1
|
Thongsepee N, Martviset P, Chantree P, Sornchuer P, Sangpairoj K, Prathaphan P, Ruangtong J, Hiranyachattada S. Daily consumption of monosodium glutamate pronounced hypertension and altered renal excretory function in normotensive and hypertensive rats. Heliyon 2022; 8:e10972. [PMID: 36247159 PMCID: PMC9563186 DOI: 10.1016/j.heliyon.2022.e10972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/28/2022] [Accepted: 09/30/2022] [Indexed: 11/24/2022] Open
Abstract
This study aimed to investigate the effects of monosodium glutamate (MSG) on the levels of arterial blood pressure (ABP) and renal excretory function. Male Wistar rats were divided into 2 groups (n = 24 each) namely sham operation (SO) and 2-kidneys-1-clip (2K1C) to develop the normotensive and hypertensive model, respectively. Four weeks after the operation, each group of rats were further divided into 4 subgroups (n = 6 each) which were orally administered of either distilled water or MSG at the doses of 80, 160, or 320 mg/kg BW/day once a day for 8 weeks. The body weight, the 24-hour water intake, and the 24-hour urine output were recorded weekly. Then, each rat was anesthetized and the ABP was measured via carotid artery. The renal excretory function was examined by using the clearance technique to measure the levels of the glomerular filtration rate and the renal blood flow. The levels of serum malondialdehyde (MDA) as a marker of oxidative stress were analyzed. The expression of tumor necrosis factor alpha (TNF-α) in the kidneys was also investigated using immunohistochemistry. It was found that all doses of MSG significantly increased the ABP in both SO and 2K1C groups. All doses of MSG significantly increased the serum MDA levels and the expression of TNF-α in the kidneys of the SO groups. Long-term intake of 320 mg/kg BW MSG significantly decreased the renal excretion of salt and water in both SO and 2K1C groups. As a whole, this study demonstrated that MSG consumption contributed to an increase in oxidative stress which could lead to alterations in the cardiovascular and renal function.
Collapse
Affiliation(s)
- Nattaya Thongsepee
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani, 12120, Thailand,Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathum Thani, 12120, Thailand,Corresponding author.
| | - Pongsakorn Martviset
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani, 12120, Thailand,Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathum Thani, 12120, Thailand
| | - Pathanin Chantree
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani, 12120, Thailand,Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathum Thani, 12120, Thailand
| | - Phornphan Sornchuer
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani, 12120, Thailand,Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathum Thani, 12120, Thailand
| | - Kant Sangpairoj
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani, 12120, Thailand,Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathum Thani, 12120, Thailand
| | - Parisa Prathaphan
- Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathum Thani, 12120, Thailand
| | - Jittiporn Ruangtong
- Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathum Thani, 12120, Thailand
| | | |
Collapse
|
2
|
El Tabbal J. Monosodium glutamate in a type 2 diabetes context: A large scoping review. Regul Toxicol Pharmacol 2022; 133:105223. [PMID: 35817208 DOI: 10.1016/j.yrtph.2022.105223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/16/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022]
Abstract
This scoping review aimed to map and elaborate the heterogenous and inconclusive body of evidence relating monosodium glutamate (MSG) and type 2 diabetes (T2DM). For this reason, multiple health outcomes related to T2DM were included and a systematic search was conducted. Experimental and observational trials between 1995 and January 2021 were collected. The tests were highly heterogenous in their samples, doses, route of exposures, durations, diets and conclusions. There was a pattern of negative effects of MSG at oral doses ≥2,000 mg/kg of body weight, and by gavage or injection at any given dose. Evidence was lacking in many areas and most of the evidence relied on short term tests. Further research should focus on standardizing and justifying methodologies, conducting long term studies and toxicokinetic tests, and avoiding bias. Focusing on the gaps highlighted and investigating mechanisms of action of MSG is crucial. Evidence-based toxicology is encouraged.
