1
|
Bobula B, Bąk J, Kania A, Siwiec M, Kiełbiński M, Tokarski K, Pałucha-Poniewiera A, Hess G. Maternal fluoxetine impairs synaptic transmission and plasticity in the medial prefrontal cortex and alters the structure and function of dorsal raphe nucleus neurons in offspring mice. Pharmacol Biochem Behav 2024; 244:173849. [PMID: 39142357 DOI: 10.1016/j.pbb.2024.173849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Selective serotonin (5-HT) reuptake inhibitors (SSRIs) are commonly prescribed to women during pregnancy and breastfeeding despite posing a risk of adverse cognitive outcomes and affective disorders for the child. The consequences of SSRI-induced excess of 5-HT during development for the brain neuromodulatory 5-HT system remain largely unexplored. In this study, an SSRI - fluoxetine (FLX) - was administered to C57BL/6 J mouse dams during pregnancy and lactation to assess its effects on the offspring. We found that maternal FLX decreased field potentials, impaired long-term potentiation, facilitated long-term depression and tended to increase the density of 5-HTergic fibers in the medial prefrontal cortex (mPFC) of female but not male adolescent offspring. These effects were accompanied by deteriorated performance in the temporal order memory task and reduced sucrose preference with no change in marble burying behavior in FLX-exposed female offspring. We also found that maternal FLX reduced the axodendritic tree complexity of 5-HT dorsal raphe nucleus (DRN) neurons in female but not male offspring, with no changes in the excitability of DRN neurons of either sex. While no effects of maternal FLX on inhibitory postsynaptic currents (sIPSCs) in DRN neurons were found, we observed a significant influence of FLX exposure on kinetics of spontaneous excitatory postsynaptic currents (sEPSCs) in DRN neurons. Finally, we report that no changes in field potentials and synaptic plasticity were evident in the mPFC of the offspring after maternal exposure during pregnancy and lactation to a new antidepressant, vortioxetine. These findings show that in contrast to the mPFC, long-term consequences of maternal FLX exposure on the structure and function of DRN 5-HT neurons are mild and suggest a sex-dependent, distinct sensitivity of cortical and brainstem neurons to FLX exposure in early life. Vortioxetine appears to exert fewer side effects with regards to the mPFC when compared with FLX.
Collapse
Affiliation(s)
- Bartosz Bobula
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland.
| | - Joanna Bąk
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Agnieszka Kania
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland.
| | - Marcin Siwiec
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland.
| | - Michał Kiełbiński
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland.
| | - Krzysztof Tokarski
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland.
| | - Agnieszka Pałucha-Poniewiera
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland.
| | - Grzegorz Hess
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland.
| |
Collapse
|
2
|
Sun Y, Chebolu S, Darmani NA. Ultra-low doses of methamphetamine suppress 5-hydroxytryptophan-induced head-twitch response in mice during aging. Behav Pharmacol 2024; 35:367-377. [PMID: 39206775 DOI: 10.1097/fbp.0000000000000789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The head-twitch response (HTR) in mice is considered a behavioral assay for activation of 5-HT 2A receptors in rodents. It can be evoked by direct-acting 5-HT 2A receptor agonists such as (±)-2,5-dimethoxy-4-iodoamphetamine, 5-hydroxytryptamine precursors [e.g. 5-hydroxytryptophan (5-HTP)], and selective 5-hydroxytryptamine releasers (e.g. d -fenfluramine). The nonselective monoamine releaser methamphetamine by itself does not produce the HTR but can suppress both (±)-2,5-dimethoxy-4-iodoamphetamine- and d -fenfluramine-evoked HTRs across ages via concomitant activation of the inhibitory serotonergic 5-HT 1A or adrenergic α 2 receptors. Currently, we investigated: (1) the ontogenic development of 5-HTP-induced HTR in 20-, 30-, and 60-day-old mice; (2) whether pretreatment with ultra-low doses of methamphetamine (0.1, 0.25, and 0.5 mg/kg, intraperitoneally) can suppress the frequency of 5-HTP-induced HTR at different ages; and (3) whether the inhibitory serotonergic 5-HT 1A or adrenergic α 2 receptors may account for the potential inhibitory effect of methamphetamine on 5-HTP-induced HTR. In the presence of a peripheral decarboxylase inhibitor (carbidopa), 5-HTP produced maximal frequency of HTRs in 20-day-old mice which rapidly subsided during aging. Methamphetamine dose-dependently suppressed 5-HTP-evoked HTR in 20- and 30-day-old mice. The selective 5-HT 1A -receptor antagonist WAY 100635 reversed the inhibitory effect of methamphetamine on 5-HTP-induced HTR in 30-day-old mice, whereas the selective adrenergic α 2 -receptor antagonist RS 79948 failed to reverse methamphetamine's inhibition at any tested age. These findings suggest an ontogenic rationale for methamphetamine's inhibitory 5-HT 1A receptor component of action in its suppressive effect on 5-HTP-induced HTR during development which is not maximally active at a very early age.
