1
|
Cimino C, Zingale E, Bonaccorso A, Musumeci T, Carbone C, Pignatello R. From Preformulative Design to In Vivo Tests: A Complex Path of Requisites and Studies for Nanoparticle Ocular Application. Part 1: Design, Characterization, and Preliminary In Vitro Studies. Mol Pharm 2024. [PMID: 39441703 DOI: 10.1021/acs.molpharmaceut.4c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Ocular pathologies are widely diffused worldwide, and their effective treatment, combined with a high patient compliance, is sometimes challenging to achieve due to the barriers of the eye; in this context, the use of nanoparticles for topical ophthalmic application could represent a successful strategy. Aiming to develop nanoplatforms with potential clinical applications, great attention has to be paid to their features, in relation to the route of administration and to the pharmacopoeial requirements. This review (part 1) thus embraces the preliminary steps of nanoparticle development and characterization. At the beginning, the main barriers of the eye and the different administration routes are resumed, followed by a general description of the advantages of the employment of nanoparticles for ocular topical administration. Subsequently, the preformulative steps are discussed, deepening the choice of raw materials and determining the quantitative composition. Then, a detailed report of the physicochemical and technological characterization of nanoparticles is presented, analyzing the most relevant tests that should be performed on nanoparticles to verify their properties and the requisites (both mandatory and suggested) demanded by regulatory agencies. In conclusion, some preliminary noncellular in vitro evaluation methods are described. Studies from in vitro cellular assays to in vivo tests will be discussed in a separate (part 2) review paper. Hence, this overview aims to offer a comprehensive tool to guide researchers in the choice of the most relevant studies to develop a nanoplatform for ophthalmic drug administration.
Collapse
Affiliation(s)
- Cinzia Cimino
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Elide Zingale
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Angela Bonaccorso
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Teresa Musumeci
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Claudia Carbone
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Rosario Pignatello
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| |
Collapse
|
2
|
Biswas A, Kumar S, Choudhury AD, Bisen AC, Sanap SN, Agrawal S, Mishra A, Verma SK, Kumar M, Bhatta RS. Polymers and their engineered analogues for ocular drug delivery: Enhancing therapeutic precision. Biopolymers 2024; 115:e23578. [PMID: 38577865 DOI: 10.1002/bip.23578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024]
Abstract
Ocular drug delivery is constrained by anatomical and physiological barriers, necessitating innovative solutions for effective therapy. Natural polymers like hyaluronic acid, chitosan, and gelatin, alongside synthetic counterparts such as PLGA and PEG, have gained prominence for their biocompatibility and controlled release profiles. Recent strides in polymer conjugation strategies have enabled targeted delivery through ligand integration, facilitating tissue specificity and cellular uptake. This versatility accommodates combined drug delivery, addressing diverse anterior (e.g., glaucoma, dry eye) and posterior segment (e.g., macular degeneration, diabetic retinopathy) afflictions. The review encompasses an in-depth exploration of each natural and synthetic polymer, detailing their individual advantages and disadvantages for ocular drug delivery. By transcending ocular barriers and refining therapeutic precision, these innovations promise to reshape the management of anterior and posterior segment eye diseases.