Collapse
Affiliation(s)
- Jana El Tabbal
- Department of Health Sciences, University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom.
| |
Collapse
|
3
|
Abd-Elkareem M, Soliman M, Abd El-Rahman MAM, Abou Khalil NS. Effect of Nigella sativa L. Seed on the Kidney of Monosodium Glutamate Challenged Rats. Front Pharmacol 2022; 13:789988. [PMID: 35814230 PMCID: PMC9257379 DOI: 10.3389/fphar.2022.789988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Monosodium glutamate (MSG) consumption is responsible for a wide spectrum of health hazards including nephrotoxicity. The search for phytochemical strategies having broad safety profile to counter MSG toxicity is worthwhile. Nigella sativa L. seed (NSS) is very promising in this regard owing to its antioxidant and cytoprotective nature. Therefore, we attempted to investigate the potential protective effect of NSS on MSG-induced renal toxicity in rats. To accomplish this objective, fifteen adult Wistar albino rats were randomly and equally divided into three groups for 21 days: the control group received no treatment, MSG group supplemented with MSG at a dose of 30 g/kg feed, and MSG + NSS group supplemented with MSG at the same previous dose in conjugation with NSS at a dose of 30 g/kg feed. MSG and its combination with NSS failed to cause any significant difference in the kidney function parameters in comparison with the control. A significant elevation in lipid peroxides (LPO) level, glutathione-S-transferase activity and total antioxidant capacity (TAC) and a significant reduction in superoxide dismutase activity were found in MSG group. LPO level and TAC in MSG intoxicated rats significantly normalized by NSS ingestion. NO level showed absence of significant difference among all experimental groups. MSG elicited histopathological lesions such as decreased glycoprotein content and fibrosis however, NSS succeeded in enhancing all these features. MSG group showed positive glutathione reductase and superoxide dismutase 2 immuno-expression whereas, MSG + NSS group showed weak immunostaining. A significant increase in the number of apoptotic cells was observed in MSG group compared to the control. On the other hand, MSG + NSS group exhibited a significant decrease in the number of apoptotic cells. NSS mitigated MSG-induced renal impairments by ameliorating oxidative stress and exerting anti-apoptotic effect.
Collapse
Affiliation(s)
- Mahmoud Abd-Elkareem
- Department of Cell and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
- *Correspondence: Mahmoud Abd-Elkareem, ,
| | - Mahmoud Soliman
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | | | - Nasser S. Abou Khalil
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
4
|
Kassab RB, Theyab A, Al-Ghamdy AO, Algahtani M, Mufti AH, Alsharif KF, Abdella EM, Habotta OA, Omran MM, Lokman MS, Bauomy AA, Albrakati A, Baty RS, Hassan KE, Alshiekheid MA, Abdel Moneim AE, Elmasry HA. Protocatechuic acid abrogates oxidative insults, inflammation, and apoptosis in liver and kidney associated with monosodium glutamate intoxication in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:12208-12221. [PMID: 34562213 DOI: 10.1007/s11356-021-16578-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Monosodium glutamate (MSG), a commonly used flavor enhancer, has been reported to induce hepatic and renal dysfunctions. In this study, the palliative role of protocatechuic acid (PCA) in MSG-administered rats was elucidated. Adult male rats were assigned to four groups, namely control, MSG (4 g/kg), PCA (100 mg/kg), and the last group was co-administered MSG and PCA at aforementioned doses for 7 days. Results showed that MSG augmented the hepatic and renal functions markers as well as glucose, triglycerides, total cholesterol, and low-density lipoprotein levels. Moreover, marked increases in malondialdehyde levels accompanied by declines in glutathione levels and notable decreases in the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase were observed in MSG-treated group. The MSG-mediated oxidative stress was further confirmed by downregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) gene expression levels in both tissues. In addition, MSG enhanced the hepatorenal inflammation as witnessed by increased inflammatory cytokines (interleukin-1b and tumor necrosis factor-α) and elevated nuclear factor-κB (NF-κB) levels. Further, significant increases in Bcl-2-associated X protein (Bax) levels together with decreases in B-cell lymphoma 2 (Bcl-2) levels were observed in MSG administration. Histopathological screening supported the biochemical and molecular findings. In contrast, co-treatment of rats with PCA resulted in remarkable enhancement of the antioxidant cellular capacity, suppression of inflammatory mediators, and apoptosis. These effects are possibly endorsed for activation of Nrf-2 and suppression of NF-kB signaling pathways. Collectively, addition of PCA counteracted MSG-induced hepatorenal injuries through modulation of oxidative, inflammatory and apoptotic alterations.
