased in IL-17C-/- and TLR-2/4-/- mice exposed to NTHi. The NTHi-induced pulmonary expression of IL-17C was dependent on TLR-2/4. In vitro, IL-17C increased the NTHi- and tumor necrosis factor-α-induced expression of the neutrophil chemokines keratinocyte-derived chemokine and macrophage inflammatory protein 2 in lung cancer cells but did not affect proliferation. Human lung cancer samples stained positive for IL-17C, and in non-small cell lung cancer patients with lymph node metastasis, IL-17C was identified as a negative prognostic factor. Our data indicate that epithelial IL-17C promotes neutrophilic inflammation in the tumor microenvironment and suggest that IL-17C links a pathologic microbiota, as present in COPD patients, with enhanced tumor growth.
Collapse
Affiliation(s)
- C Jungnickel
- Department of Internal Medicine V-Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg/Saar, Germany
| | - L H Schmidt
- Department of Medicine A, Hematology, Oncology and Pulmonology, University Hospital Münster, Münster, Germany
| | - L Bittigkoffer
- Department of Internal Medicine V-Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg/Saar, Germany
| | - L Wolf
- Department of Internal Medicine V-Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg/Saar, Germany
| | - A Wolf
- Department of Internal Medicine V-Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg/Saar, Germany
| | - F Ritzmann
- Department of Internal Medicine V-Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg/Saar, Germany
| | - A Kamyschnikow
- Department of Internal Medicine V-Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg/Saar, Germany
| | - C Herr
- Department of Internal Medicine V-Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg/Saar, Germany
| | - M D Menger
- Institute for Clinical and Experimental Surgery, Saarland University Medical Center, Homburg/Saar, Germany
| | - T Spieker
- Gerhard-Domagk Institute of Pathology, University Hospital Muenster, Münster, Germany
| | - R Wiewrodt
- Department of Medicine A, Hematology, Oncology and Pulmonology, University Hospital Münster, Münster, Germany
| | - R Bals
- Department of Internal Medicine V-Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg/Saar, Germany
| | - C Beisswenger
- Department of Internal Medicine V-Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
19
|
The Isosteroid Alkaloid Imperialine from Bulbs of Fritillaria cirrhosa Mitigates Pulmonary Functional and Structural Impairment and Suppresses Inflammatory Response in a COPD-Like Rat Model. Mediators Inflamm 2016; 2016:4192483. [PMID: 27524867 PMCID: PMC4971319 DOI: 10.1155/2016/4192483] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 06/20/2016] [Indexed: 11/17/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of death in the world. Present therapies for COPD have limited effect on reducing the progression of COPD and suppressing the inflammatory response in the lung. Bulbs of Fritillaria cirrhosa D. Don (BFC) have been used in many Asian countries for a long time to treat pulmonary diseases, such as cough, expectoration, and asthma. Steroidal alkaloids are the major biological active constituents in BFC, whereby imperialine is one of the important steroidal alkaloids. So far, there are no studies reporting the effect of imperialine on COPD. In this study, we investigated the effect of imperialine on pulmonary function and structure and inflammation in a COPD-like rat model which was induced by the combination of exposure to CS and intratracheal administration of LPS. Our data show that imperialine mitigates pulmonary functional and structural impairment and suppressed inflammatory response in a COPD-like rat model by mediating expression of related cytokines in lung tissues of the COPD-like rats, such as IL-1β, IL-6, IL-8, TNF-α, NF-κB, TGF-β1, MMP-9, and TIMP-1.