Collapse
Affiliation(s)
- Arpon Biswas
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Shivansh Kumar
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Abhijit Deb Choudhury
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Amol Chhatrapati Bisen
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sachin Nashik Sanap
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sristi Agrawal
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Anjali Mishra
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sarvesh Kumar Verma
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Mukesh Kumar
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Rabi Sankar Bhatta
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
3
|
Ashique S, Mishra N, Mohanto S, Gowda BJ, Kumar S, Raikar AS, Masand P, Garg A, Goswami P, Kahwa I. Overview of processed excipients in ocular drug delivery: Opportunities so far and bottlenecks. Heliyon 2024; 10:e23810. [PMID: 38226207 PMCID: PMC10788286 DOI: 10.1016/j.heliyon.2023.e23810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/17/2024] Open
Abstract
Ocular drug delivery presents a unique set of challenges owing to the complex anatomy and physiology of the eye. Processed excipients have emerged as crucial components in overcoming these challenges and improving the efficacy and safety of ocular drug delivery systems. This comprehensive overview examines the opportunities that processed excipients offer in enhancing drug delivery to the eye. By analyzing the current landscape, this review highlights the successful applications of processed excipients, such as micro- and nano-formulations, sustained-release systems, and targeted delivery strategies. Furthermore, this article delves into the bottlenecks that have impeded the widespread adoption of these excipients, including formulation stability, biocompatibility, regulatory constraints, and cost-effectiveness. Through a critical evaluation of existing research and industry practices, this review aims to provide insights into the potential avenues for innovation and development in ocular drug delivery, with a focus on addressing the existing challenges associated with processed excipients. This synthesis contributes to a deeper understanding of the promising role of processed excipients in improving ocular drug delivery systems and encourages further research and development in this rapidly evolving field.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur 713212, West Bengal, India
| | - Neeraj Mishra
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, 474005, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - B.H. Jaswanth Gowda
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast BT9 7BL, UK
| | - Shubneesh Kumar
- Department of Pharmaceutics, Bharat Institute of Technology, School of Pharmacy, Meerut 250103, UP, India
| | - Amisha S. Raikar
- Department of Pharmaceutics, PES Rajaram and Tarabai Bandekar College of Pharmacy, Ponda, Goa 403401, India
| | - Priya Masand
- Department of Pharmaceutical Technology, Meerut Institute of Engineering & Technology, (MIET), NH-58, Delhi-Roorkee Highway, Meerut, Uttar Pradesh 250005, India
| | - Ashish Garg
- Department of Pharmaceutics, Guru Ramdas Khalsa Institute of Science and Technology (Pharmacy), Jabalpur, Madhya Pradesh, India
| | - Priyanka Goswami
- Department of Pharmacognosy, Saraswati Institute of Pharmaceutical Sciences, Gandhinagar 382355, Gujarat, India
- Maharashtra Educational Society's H.K. College of Pharmacy, Mumbai: 400102.India
| | - Ivan Kahwa
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, P.O Box 1410, Mbarara, Uganda
- Pharm-Bio Technology and Traditional Medicine Centre, Mbarara University of Science and Technology, P. O Box 1410, Mbarara, Uganda
| |
Collapse
|
4
|
Hovanesian J, Singh IP, Bauskar A, Vantipalli S, Ozden RG, Goldstein MH. Identifying and addressing common contributors to nonadherence with ophthalmic medical therapy. Curr Opin Ophthalmol 2023; 34:S1-S13. [PMID: 36951648 DOI: 10.1097/icu.0000000000000953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
PURPOSE OF REVIEW To discuss common reasons for nonadherence and review existing and emerging options to reduce nonadherence with ocular medical therapy and optimize therapeutic outcomes. RECENT FINDINGS Nonadherence can arise from patient-related issues (e.g. physical, cognitive) and healthcare-related issues (e.g. cost, access to care). Multiple strategies have been developed and evaluated to overcome these barriers to adherence. Identifying nonadherence and its cause(s) facilitates the development of strategies to overcome it. SUMMARY Many common causes of nonadherence can be mitigated through a variety of strategies presented.