Collapse
Affiliation(s)
- Rami B Kassab
- Department of Zoology and Entomology, Helwan University, Cairo, 11795, Egypt
- Department of Biology, Al Baha University, Al Baha, Almakhwah, Saudi Arabia
| | - Abdulrahman Theyab
- Department of Laboratory Medicine, Security Forces Hospital, Mecca, Saudi Arabia
| | - Ali O Al-Ghamdy
- Department of Biology, Al Baha University, Al Baha, Almakhwah, Saudi Arabia
| | - Mohammad Algahtani
- Department of Laboratory Medicine, Security Forces Hospital, Mecca, Saudi Arabia
| | - Ahmad H Mufti
- Medical Genetics Department, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Khalaf F Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ehab M Abdella
- Zoology Department, Beni Suef University, Beni Suef, Egypt
- Biology Department, Al Baha University, Al Baha, Al Aqiq, Saudi Arabia
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Mansoura University, Mansoura, Egypt
| | - Mohamed M Omran
- Chemistry Department, Helwan University, Cairo, 11795, Egypt
| | - Maha S Lokman
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdul Aziz University, Alkharj, Saudi Arabia
| | - Amira A Bauomy
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass, 52719, Saudi Arabia
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| | - Roua S Baty
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Khalid E Hassan
- Department of Pathology, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Maha A Alshiekheid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Heba A Elmasry
- Department of Zoology and Entomology, Helwan University, Cairo, 11795, Egypt
| |
Collapse
|
5
|
Differential effects of sodium chloride and monosodium glutamate on kidney of adult and aging mice. Sci Rep 2021; 11:481. [PMID: 33436880 PMCID: PMC7804302 DOI: 10.1038/s41598-020-80048-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
Monosodium Glutamate (MSG) is used as flavour enhancer, with potential beneficial effects due to its nutritional value. Given the decline in kidney functions during aging, we investigated the impact of MSG voluntary intake on the kidney of male mice, aged 6 or 18 months. For 2 months, they freely consumed water (control group), sodium chloride (0.3% NaCl) or MSG (1% MSG) in addition to standard diet. Young animals consuming sodium chloride presented signs of proteinuria, hyperfiltration, enhanced expression and excretion of Aquaporin 2 and initial degenerative reactions suggestive of fibrosis, while MSG-consuming mice were similar to controls. In old mice, aging-related effects including proteinuria and increased renal corpuscle volume were observed in all groups. At an advanced age, MSG caused no adverse effects on the kidney compared to controls, despite the presence of a sodium moiety, similar to sodium chloride. These data show that prolonged MSG intake in mice has less impact on kidney compared to sodium chloride, that already in young animals induced some effects on kidney, possibly related to hypertension.