Collapse
|
20
|
Du W, Su J, Ye D, Wang Y, Huang Q, Gong X. Pinellia ternata Attenuates Mucus Secretion and Airway Inflammation after Inhaled Corticosteroid Withdrawal in COPD Rats. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:1027-41. [PMID: 27430907 DOI: 10.1142/s0192415x16500579] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Inhaled corticosteroids (ICS) are widely used to manage chronic obstructive pulmonary disease (COPD). However, withdrawal of ICS generally causes various adverse effects, warranting careful management of the ICS withdrawal. Pinellia ternata, a traditional Chinese herbal medicine, has been used to treat respiratory diseases in China for centuries. Here, we investigated its role in antagonizing ICS withdrawal-induced side effects, and explored the underlying mechanisms. The rat COPD model was established using a combination of passive cigarette smoking and intratracheal instillation of lipopolysaccharide (LPS). COPD rats were treated with saline or budesonide inhalation, or with budesonide inhalation followed by saline inhalation or Pinellia ternata gavage. The number of goblet cells and the level of mucin 5AC (MUC5AC) were enhanced by budesonide withdrawal. Pinellia ternata treatment significantly blocked these effects. Further, Pinellia ternata treatment reversed budesonide withdrawal-induced increase of interleukin 1[Formula: see text] (IL-1[Formula: see text] and tumor necrosis factor [Formula: see text] (TNF-[Formula: see text]) levels in bronchoalveolar lavage fluid (BALF). Extracellular signal-regulated kinase (ERK), but neither p38 nor c-Jun N-terminal kinase (JNK), was activated by budesonide withdrawal, and the activation was blocked by Pinellia ternata treatment. The MUC5AC expression was positively correlated with goblet cell number, IL-1[Formula: see text] and TNF-[Formula: see text] levels, and ERK activity. Pinellia ternata treatment protected the airway from ICS withdrawal-induced mucus hypersecretion and airway inflammation by inhibiting ERK activation. Pinellia ternata treatment may represent a novel therapeutic strategy to prevent ICS withdrawal-induced side effects in COPD patients.
Collapse
Affiliation(s)
- Wei Du
- * Department of Pathophysiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,‡ Respiratory Diseases Group, the 6th Unit, Department of Internal Medicine, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou 510010, China
| | - Jinyu Su
- * Department of Pathophysiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dan Ye
- § Hexian Memorial Hospital, Panyu, Guangzhou 511400, China
| | - Yuegang Wang
- † Department of Cardiovascular Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qiaobing Huang
- * Department of Pathophysiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaowei Gong
- * Department of Pathophysiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,¶ Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 14183, Sweden
| |
Collapse
|
21
|
Nakamura M, Wada H, Honda K, Nakamoto K, Inui T, Sada M, Watanabe M, Takata S, Yokoyama T, Saraya T, Kurai D, Ishii H, Goto H, Kamma H, Takizawa H. Clarithromycin ameliorates pulmonary inflammation induced by short term cigarette smoke exposure in mice. Pulm Pharmacol Ther 2015; 35:60-6. [PMID: 26363279 DOI: 10.1016/j.pupt.2015.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/22/2015] [Accepted: 09/08/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Cigarette smoking is considered to be one of major causes of acute worsening of asthma as well as chronic obstructive pulmonary disease (COPD). Macrolide antibiotics have been reported to reduce the risk of exacerbations of COPD, and possibly neutrophilic asthma. However, the effect of clarithromycin (CAM) on pulmonary inflammation caused by short term exposure to cigarette smoke still remains to be investigated. METHODS C57BL/6J female mice were daily exposed to tobacco smoke using a tobacco smoke exposure system, or clean air for 8 days, while simultaneously treated with either oral CAM or vehicles. Twenty four hours after the last exposure, mice were anaesthetized and sacrificed, and bronchoalveolar lavage (BAL) fluids were collected. Cellular responses in BAL fluids were evaluated. Levels of cytokine mRNA in the lung tissues were measured by quantitative RT-PCR. Paraffin-embedded lung tissues were evaluated to quantitate degree of neutrophil infiltration. RESULTS The numbers of total cells, macrophages and neutrophils in the BAL fluid of smoke-exposed mice were significantly increased as compared to clean air group. These changes were significantly ameliorated in CAM-treated mice. The lung morphological analysis confirmed decrease of neutrophils by CAM treatment. Studies by quantitative PCR demonstrated CAM treatment significantly reduced lung expression levels of IL-17A, keratinocyte-derived chemokine (KC), granulocyte-macrophage colony stimulating factor (GM-CSF) and MMP-9 induced by cigarette smoke. CONCLUSION We demonstrate that CAM administration resolves enhanced pulmonary inflammation induced by short term cigarette smoke exposure in mice.