Collapse
Affiliation(s)
| | - I Paul Singh
- The Eye Centers of Racine and Kenosha, Racine, Wisconsin
| | - Aditi Bauskar
- Ocular Therapeutix, Inc., Bedford, Massachusetts USA
| | | | | | | |
Collapse
|
5
|
Asendrych-Wicik K, Zarczuk J, Walaszek K, Ciach T, Markowicz-Piasecka M. Trends in development and quality assessment of pharmaceutical formulations - F2α analogues in the glaucoma treatment. Eur J Pharm Sci 2023; 180:106315. [PMID: 36367507 DOI: 10.1016/j.ejps.2022.106315] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/10/2022] [Accepted: 10/27/2022] [Indexed: 12/15/2022]
Abstract
The ocular delivery route presents a number of challenges in terms of drug administration and bioavailability. The low bioavailability following topical ophthalmic administration shows that there is a clear need for in-depth research aimed at finding both more efficacious molecules and formulations precisely targeted at the site of action. Continuous technological development will eventually result in improved bioavailability, lower dosages, reduced toxicity, fewer adverse effects, and thus better patient compliance and treatment efficacy. Technological development, as well as increasingly stringent quality requirements, help stimulate analytical progress. This is also clearly evident in the case of medicinal products used in the treatment of glaucoma, which are the subject of this review. Impurity profiling of PGF2α analogues, either in the pure substance or in the finished formulation, is a crucial step in assessing their quality. The development of specific, accurate and precise stability-indicating analytical methods for determining the content and related substances seems to be an important issue in relation to this tasks. A total of 27 official and in-house analytical methods are presented that are used for the analysis of latanoprost, travoprost and bimatoprost. The conditions for chromatographic separation with UV or MS/MS detection and the available results obtained during method validation are described. In addition, several aspects are discussed, with particular emphasis on the instability of the analogues in aqueous solution and the phenomenon of isomerism, which affects a potentially large number of degradation products.
Collapse
Affiliation(s)
- Katarzyna Asendrych-Wicik
- Analytical Laboratory, Research and Development Department, Polfa Warszawa S.A., ul. Karolkowa 22/24, Warsaw 01-207, Poland; Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Łódź, ul. Muszyńskiego 1, Łódź 90-151, Poland
| | - Jakub Zarczuk
- Liquid Dosage Form Laboratory, Research and Development Department, Polfa Warszawa S.A., Karolkowa 22/24, Warsaw 01-207, Poland; BioMedical Engineering Laboratory Department of Biotechnology and Bioprocess Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, ul. Waryńskiego 1, Warsaw 00-645, Poland.
| | - Katarzyna Walaszek
- Technical Research and Development Quality Assurance, Polpharma Bioologics, ul. Spółdzielcza 4, Duchnice 05-850, Poland
| | - Tomasz Ciach
- BioMedical Engineering Laboratory Department of Biotechnology and Bioprocess Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, ul. Waryńskiego 1, Warsaw 00-645, Poland
| | - Magdalena Markowicz-Piasecka
- Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Łódź, ul. Muszyńskiego 1, Łódź 90-151, Poland
| |
Collapse
|
6
|
Zhou X, Zhang X, Zhou D, Zhao Y, Duan X. A Narrative Review of Ocular Surface Disease Related to Anti-Glaucomatous Medications. Ophthalmol Ther 2022; 11:1681-1704. [PMID: 35943668 PMCID: PMC9437175 DOI: 10.1007/s40123-022-00557-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/29/2022] [Indexed: 01/31/2023] Open
Abstract
Topical anti-glaucomatous medications are still the most important measure to lower intraocular pressure. Large number of studies have confirmed that long-term use of anti-glaucomatous eye drops, especially containing benzalkonium chloride, a preservative, can cause or aggravate ocular surface injury. Ocular surface diseases damage the ocular microenvironmental health status, reduce the patients’ compliance with the treatment, and finally affect the treatment result. Therefore, the ocular surface management of patients with glaucoma is very important. This includes the selection of drugs that are better tolerated according to individual conditions, preservative-free formulations, drugs that protect against ocular surface disease, or selecting surgery and laser treatment, to prevent the damage to the ocular surface by topical anti-glaucomatous drugs.