Collapse
|
6
|
Zanuzo KÉ, Guareschi ZM, Detogni AC, Huning LP, Rodrigues PF, Porto EM, Grassiolli S, Amorim JPA. Physical exercise associated with vitamin D chronic supplementation reduces kidney injury induced by monosodium glutamate. AN ACAD BRAS CIENC 2020; 92:e20201097. [PMID: 33331449 DOI: 10.1590/0001-3765202020201097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/04/2020] [Indexed: 12/20/2022] Open
Abstract
The aim was to evaluate the effects of chronic vitamin D (VD) supplementation associated with regular swimming over renal histomorphometric aspects in obese rats. Thirty Wistar male rats (5 days old) were used. Twenty four rats were given subcutaneous injections of monosodium glutamate (MSG; 4 g/kg), and six control rats were given an equimolar saline solution. At 21-days-old, the MSG-treated rats were randomly distributed among sedentary animals (S) and exercised (E, swimming; 3x/week). These groups were subdivided into groups orally supplemented with VD (12 μg/kg; 3x/week) or not supplemented (NS), totaling Five experimental groups (n = 6 rats/group): MSG, MSG-SVD, MSG-ENS, MSG-EVD and control groups. In MSG-obese rats, there was such as a decrease in the diameter of the, glomerular tuft, Bowman's capsule, Bowman's space areas, and renal cortical thickness, compared to the control group. In MSG-SVD, MSG-ENS, and MSG-EVD animals, there was an increase in the cortical thickness in relation to the MSG group. In MSG-ENS and MSG-EVD animals, there was a reduction of tubular degeneration in relation to the MSG group. We conclude that physical exercise associated with Vitamin D supplementation can prevent of renal injury, increasing the thickness of the renal cortex and decrease the tubular degeneration.
Collapse
Affiliation(s)
- KÉsia Zanuzo
- Programa de Pós-Graduação em Ciências Aplicadas a Saúde, Universidade Estaudual do Oeste do Paraná/UNIOESTE, Rodovia Vitório Traiano, Km 02, Contorno Leste, Água Branca, 85601-970 Francisco Beltrão, PR, Brazil
| | - ZoÉ M Guareschi
- Universidade Estadual do Oeste do Paraná/UNIOESTE, Centro de Ciências Biológicas e da Saúde, Laboratório de Endocrinologia e Fisiologia Metabólica, Rua Universitária, 2069, Universitário, 85819-110 Cascavel, PR, Brazil
| | - Anna Caroliny Detogni
- Universidade Estadual do Oeste do Paraná/UNIOESTE, Centro de Ciências Biológicas e da Saúde, Laboratório de Biologia Tecidual e da Reprodução, Rua Universitária, 2069, Universitário, 85819-110 Cascavel, PR, Brazil
| | - Luiz Pierre Huning
- Universidade Estadual do Oeste do Paraná/UNIOESTE, Centro de Ciências Biológicas e da Saúde, Laboratório de Endocrinologia e Fisiologia Metabólica, Rua Universitária, 2069, Universitário, 85819-110 Cascavel, PR, Brazil
| | - Patrick F Rodrigues
- Universidade Estadual do Oeste do Paraná/UNIOESTE, Centro de Ciências Biológicas e da Saúde, Laboratório de Endocrinologia e Fisiologia Metabólica, Rua Universitária, 2069, Universitário, 85819-110 Cascavel, PR, Brazil
| | - Elaine M Porto
- Universidade Estadual do Oeste do Paraná/UNIOESTE, Centro de Ciências Biológicas e da Saúde, Laboratório de Biologia Tecidual e da Reprodução, Rua Universitária, 2069, Universitário, 85819-110 Cascavel, PR, Brazil
| | - Sabrina Grassiolli
- Programa de Pós-Graduação em Ciências Aplicadas a Saúde, Universidade Estaudual do Oeste do Paraná/UNIOESTE, Rodovia Vitório Traiano, Km 02, Contorno Leste, Água Branca, 85601-970 Francisco Beltrão, PR, Brazil.,Universidade Estadual do Oeste do Paraná/UNIOESTE, Centro de Ciências Biológicas e da Saúde, Laboratório de Endocrinologia e Fisiologia Metabólica, Rua Universitária, 2069, Universitário, 85819-110 Cascavel, PR, Brazil
| | - JoÃo Paulo A Amorim