Collapse
Affiliation(s)
- Masuo Nakamura
- Department of Respiratory Medicine, Kyorin University School of Medicine, Mitaka, Japan
| | - Hiroo Wada
- Department of Respiratory Medicine, Kyorin University School of Medicine, Mitaka, Japan
| | - Kojiro Honda
- Department of Respiratory Medicine, Kyorin University School of Medicine, Mitaka, Japan
| | - Keitaro Nakamoto
- Department of Respiratory Medicine, Kyorin University School of Medicine, Mitaka, Japan
| | - Toshiya Inui
- Department of Respiratory Medicine, Kyorin University School of Medicine, Mitaka, Japan
| | - Mitsuru Sada
- Department of Respiratory Medicine, Kyorin University School of Medicine, Mitaka, Japan
| | - Masato Watanabe
- Department of Respiratory Medicine, Kyorin University School of Medicine, Mitaka, Japan
| | - Saori Takata
- Department of Respiratory Medicine, Kyorin University School of Medicine, Mitaka, Japan
| | - Takuma Yokoyama
- Department of Respiratory Medicine, Kyorin University School of Medicine, Mitaka, Japan
| | - Takeshi Saraya
- Department of Respiratory Medicine, Kyorin University School of Medicine, Mitaka, Japan
| | - Daisuke Kurai
- Department of Respiratory Medicine, Kyorin University School of Medicine, Mitaka, Japan
| | - Haruyuki Ishii
- Department of Respiratory Medicine, Kyorin University School of Medicine, Mitaka, Japan
| | - Hajime Goto
- Department of Respiratory Medicine, Kyorin University School of Medicine, Mitaka, Japan
| | - Hiroshi Kamma
- Department of Pathology, Kyorin University School of Medicine, Mitaka, Japan
| | - Hajime Takizawa
- Department of Respiratory Medicine, Kyorin University School of Medicine, Mitaka, Japan.
| |
Collapse
|
22
|
Tschernig T, Rabung A, Voss M, Meier C, Bals R, Beisswenger C. Chronic inhalation of cigarette smoke reduces phagocytosis in peripheral blood leukocytes. BMC Res Notes 2015; 8:705. [PMID: 26597815 PMCID: PMC4657193 DOI: 10.1186/s13104-015-1706-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 11/17/2015] [Indexed: 02/08/2023] Open
Abstract
Background Phagocytosis activity of peripheral blood leukocytes in smokers or chronic obstructive pulmonary disease patients was found to be controversial and dependent on the phagocytic stimulus. Results We demonstrated that long-term exposure to cigarette smoke in mice clearly suppressed the phagocytosis of granulocytes and monocytes from peripheral blood. Conclusions Impaired phagocytosis activity of peripheral blood leukocytes may have a systemic effect and potentially contribute to smoking-associated diseases such as pneumonia and lung cancer.
Collapse
Affiliation(s)
- Thomas Tschernig
- Medical Faculty, Institute of Anatomy and Cell Biology, Saarland University, Kirrberger Straße, 66421, Homburg, Saar, Germany.
| | - Andrea Rabung
- Medical Faculty, Institute of Anatomy and Cell Biology, Saarland University, Kirrberger Straße, 66421, Homburg, Saar, Germany.
| | - Meike Voss
- Department of Internal Medicine V-Pulmonology, Allergology and Respiratory Critical Care Medicine, Medical Faculty, Saarland University, 66421, Homburg, Saar, Germany.
| | - Carola Meier
- Medical Faculty, Institute of Anatomy and Cell Biology, Saarland University, Kirrberger Straße, 66421, Homburg, Saar, Germany.
| | - Robert Bals
- Department of Internal Medicine V-Pulmonology, Allergology and Respiratory Critical Care Medicine, Medical Faculty, Saarland University, 66421, Homburg, Saar, Germany.
| | - Christoph Beisswenger
- Department of Internal Medicine V-Pulmonology, Allergology and Respiratory Critical Care Medicine, Medical Faculty, Saarland University, 66421, Homburg, Saar, Germany.