Collapse
Affiliation(s)
- Xiaoyu Zhou
- Changsha Aier Eye Hospital, Changsha, Hunan Province, China.,The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xinyue Zhang
- Changsha Aier Eye Hospital, Changsha, Hunan Province, China.,The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Dengming Zhou
- The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yang Zhao
- Changsha Aier Eye Hospital, Changsha, Hunan Province, China.,The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xuanchu Duan
- Changsha Aier Eye Hospital, Changsha, Hunan Province, China. .,Aier School of Ophthalmology, Central South University, Changsha, Hunan Province, China.
| |
Collapse
|
7
|
Ocular benzalkonium chloride exposure: problems and solutions. Eye (Lond) 2022; 36:361-368. [PMID: 34262161 PMCID: PMC8277985 DOI: 10.1038/s41433-021-01668-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/03/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Preservatives in multidose formulations of topical ophthalmic medications are crucial for maintaining sterility but can be toxic to the ocular surface. Benzalkonium chloride (BAK)-used in approximately 70% of ophthalmic formulations-is well known to cause cytotoxic damage to conjunctival and corneal epithelial cells, resulting in signs and symptoms of ocular surface disease (OSD) including ocular surface staining, increased tear break-up time, and higher OSD symptom scores. These adverse effects are more problematic with chronic exposure, as in lifetime therapy for glaucoma, but can also manifest after exposure as brief as seven days. Multiple strategies are available to minimize or eliminate BAK exposure, among them alternative preservatives, preservative-free formulations including sustained release drug delivery platforms, and non-pharmacological therapies for common eye diseases and conditions. In this paper, we review the cytotoxic and clinical effects of BAK on the ocular surface and discuss existing and emerging options for ocular disease management that can minimize or eliminate BAK exposure.
Collapse
|
8
|
Allyn MM, Luo RH, Hellwarth EB, Swindle-Reilly KE. Considerations for Polymers Used in Ocular Drug Delivery. Front Med (Lausanne) 2022; 8:787644. [PMID: 35155469 PMCID: PMC8831705 DOI: 10.3389/fmed.2021.787644] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Age-related eye diseases are becoming more prevalent. A notable increase has been seen in the most common causes including glaucoma, age-related macular degeneration (AMD), and cataract. Current clinical treatments vary from tissue replacement with polymers to topical eye drops and intravitreal injections. Research and development efforts have increased using polymers for sustained release to the eye to overcome treatment challenges, showing promise in improving drug release and delivery, patient experience, and treatment compliance. Polymers provide unique properties that allow for specific engineered devices to provide improved treatment options. Recent work has shown the utilization of synthetic and biopolymer derived biomaterials in various forms, with this review containing a focus on polymers Food and Drug Administration (FDA) approved for ocular use. METHODS This provides an overview of some prevalent synthetic polymers and biopolymers used in ocular delivery and their benefits, brief discussion of the various types and synthesis methods used, and administration techniques. Polymers approved by the FDA for different applications in the eye are listed and compared to new polymers being explored in the literature. This article summarizes research findings using polymers for ocular drug delivery from various stages: laboratory, preclinical studies, clinical trials, and currently approved. This review also focuses on some of the challenges to bringing these new innovations to the clinic, including limited selection of approved polymers. RESULTS Polymers help improve drug delivery by increasing solubility, controlling pharmacokinetics, and extending release. Several polymer classes including synthetic, biopolymer, and combinations were discussed along with the benefits and challenges of each class. The ways both polymer synthesis and processing techniques can influence drug release in the eye were discussed. CONCLUSION The use of biomaterials, specifically polymers, is a well-studied field for drug delivery, and polymers have been used as implants in the eye for over 75 years. Promising new ocular drug delivery systems are emerging using polymers an innovative option for treating ocular diseases because of their tunable properties. This review touches on important considerations and challenges of using polymers for sustained ocular drug delivery with the goal translating research to the clinic.