- Programa de Pós-Graduação em Ciências Aplicadas a Saúde, Universidade Estaudual do Oeste do Paraná/UNIOESTE, Rodovia Vitório Traiano, Km 02, Contorno Leste, Água Branca, 85601-970 Francisco Beltrão, PR, Brazil.,Universidade Estadual do Oeste do Paraná/UNIOESTE, Centro de Ciências Biológicas e da Saúde, Laboratório de Biologia Tecidual e da Reprodução, Rua Universitária, 2069, Universitário, 85819-110 Cascavel, PR, Brazil
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Total glutamate (Glu) intake is 5-20 g/day in adults and about 40 mg/kg in breast-fed infant. Glu intake is constituted by Glu from protein and free Glu from certain foods and flavor-enhancing additive. The admissible intake of free Glu additive is addressed. RECENT FINDING In the gut, Glu is actively metabolized by enterocytes and because of this metabolism, the systemic availability of ingested Glu remains relatively low. Human studies are preferred to assess the transfer in blood of dietary free Glu salts and their possible risks. When human data are not available, experimental animal models provide the basis to assess the risks to humans but toxicity studies in rodents remain for a part controversial. A No Observable Adverse Effect Level (NOAEL) in rodent of 3200 mg/kg/day and an uncertainty factor of 100 lead to an acceptable daily intake (ADI) of 30 mg/kg/day for free Glu salts used as additives, whereas a NOAEL higher than 6000 mg/kg/day and an uncertainty factor of 25 leads to an ADI of 240 mg/kg/day for free Glu salts. SUMMARY Current discussions indicate an ADI from 30 to 240 mg/kg/day depending on the chosen NOAEL in animal model and compound-specific uncertainty factor (from 25 to 100).
Collapse
Affiliation(s)
- Daniel Tomé
- UMR PNCA, INRA, AgroParisTech, Université Paris-Saclay, Paris, France
| |
Collapse
|
8
|
Selenofuranoside improves long-term memory deficits in rats after exposure to monosodium glutamate: Involvement of Na +, K +-ATPase activity. Physiol Behav 2017; 184:27-33. [PMID: 29097195 DOI: 10.1016/j.physbeh.2017.10.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 10/20/2017] [Accepted: 10/27/2017] [Indexed: 11/21/2022]
Abstract
Monosodium glutamate (MSG) is the most widely used additive in the food industry; however, some adverse effects of this additive, including functional, learning, and behavioral alterations, have been observed in experimental animals and humans. Studies have shown learning and memory impairment in adult animals exposed to MSG. However, studies relating exposure to MSG to acetylcholinesterase (AChE) and Na+, K+-ATPase activities and memory damage are still scarce in the literature. The aim of the present study was to assess the possible protective effects of selenofuranoside, an organoselenium compound, against the impairment of long-term memory, Na+, K+-ATPase and AChE activities, and oxidative stress after MSG exposure in rats. MSG (2g/kg) and/or selenofuranoside (5mg/kg) were administered orally to 5-week-old male Wistar rats for 10days. On the 10th day, after the administration of last dose of the drug(s), the rats were subjected to behavioral tests: the open-field test and step-down passive avoidance task (SDPA). The blood, liver, kidney, cortex, and hippocampus were removed to determine the oxidative stress parameters, such as the levels of reactive species, lipid peroxidation, antioxidant enzyme activities, and endogenous nonenzymatic antioxidant content. Furthermore, the cortex and hippocampus were used to determine the Na+, K+-ATPase and AChE activities. The results demonstrate that the administration of MSG led to long-term memory impairment, as shown in the SDPA task, and also hippocampal and cortical Na+, K+-ATPase inhibition. There were no alterations in the AChE activity and oxidative stress parameters. Treatment with selenofuranoside attenuated memory impairment associated with MSG exposure by improving the hippocampal Na+, K+-ATPase activity.
Collapse
|