| |
Collapse
|
23
|
Lecaille F, Lalmanach G, Andrault PM. Antimicrobial proteins and peptides in human lung diseases: A friend and foe partnership with host proteases. Biochimie 2015; 122:151-68. [PMID: 26341472 DOI: 10.1016/j.biochi.2015.08.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 08/31/2015] [Indexed: 12/20/2022]
Abstract
Lung antimicrobial proteins and peptides (AMPs) are major sentinels of innate immunity by preventing microbial colonization and infection. Nevertheless bactericidal activity of AMPs against Gram-positive and Gram-negative bacteria is compromised in patients with chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF) and asthma. Evidence is accumulating that expression of harmful human serine proteases, matrix metalloproteases and cysteine cathepsins is markedely increased in these chronic lung diseases. The local imbalance between proteases and protease inhibitors compromises lung tissue integrity and function, by not only degrading extracellular matrix components, but also non-matrix proteins. Despite the fact that AMPs are somewhat resistant to proteolytic degradation, some human proteases cleave them efficiently and impair their antimicrobial potency. By contrast, certain AMPs may be effective as antiproteases. Host proteases participate in concert with bacterial proteases in the degradation of key innate immunity peptides/proteins and thus may play immunomodulatory activities during chronic lung diseases. In this context, the present review highlights the current knowledge and recent discoveries on the ability of host enzymes to interact with AMPs, providing a better understanding of the role of human proteases in innate host defense.
Collapse
Affiliation(s)
- Fabien Lecaille
- INSERM, UMR 1100, Pathologies Respiratoires: Protéolyse et Aérosolthérapie, Centre d'Etude des Pathologies Respiratoires, Equipe 2: « Mécanismes Protéolytiques dans l'Inflammation », Université François Rabelais, F-37032 Tours cedex, France.
| | - Gilles Lalmanach
- INSERM, UMR 1100, Pathologies Respiratoires: Protéolyse et Aérosolthérapie, Centre d'Etude des Pathologies Respiratoires, Equipe 2: « Mécanismes Protéolytiques dans l'Inflammation », Université François Rabelais, F-37032 Tours cedex, France
| | - Pierre-Marie Andrault
- INSERM, UMR 1100, Pathologies Respiratoires: Protéolyse et Aérosolthérapie, Centre d'Etude des Pathologies Respiratoires, Equipe 2: « Mécanismes Protéolytiques dans l'Inflammation », Université François Rabelais, F-37032 Tours cedex, France
| |
Collapse
|
24
|
Sadarani BN, Majumdar AS. Resveratrol potentiates the effect of dexamethasone in rat model of acute lung inflammation. Int Immunopharmacol 2015; 28:773-9. [PMID: 26283591 DOI: 10.1016/j.intimp.2015.07.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/14/2015] [Accepted: 07/28/2015] [Indexed: 11/26/2022]
Abstract
Cigarette smoking is considered to be the main etiological factor in Chronic Obstructive Pulmonary Disease (COPD). In this study, we explored the potential of resveratrol, to reinstate the effectiveness of dexamethasone when administered as an adjunct in acute lung inflammation induced by cigarette smoke (CS) and lipopolysaccharide (LPS). CS and LPS instillation produced acute inflammatory response exhibited by increased leukocyte count, particularly neutrophils, total protein, MMP-9 activity, cytokines like TNF-α, IL-8 in bronchoalveolar lavage fluid (BALF) as well as elevated myeloperoxidase activity, and lipid peroxidation in lung. These alterations were not abated by dexamethasone (2.5mg/kg & 10mg/kg) and resveratrol (50mg/kg) alone. Combination of resveratrol (50mg/kg) and dexamethasone (2.5mg/kg) significantly reduced all inflammatory parameters. The protective effect of the combination was abolished when co-administered with sirtinol, a SIRT1 inhibitor. The results indicate that the combination therapy may serve as a potential approach for treating lung inflammatory conditions like COPD.
Collapse
Affiliation(s)
- Bhakti N Sadarani
- Department of Pharmacology, Bombay College of Pharmacy, Kalina, Santacruz (East), Mumbai 400068, Maharashtra, India.
| | - Anuradha S Majumdar
- Department of Pharmacology, Bombay College of Pharmacy, Kalina, Santacruz (East), Mumbai 400068, Maharashtra, India.