Collapse
MESH Headings
- Animals
- Methamphetamine/pharmacology
- Mice
- Aging/drug effects
- 5-Hydroxytryptophan/pharmacology
- Male
- Dose-Response Relationship, Drug
- Head Movements/drug effects
- Mice, Inbred C57BL
- Receptors, Adrenergic, alpha-2/metabolism
- Receptors, Adrenergic, alpha-2/drug effects
- Central Nervous System Stimulants/pharmacology
- Receptor, Serotonin, 5-HT1A/drug effects
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptor, Serotonin, 5-HT2A/drug effects
- Receptor, Serotonin, 5-HT2A/metabolism
Collapse
Affiliation(s)
- Yina Sun
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | | | | |
Collapse
|
3
|
Bobula B, Kusek M, Hess G. The 5-HT 7 receptor antagonist SB 269970 ameliorates maternal fluoxetine exposure-induced impairment of synaptic plasticity in the prefrontal cortex of the offspring female mice. Pharmacol Biochem Behav 2024; 240:173779. [PMID: 38688436 DOI: 10.1016/j.pbb.2024.173779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
The use of a selective serotonin reuptake inhibitor fluoxetine in depression during pregnancy and the postpartum period might increase the risk of affective disorders and cognitive symptoms in progeny. In animal models, maternal exposure to fluoxetine throughout gestation and lactation negatively affects the behavior of the offspring. Little is known about the effects of maternal fluoxetine on synaptic transmission and plasticity in the offspring cerebral cortex. During pregnancy and lactation C57BL/6J mouse dams received fluoxetine (7.5 mg/kg/day) with drinking water. Female offspring mice received intraperitoneal injections of the selective 5-HT7 receptor antagonist SB 269970 (2.5 mg/kg) for 7 days. Whole-cell and field potential electrophysiological recordings were performed in the medial prefrontal cortex (mPFC) ex vivo brain slices. Perinatal exposure to fluoxetine resulted in decreased field potentials and impaired long-term potentiation (LTP) in layer II/III of the mPFC of female young adult offspring. Neither the intrinsic excitability nor spontaneous excitatory postsynaptic currents were altered in layer II/III mPFC pyramidal neurons. In mPFC slices obtained from fluoxetine-treated mice that were administered SB 269970 both field potentials and LTP magnitude were restored and did not differ from controls. Treatment of fluoxetine-exposed mice with a selective 5-HT7 receptor antagonist, SB 269970, normalizes synaptic transmission and restores the potential for plasticity in the mPFC of mice exposed in utero and postnatally to fluoxetine.
Collapse
Affiliation(s)
- Bartosz Bobula
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.
| | - Magdalena Kusek
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.
| | - Grzegorz Hess
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.