Collapse
Affiliation(s)
- Megan M. Allyn
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
| | - Richard H. Luo
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| | - Elle B. Hellwarth
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| | - Katelyn E. Swindle-Reilly
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
- Department of Ophthalmology and Visual Sciences, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
9
|
Mohammadpour M, Khorrami-Nejad M, Shakoor D. Role of artificial tears with and without hyaluronic acid in controlling ocular discomfort following PRK: a randomized clinical trial. Int J Ophthalmol 2021; 14:1225-1230. [PMID: 34414088 DOI: 10.18240/ijo.2021.08.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 03/03/2021] [Indexed: 11/23/2022] Open
Abstract
AIM To compare outcomes of applying preservative free artificial tears (PFAT) with and without hyaluronic acid (HA) in early postoperative course following photorefractive keratectomy (PRK). METHODS In this triple-blinded randomized clinical trial, PRK procedure was performed on both eyes of 230 patients. Following PRK, patients were divided into three groups: the HA+ group, 44 patients PFAT containing HA; the HA- group, 71 patients PFAT without HA were administered 5 times per day (every 4h); the third group, 115 patients received no PFAT before lens removal. On the 1st and 4th postoperative day, Visual Analogue Score (VAS) was utilized to evaluate patient's level of pain. Participants were asked to complete a questionnaire about the severity of eye discomfort ranked from 0 to 10 (0=no complaint; 10=most severe complaint experienced). RESULTS In eyes receiving PFAT with or without HA (Drop group), mean scores for epiphora, foreign body sensation, and blurred vision on the 1st postoperative day were statistically lower (P<0.05). Filamentous keratitis (FK) was detected in 11 (4.7%) eyes, and recurrent corneal erosion (RCE) was observed in 5 (2.1%) eyes. In the control group, FK was noted in 16 (6.9%) eyes while 13 (5.6%) eyes had RCE and 5 (2.1%) eyes had corneal haze. The rate of complications was statistically lower in Drop group (P=0.009). However, the aforementioned scores were not statically different between HA+ and HA- group one and two (P=0.29). CONCLUSION Following PRK, applying PFAT with and without HA yields faster visual recovery, decreases postoperative ocular discomfort and haze formation; however there is no additive effect for HA.
Collapse
Affiliation(s)
- Mehrdad Mohammadpour
- Translational Ophthalmology Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran 1336616351, Iran
| | - Masoud Khorrami-Nejad
- Translational Ophthalmology Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran 1336616351, Iran.,School of Rehabilitation, Tehran University of Medical Sciences, Tehran 1148965111, Iran
| | - Delaram Shakoor
- Translational Ophthalmology Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran 1336616351, Iran
| |
Collapse
|
10
|
Huerta Ángeles G, Nešporová K. Hyaluronan and its derivatives for ophthalmology: Recent advances and future perspectives. Carbohydr Polym 2021; 259:117697. [DOI: 10.1016/j.carbpol.2021.117697] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/26/2022]
|
11
|
Donthineni PR, Shanbhag SS, Basu S. An Evidence-Based Strategic Approach to Prevention and Treatment of Dry Eye Disease, a Modern Global Epidemic. Healthcare (Basel) 2021; 9:healthcare9010089. [PMID: 33477386 PMCID: PMC7830429 DOI: 10.3390/healthcare9010089] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/02/2021] [Accepted: 01/12/2021] [Indexed: 12/03/2022] Open
Abstract
Dry eye disease (DED) is an emerging health concern causing significant visual, psychological, social, and economic impact globally. In contrast to visual rehabilitation undertaken at late stages of DED, measures instituted to prevent its onset, establishment, or progression can alter its natural course and effectively bring down the associated morbidity. This review attempts to present the available literature on preventive strategies of DED at one place, including strategies for risk assessment and mitigation, targeting a wide range of population. A literature search was conducted using PubMed and an extensive literature review on preventive strategies for DED was compiled to put forth a holistic and strategic approach for preventing DED. This can be undertaken at various stages or severity of DED directed at different tiers of the health care system. Conclusion: This review intends to put emphasis on preventive strategies being adopted as an integral part of routine clinical practice by general ophthalmologists and specialists to tackle the burden of DED and improve the quality of the lives of the patients suffering from it.