| |
Collapse
|
25
|
Jungnickel C, Wonnenberg B, Karabiber O, Wolf A, Voss M, Wolf L, Honecker A, Kamyschnikow A, Herr C, Bals R, Beisswenger C. Cigarette smoke-induced disruption of pulmonary barrier and bacterial translocation drive tumor-associated inflammation and growth. Am J Physiol Lung Cell Mol Physiol 2015. [PMID: 26209273 DOI: 10.1152/ajplung.00116.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Microorganisms have an important role in tumorgenesis by the induction of inflammation and by a direct impact on tumor cells. Chronic obstructive pulmonary disease (COPD) is associated with an increased risk for lung cancer and microbial colonization. We asked whether bacterial pathogens act as tumor promoters during CS-induced pulmonary inflammation. In a metastatic lung cancer (LC) model, Lewis lung carcinoma (LLC) cells were injected in mice to initiate the growth of tumors in the lung. Exposure to the combination of cigarette smoke (CS) and nontypeable Haemophilus influenzae (NTHi) synergistically increased metastatic growth. Lung levels of albumin and LDH, translocation of bacterial factors into tumor tissue, tumor inflammation, and tumor proliferation were significantly increased in mice exposed to CS in combination with NTHi. Bacterial pathogens increased the proliferation of cultured LLC cells and human cancer cell lines. Metastatic growth induced by the exposure to CS in combination with NTHi was reduced in mice deficient for IL-17. Our data provide evidence that CS-induced loss of pulmonary barrier integrity allows bacterial factors to translocate into tumor tissue and to regulate tumor-associated inflammation and tumor proliferation. Translocation of bacterial factors in tumor tissue links CS-induced inflammation with tumor proliferation.
Collapse
Affiliation(s)
- C Jungnickel
- Department of Internal Medicine V-Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg/Saar, Germany
| | - B Wonnenberg
- Department of Internal Medicine V-Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg/Saar, Germany
| | - O Karabiber
- Department of Internal Medicine V-Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg/Saar, Germany
| | - A Wolf
- Department of Internal Medicine V-Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg/Saar, Germany
| | - M Voss
- Department of Internal Medicine V-Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg/Saar, Germany
| | - L Wolf
- Department of Internal Medicine V-Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg/Saar, Germany
| | - A Honecker
- Department of Internal Medicine V-Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg/Saar, Germany
| | - A Kamyschnikow
- Department of Internal Medicine V-Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg/Saar, Germany
| | - C Herr
- Department of Internal Medicine V-Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg/Saar, Germany
| | - R Bals
- Department of Internal Medicine V-Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg/Saar, Germany
| | - C Beisswenger
- Department of Internal Medicine V-Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
26
|
Voss M, Wolf L, Kamyschnikow A, Wonnenberg B, Honecker A, Herr C, Lepper PM, Wegmann M, Menger MD, Bals R, Beisswenger C. Il-17A contributes to maintenance of pulmonary homeostasis in a murine model of cigarette smoke-induced emphysema. Am J Physiol Lung Cell Mol Physiol 2015; 309:L188-95. [PMID: 26024895 DOI: 10.1152/ajplung.00388.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 05/20/2015] [Indexed: 11/22/2022] Open
Abstract
Smoking is the main risk factor for the development of the chronic obstructive pulmonary disease (COPD) in Western countries. Recent studies suggest that IL-17A and Th17 cells play a role in the pathogenesis of COPD. We used a murine model of chronic cigarette smoke (CS) exposure to explore the contribution of IL-17A to CS-induced lung damage and loss of pulmonary function. Histology and morphometry showed that IL-17A deficiency spontaneously resulted in a loss of lung structure under basal conditions. Even though inflammatory markers [IL-1β and granulocyte colony-stimulating factor (G-CSF)] were decreased in IL-17A-deficient mice (IL-17A(-/-)) exposed to CS compared with wild-type (WT) mice, IL-17A(-/-) mice were per se not protected from CS-induced emphysematous disease. Assessment of pulmonary function showed that IL-17A(-/-) mice were partially protected from CS-induced changes in total lung capacity. However, the respiratory elastance decreased and respiratory compliance increased in IL-17A(-/-) mice after exposure to CS. Morphometry revealed destruction of lung tissue in CS-exposed IL-17A(-/-) mice similar to WT mice. The expression of elastin was decreased in air-exposed IL-17A(-/-) mice and in CS-exposed WT and IL-17A(-/-) mice. Thus, in the present model of sterile CS-exposure, IL-17A contributes to normal lung homeostasis and does not mediate CS-induced loss of lung structure and pulmonary function.