| |
Collapse
|
4
|
Esaki H, Sasaki Y, Nishitani N, Kamada H, Mukai S, Ohshima Y, Nakada S, Ni X, Deyama S, Kaneda K. Role of 5-HT 1A receptors in the basolateral amygdala on 3,4-methylenedioxymethamphetamine-induced prosocial effects in mice. Eur J Pharmacol 2023; 946:175653. [PMID: 36907260 DOI: 10.1016/j.ejphar.2023.175653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/14/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
3,4-methylenedioxymethamphetamine (MDMA), a recreational drug, induces euphoric sensations and psychosocial effects, such as increased sociability and empathy. Serotonin, also called 5-hydroxytryptamine (5-HT), is a neurotransmitter that has been associated with MDMA-induced prosocial effects. However, the detailed neural mechanisms remain elusive. In the present study, we investigated whether 5-HT neurotransmission in the medial prefrontal cortex (mPFC) and the basolateral nucleus of amygdala (BLA) is involved in MDMA-induced prosocial effects using the social approach test in male ICR mice. Systemic administration of (S)-citalopram, a selective 5-HT transporter inhibitor, before administration of MDMA failed to suppress MDMA-induced prosocial effects. On the other hand, systemic administration of the 5-HT1A receptor antagonist WAY100635, but not 5-HT1B, 5-HT2A, 5-HT2C, or 5-HT4 receptor antagonist, significantly suppressed MDMA-induced prosocial effects. Furthermore, local administration of WAY100635 into the BLA but not into the mPFC suppressed MDMA-induced prosocial effects. Consistent with this finding, intra-BLA MDMA administration significantly increased sociability. Together, these results suggest that MDMA induces prosocial effects through the stimulation of 5-HT1A receptors in the BLA.
Collapse
Affiliation(s)
- Hirohito Esaki
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Yuki Sasaki
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Naoya Nishitani
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Hikari Kamada
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Satoko Mukai
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Yoshitaka Ohshima
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Sao Nakada
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Xiyan Ni
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
5
|
Che YX, Jin XY, Xiao RH, Zhang M, Ma XH, Guo F, Li Y. Antidepressant-like effects of cinnamamide derivative M2 via D 2 receptors in the mouse medial prefrontal cortex. Acta Pharmacol Sin 2022; 43:2267-2275. [PMID: 35079131 PMCID: PMC9433382 DOI: 10.1038/s41401-021-00854-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/27/2021] [Indexed: 11/08/2022] Open
Abstract
Major depressive disorder is a global mental illness associated with severe mortality and disability. The dopaminergic system is involved in both the etiology and therapeutics of depression. Distinct functions of dopamine D1 and D2 receptor subtypes have attracted considerable research interest, and their roles in the pathogenesis of depression and interaction with antidepressants need to be comprehensively elucidated. Herein, we investigated the antidepressant effects of a candidate antidepressant from a cinnamamide derivative, M2, and examined underlying neural mechanisms. We observed that a single dose of M2 (30 mg/kg, ip) produced rapid antidepressant-like effects in mice subjected to the forced swim and tail suspension tests. Using whole-cell recordings in mouse coronal brain slices, we found that application of M2 (10-150 μM) concentration-dependently increased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) of the pyramidal neurons in the medial prefrontal cortex (mPFC). Furthermore, M2-induced enhancement of sEPSC frequency was abolished by sulpiride (10 µM), a dopamine D2 receptor antagonist, but not by the dopamine receptor D1 antagonist, SCH23390 (10 μM). In addition, M2 administration significantly increased expression levels of synaptogenesis-related proteins, including p-mTOR and p-TrkB, in the mPFC at 30 min, and increased postsynaptic protein PSD-95 at 24 h. Our results demonstrated that M2 produces rapid antidepressant actions through a novel mechanism via dopamine D2 receptor-mediated enhancement of mPFC neurotransmission.