Collapse
Affiliation(s)
- Pragnya R. Donthineni
- The Cornea Institute, L V Prasad Eye Institute, Hyderabad 500034, India; (P.R.D.); (S.S.S.)
| | - Swapna S. Shanbhag
- The Cornea Institute, L V Prasad Eye Institute, Hyderabad 500034, India; (P.R.D.); (S.S.S.)
| | - Sayan Basu
- The Cornea Institute, L V Prasad Eye Institute, Hyderabad 500034, India; (P.R.D.); (S.S.S.)
- Center for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad 500034, India
- Correspondence: ; Tel.: +91-040-30612555
| |
Collapse
|
12
|
Dutescu RM, Uthoff D, Panfil C, Schrage N. High-Frequency Application of Cationic Agents Containing Lubricant Eye Drops Causes Cumulative Corneal Toxicity in an Ex Vivo Eye Irritation Test Model. J Ocul Pharmacol Ther 2020; 36:725-731. [PMID: 33180002 DOI: 10.1089/jop.2020.0043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Purpose: High-frequency applied cetalkonium chloride (CAC) and benzalkonium chloride (BAC) 0.02% did not hamper corneal healing in a living rabbit model of induced corneal erosion. In contrast, the ex vivo eye irritation test (EVEIT) shows inhibition of healing for these substances. In a systematic ex vivo reproduction of the in vivo experiments, we discuss the background of these differences. Methods: Excised rabbit corneas (n = 5 per group) were cultured in artificial anterior chambers (EVEIT). Four erosions were induced for each cornea before starting regular 21 installations/day over 3 days of (1) CAC containing eye drops (Cationorm®), (2) 0.02% BAC. Corneal fluorescein staining, quantification of glucose-/lactate consumption, and histology were performed. Results: BAC 0.02% treated corneas showed increased epithelial lesions from 10.13 ± 0.65 mm2 to 10 ± 0.8 mm2 on day 0, to 86.82 ± 5.18 mm2 (P < 0.0001) by day 3. After a trend toward smaller lesions for CAC on day 1, erosion sizes increased significantly by day 3 from 9.82 ± 0.30 mm2 to 29.51 ± 16.87 mm2 (P < 0.05). For 1 cornea, corneal erosions nearly disappeared on day 3 (0.89 mm2). Corneal lactate increased significantly for BAC and CAC, whereas glucose concentrations were unchanged. Histology revealed disintegration of the corneal structures for both compounds. Conclusions: The data underline the EVEIT as a predictive toxicity test to show side effects in a time-compressed manner. The consistency of these predictions was previously demonstrated by the EVEIT for BAC, phosphate buffer, and others. The EVEIT is suited for a chronic application prediction of tolerability and toxic side effects of eye drops in particular, and other chemicals in general.
Collapse
Affiliation(s)
- Ralf M Dutescu
- Aachen Centre of Technology Transfer in Ophthalmology e.V., An-Institute RWTH Aachen University, Aachen, Germany
| | - Daniel Uthoff
- Aachen Centre of Technology Transfer in Ophthalmology e.V., An-Institute RWTH Aachen University, Aachen, Germany
| | - Claudia Panfil
- Aachen Centre of Technology Transfer in Ophthalmology e.V., An-Institute RWTH Aachen University, Aachen, Germany
| | - Norbert Schrage
- Aachen Centre of Technology Transfer in Ophthalmology e.V., An-Institute RWTH Aachen University, Aachen, Germany
| |
Collapse
|
13
|
Walsh K, Jones L. The use of preservatives in dry eye drops. Clin Ophthalmol 2019; 13:1409-1425. [PMID: 31447543 PMCID: PMC6682755 DOI: 10.2147/opth.s211611] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/03/2019] [Indexed: 12/14/2022] Open
Abstract
Topical ocular preparations are widely recommended by health care professionals, or chosen by patients, to help manage dry eye disease (DED). The chronic and progressive nature of DED may result in the administration of topical products several times a day, over a period of many years. Given DED is a condition that by definition affects the ocular surface, it is important to understand how the repeated use of eye drops may impact the ocular surface, influence clinical signs, affect symptoms, and impact the overall disease process of dry eye. The component in topical preparations with the greatest potential to adversely affect the ocular surface is the preservative. This paper reviews the literature in relation to the use of preservatives in formulations for dry eye. The ocular effects of benzalkonium chloride (BAK) are summarised and compared to the performance of alternative preservatives and preservative-free formulations. Use of preserved and preservative-free drops in relation to the management of varying stages of DED is discussed.