Collapse
Affiliation(s)
- Meike Voss
- Department of Internal Medicine V-Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg/Saar, Germany
| | - Lisa Wolf
- Department of Internal Medicine V-Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg/Saar, Germany
| | - Andreas Kamyschnikow
- Department of Internal Medicine V-Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg/Saar, Germany
| | - Bodo Wonnenberg
- Department of Internal Medicine V-Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg/Saar, Germany
| | - Anja Honecker
- Department of Internal Medicine V-Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg/Saar, Germany
| | - Christian Herr
- Department of Internal Medicine V-Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg/Saar, Germany
| | - Philipp M Lepper
- Department of Internal Medicine V-Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg/Saar, Germany
| | - Michael Wegmann
- Division of Asthma Mouse Models, Priority Area Asthma and Allergy, Research Center Borstel, Airway Research Center North, Member of the German Center for Lung Research, Borstel, Germany; and
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University Medical Center, Homburg/Saar, Germany
| | - Robert Bals
- Department of Internal Medicine V-Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg/Saar, Germany
| | - Christoph Beisswenger
- Department of Internal Medicine V-Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg/Saar, Germany;
| |
Collapse
|
27
|
Voss M, Wonnenberg B, Honecker A, Kamyschnikow A, Herr C, Bischoff M, Tschernig T, Bals R, Beisswenger C. Cigarette smoke-promoted acquisition of bacterial pathogens in the upper respiratory tract leads to enhanced inflammation in mice. Respir Res 2015; 16:41. [PMID: 25890119 PMCID: PMC4395896 DOI: 10.1186/s12931-015-0204-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 03/09/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Bacterial colonization and recurrent infections of the respiratory tract contribute to the progression of chronic obstructive pulmonary disease (COPD). There is evidence that exacerbations of COPD are provoked by new bacterial strains acquired from the environment. Using a murine model of colonization, we examined whether chronic exposure to cigarette smoke (CS) promotes nasopharyngeal colonization with typical lung pathogens and whether colonization is linked to inflammation in the respiratory tract. METHODS C57BL/6 N mice were chronically exposed to CS. The upper airways of mice were colonized with nontypeable Haemophilus influenzae (NTHi) or Streptococcus pneumoniae. Bacterial colonization was determined in the upper respiratory tract and lung tissue. Inflammatory cells and cytokines were determined in lavage fluids. RT-PCR was performed for inflammatory mediators. RESULTS Chronic CS exposure resulted in significantly increased numbers of viable NTHi in the upper airways, whereas NTHi only marginally colonized air-exposed mice. Colonization with S. pneumoniae was enhanced in the upper respiratory tract of CS-exposed mice and was accompanied by increased translocation of S. pneumoniae into the lung. Bacterial colonization levels were associated with increased concentrations of inflammatory mediators and the number of immune cells in lavage fluids of the upper respiratory tract and the lung. Phagocytosis activity was reduced in whole blood granulocytes and monocytes of CS-exposed mice. CONCLUSIONS These findings demonstrate that exposure to CS impacts the ability of the host to control bacterial colonization of the upper airways, resulting in enhanced inflammation and susceptibility of the host to pathogens migrating into the lung.
Collapse
Affiliation(s)
- Meike Voss
- Department of Internal Medicine V - Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421, Homburg/Saar, Germany.
| | - Bodo Wonnenberg
- Department of Internal Medicine V - Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421, Homburg/Saar, Germany.
| | - Anja Honecker
- Department of Internal Medicine V - Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421, Homburg/Saar, Germany.
| | - Andreas Kamyschnikow
- Department of Internal Medicine V - Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421, Homburg/Saar, Germany.
| | - Christian Herr
- Department of Internal Medicine V - Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421, Homburg/Saar, Germany.
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421, Homburg/Saar, Germany.
| | - Thomas Tschernig
- Institute of Anatomy and Cell Biology, Saarland University, 66421, Homburg/Saar, Germany.
| | - Robert Bals
- Department of Internal Medicine V - Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421, Homburg/Saar, Germany.
| | - Christoph Beisswenger
- Department of Internal Medicine V - Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421, Homburg/Saar, Germany.
| |
Collapse
|