Collapse
Affiliation(s)
- Yan-Xin Che
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiao-Yan Jin
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Rong-Hua Xiao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ming Zhang
- CAS Key Laboratory of Receptor Research, Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Hui Ma
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China
| | - Fei Guo
- CAS Key Laboratory of Receptor Research, Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yang Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- CAS Key Laboratory of Receptor Research, Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Sun Y, Chebolu S, Henry D, Lankireddy S, Darmani NA. An ontogenic study of receptor mechanisms by which acute administration of low-doses of methamphetamine suppresses DOI-induced 5-HT 2A-receptor mediated head-twitch response in mice. BMC Neurosci 2022; 23:2. [PMID: 34983399 PMCID: PMC8725525 DOI: 10.1186/s12868-021-00686-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 12/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Methamphetamine (MA) is a non-selective monoamine releaser and thus releases serotonin (5-HT), norepinephrine (NE) and dopamine (DA) from corresponding nerve terminals into synapses. DOI ((±)-2, 5-dimethoxy-4-iodoamphetamine) is a direct-acting serotonergic 5-HT2A/C receptor agonist and induces the head-twitch response (HTR) via stimulation of 5-HT2A receptor in mice. While more selective serotonin releasers such as d-fenfluramine evoke the HTR, monoamine reuptake blockers (e.g., cocaine) suppress the DOI-evoked HTR via indirect stimulation of serotonergic 5-HT1A- and adrenergic ɑ2-receptors. Since the induction of HTR by DOI is age-dependent, we investigated whether: (1) during development MA can evoke the HTR by itself, and (2) acute pretreatment with either the selective 5-HT2A receptor antagonist EMD 281014 or low-doses of MA can: (i) modulate the DOI-induced HTR in mice across postnatal days 20, 30 and 60, and (ii) alter the DOI-induced c-fos expression in mice prefrontal cortex (PFC). To further explore the possible modulatory effect of MA on DOI-induced HTR, we investigated whether blockade of inhibitory serotonergic 5-HT1A- or adrenergic ɑ2-receptors by corresponding selective antagonists (WAY 100635 or RS 79948, respectively), can prevent the effect of MA on DOI-induced HTR during aging. RESULTS Although neither EMD 281014 nor MA by themselves could evoke the HTR, acute pretreatment with either EMD 281014 (0.01, 0.05 and 0.1 mg/kg, i.p.) or MA (1, 2.5, 5 mg/kg, i.p.), dose-dependently suppressed the DOI-induced HTR across ages. While WAY 100635 significantly reversed the inhibitory effect of MA in 20- and 30-day old mice, RS 79948 failed to significantly counter MA's inhibitory effect. Moreover, DOI significantly increased c-fos expressions in several PFC regions. EMD 281014 prevented the DOI-induced increases in c-fos expression. Despite the inhibitory effect of MA on DOI-induced HTR, MA alone or in combination with DOI, significantly increased c-fos expression in several regions of the PFC. CONCLUSION The suppressive effect of MA on the DOI-evoked HTR appears to be mainly due to functional interactions between the HTR-inducing 5-HT2A receptor and the inhibitory 5-HT1A receptor. The MA-induced increase in c-fos expression in different PFC regions may be due to MA-evoked increases in synaptic concentrations of 5-HT, NE and/or DA.
Collapse
Affiliation(s)
- Yina Sun
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA, 91766, USA
| | - Seetha Chebolu
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA, 91766, USA
| | - Denise Henry
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA, 91766, USA
| | - Sandeep Lankireddy
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA, 91766, USA
| | - Nissar A Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA, 91766, USA.
| |
Collapse
|
7
|
Asymmetric effective connectivity between primate anterior cingulate and lateral prefrontal cortex revealed by electrical microstimulation. Brain Struct Funct 2018; 224:779-793. [DOI: 10.1007/s00429-018-1806-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 11/27/2018] [Indexed: 10/27/2022]
|
8
|
Effects of monoamines on the intrinsic excitability of lateral orbitofrontal cortex neurons in alcohol-dependent and non-dependent female mice. Neuropharmacology 2018; 137:1-12. [PMID: 29689260 DOI: 10.1016/j.neuropharm.2018.04.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/10/2018] [Accepted: 04/19/2018] [Indexed: 11/20/2022]
Abstract
Changes in brain reward and control systems of frontal cortical areas including the orbitofrontal cortex (OFC) are associated with alcohol use disorders (AUD). The OFC is extensively innervated by monoamines, and drugs that target monoamine receptors have been used to treat a number of neuropsychiatric diseases, including AUDs. Recent findings from this laboratory demonstrate that D2, α2-adrenergic and 5HT1A receptors all decrease the intrinsic excitability of lateral OFC (lOFC) neurons in naïve male mice and that this effect is lost in mice exposed to repeated cycles of chronic intermittent ethanol (CIE) vapor. As biological sex differences may influence an individual's response to alcohol and contribute to the propensity to engage in addictive behaviors, we examined whether monoamines have similar effects on lOFC neurons in control and CIE exposed female mice. Dopamine, norepinephrine and serotonin all decreased spiking of lOFC neurons in naïve females via activation of Giα-coupled D2, α2-adrenergic and 5HT1A receptors, respectively. Firing was also inhibited by the direct GIRK channel activator ML297, while blocking these channels with barium eliminated the inhibitory actions of monoamines. Following CIE treatment, evoked spiking of lOFC neurons from female mice was significantly enhanced and monoamines and ML297 no longer inhibited firing. Unlike in male mice, the enhanced firing of neurons from CIE exposed female mice was not associated with changes in the after-hyperpolarization and the small-conductance potassium channel blocker apamin had no effect on current-evoked tail currents from either control or CIE exposed female mice. These results suggest that while CIE exposure alters monoamine regulation of OFC neuron firing similarly in males and female mice, there are sex-dependent differences in processes that regulate the intrinsic excitability of these neurons.