Collapse
Affiliation(s)
- Karen Walsh
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, N2L 3G1, Canada
| | - Lyndon Jones
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, N2L 3G1, Canada
| |
Collapse
|
14
|
Medical devices biocompatibility assessment on HCE: Evidences of delayed cytotoxicity of preserved compared to preservative free eye drops. Regul Toxicol Pharmacol 2019; 106:81-89. [DOI: 10.1016/j.yrtph.2019.04.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/16/2019] [Accepted: 04/26/2019] [Indexed: 11/21/2022]
|
15
|
Abstract
PURPOSE OF REVIEW The purpose of this article is to provide an overview of the ocular lubricants currently available, consider the components of the various formulations and highlight the status of preservative use in the treatment of anterior ocular surface diseases. RECENT FINDINGS The primary components of ocular surface lubrication have been, in the past, based on various cellulose formulations that increase hydration. Advances in lubrication have come from areas of the human body requiring lubrication such as the skeletal joints as well as examining the use of natural components of the tear fluid. These have resulted in novel modifications of existing tear components, for example, thiolated carboxymethyl hyaluronic acid which creates crosslinking to mechanically increase retention time for ocular surface hydration. Other proteoglycans such as lubricin, having one of the lowest coefficients of friction in nature, to a lipopolysaccharide derivative of tamarind seed, may provide a unique delivery system for lubricants and medications. SUMMARY The present state of ocular surface lubrication is slowly advancing from the routine use of cellulose-based solutions and gels to more advanced replacement with natural tear components. The advances that are occurring on other lubricating surfaces of the musculoskeletal system are also providing some insights into potential use on the ocular surface.
Collapse
|
16
|
Effect of tear supplements on signs, symptoms and inflammatory markers in dry eye. Cytokine 2018; 105:37-44. [PMID: 29452970 DOI: 10.1016/j.cyto.2018.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 02/01/2018] [Accepted: 02/03/2018] [Indexed: 12/27/2022]
Abstract
PURPOSE Three tear supplements were compared for their effects on the signs, symptoms and inflammatory status of subjects with dry eye disease. Assessments were made before and after both 2 and 4 weeks of treatment. METHODS In this masked, randomized, 3-way crossover trial, eighteen dry eye subjects were recruited. At each visit, symptoms, tear evaporation rate, stability and osmolarity were measured and tear samples were analyzed for 7 inflammatory markers, using multiplex immunoassays. The 3 treatments included carboxymethylcellulose-glycerine-castor oil (CGC), carboxymethylcellulose (CMC) and hydroxypropyl guar (HPG). The CGC and HPG drops are emulsified lipids; CGC also contains osmoprotectants. The CMC drop is a standard aqueous polymeric supplement. RESULTS Significant improvements were seen in symptoms (OSDI) and tear stability (NITBUT) with all 3 treatments at 4 weeks. At 4 weeks post-CGC, 6 out of 7 biomarkers demonstrated a >25% reduction (in 40% of subjects). The same reduction (>25%) was seen in 10% of the subjects for CMC and in none of the subjects for HPG. No significantly different change to either evaporation rate or tear osmolarity was found following any of the three treatments. CONCLUSIONS In this study, the CGC treatment resulted in the greatest reduction in ocular biomarkers of inflammation, while all 3 treatments reduced symptoms and improved tear stability. These results indicate that subject-perceived symptomatic improvements are not necessarily associated with a reduction in objective measures of inflammation.
Collapse
|
17
|
Jiang N, Ye LH, Ye L, Yu J, Yang QC, Yuan Q, Zhu PW, Shao Y. Effect of mistletoe combined with carboxymethyl cellulose on dry eye in postmenopausal women. Int J Ophthalmol 2017; 10:1669-1677. [PMID: 29181309 DOI: 10.18240/ijo.2017.11.06] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 06/13/2017] [Indexed: 11/23/2022] Open
Abstract
AIM To investigate the protective effect of mistletoe combined with carboxymethyl cellulose eye drops on dry eye in postmenopausal women. METHODS Sixty postmenopause female patients diagnosed of dry eye were assigned randomly to mistletoe combined with carboxymethyl cellulose eye drops treatment group (n=30) and control group treated with normal saline eye drops (n=30). The subjective symptoms of ocular surface, Ocular Surface Disease Index (OSDI), tear film function tests, tear protein and corneal morphology by confocal scanning microscopy were analyzed before treatment and at 1, 2, 4 and 8wk after treatment respectively. To ensure the safety of the trial, all patients were examined with systolic pressure, diastolic pressure, glutamic-pyruvic transaminase, glutamic oxaloacetic transaminase, urine creatinine, and blood urea nitrogen at 8wk after treatment. RESULTS There were no obvious differences between two groups before the treatment (P>0.05). In two months after the treatment, the symptoms of ocular surface, OSDI, tear protein, and tear film function were only slightly changed in normal saline eye drops group. However, all indices were improved after the treatment of mistletoe combined with carboxymethyl cellulose eye drops group (P<0.05). In addition, the average amount of corneal epithelium basal cells and inflammatory cells of mistletoe treated group were 3174±379 and 38±25 cells/mm2, significantly decreased as compared to the control group with 4309±612 and 158± 61 cells/mm2, respectively. In the control group, although nerves still maintained straight under corneal epithelium, the number of nerves were significantly decreased, as compared with normal female. In the mistletoe treated group, the number of nerves was only slightly reduced, compared with normal female. CONCLUSION Mistletoe combined with carboxymethyl cellulose eye drops can alleviate the symptoms and signs of dry eye symptoms.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Lin-Hong Ye
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Lei Ye
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Jing Yu
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China.,Department of Acupuncture and Moxibustion, Hangzhou TCM Hospital, Hangzhou 310007, Zhejiang Province, China
| | - Qi-Chen Yang
- Eye Institute of Xiamen University, Xiamen 361102, Fujian Province, China
| | - Qing Yuan
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Pei-Wen Zhu
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yi Shao
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
18
|
Sreekanth V, Medatwal N, Kumar S, Pal S, Vamshikrishna M, Kar A, Bhargava P, Naaz A, Kumar N, Sengupta S, Bajaj A. Tethering of Chemotherapeutic Drug/Imaging Agent to Bile Acid-Phospholipid Increases the Efficacy and Bioavailability with Reduced Hepatotoxicity. Bioconjug Chem 2017; 28:2942-2953. [DOI: 10.1021/acs.bioconjchem.7b00564] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Vedagopuram Sreekanth
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad, Haryana 121001, India
- Manipal University, Manipal, 576104, India
| | - Nihal Medatwal
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad, Haryana 121001, India
- Manipal University, Manipal, 576104, India
| | - Sandeep Kumar
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad, Haryana 121001, India
- Manipal University, Manipal, 576104, India
| | - Sanjay Pal
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad, Haryana 121001, India
- KIIT University, Bhubaneswar, Odisha 751024, India
| | - Malyla Vamshikrishna
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad, Haryana 121001, India
| | - Animesh Kar
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad, Haryana 121001, India
| | - Priyanshu Bhargava
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad, Haryana 121001, India
| | - Aaliya Naaz
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad, Haryana 121001, India
| | - Nitin Kumar
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sagar Sengupta
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Avinash Bajaj
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad, Haryana 121001, India
| |
Collapse
|