Collapse
|
9
|
Real JI, Simões AP, Cunha RA, Ferreira SG, Rial D. Adenosine A 2A receptors modulate the dopamine D 2 receptor-mediated inhibition of synaptic transmission in the mouse prefrontal cortex. Eur J Neurosci 2018; 47:1127-1134. [PMID: 29570875 DOI: 10.1111/ejn.13912] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 01/20/2023]
Abstract
Prefrontal cortex (PFC) circuits are modulated by dopamine acting on D1 - and D2 -like receptors, which are pharmacologically exploited to manage neuropsychiatric conditions. Adenosine A2A receptors (A2A R) also control PFC-related responses and A2A R antagonists are potential anti-psychotic drugs. As tight antagonistic A2A R-D2 R and synergistic A2A R-D1 R interactions occur in other brain regions, we now investigated the crosstalk between A2A R and D1 /D2 R controlling synaptic transmission between layers II/III and V in mouse PFC coronal slices. Dopamine decreased synaptic transmission, a presynaptic effect based on the parallel increase in paired-pulse responses. Dopamine inhibition was prevented by the D2 R-like antagonist sulpiride but not by the D1 R antagonist SCH23390 and was mimicked by the D2 R agonist sumanirole, but not by the agonists of either D4 R (A-412997) or D3 R (PD128907). Dopamine inhibition was prevented by the A2A R antagonist, SCH58261, and attenuated in A2A R knockout mice. Accordingly, triple-labelling immunocytochemistry experiments revealed the co-localization of A2A R and D2 R immunoreactivity in glutamatergic (vGluT1-positive) nerve terminals of the PFC. This reported positive A2A R-D2 R interaction controlling PFC synaptic transmission provides a mechanistic justification for the anti-psychotic potential of A2A R antagonists.
Collapse
Affiliation(s)
- Joana I Real
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Polo I, Rua Larga, 3004-504, Coimbra, Portugal
| | - Ana Patrícia Simões
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Polo I, Rua Larga, 3004-504, Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Polo I, Rua Larga, 3004-504, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Samira G Ferreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Polo I, Rua Larga, 3004-504, Coimbra, Portugal
| | - Daniel Rial
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Polo I, Rua Larga, 3004-504, Coimbra, Portugal
| |
Collapse
|
10
|
Longo A, Fadda M, Brasso C, Mele P, Palanza P, Nanavaty I, Bertocchi I, Oberto A, Eva C. Conditional inactivation of Npy1r gene in mice induces behavioural inflexibility and orbitofrontal cortex hyperactivity that are reversed by escitalopram. Neuropharmacology 2018; 133:12-22. [PMID: 29353053 DOI: 10.1016/j.neuropharm.2018.01.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 01/09/2018] [Accepted: 01/13/2018] [Indexed: 10/18/2022]
Abstract
Cognitive flexibility is the ability to rapidly adapt established patterns of behaviour in the face of changing circumstance and depends critically on the orbitofrontal cortex (OFC). Impaired flexibility also results from altered serotonin transmission in the OFC. The Y1 (Y1R) and Y5 (Y5R) receptors for neuropeptide Y (NPY) colocalize in several brain regions and have overlapping functions in regulating cognition and emotional behaviour. The targeted disruption of gene encoding Y1R (Npy1r gene) in Y5R containing neurons (Npy1rY5R-/- mice) increases anxiety-like behaviour and spatial reference memory. Here we used the same conditional system to analyse whether the coordinated expression of the Y1R and Y5R might be required for behavioural flexibility in reversal learning tasks, OFC serotoninergic tone and OFC neural activity, as detected by immunohistochemical quantification of the immediate-early gene, c-Fos. In addition, we investigated whether the acute treatment of Npy1rY5R-/- mice with the selective serotonin reuptake inhibitor escitalopram affected behavioural flexibility and OFC c-Fos expression. Npy1rY5R-/- male mice exhibit an impairment in performing the reversal task of the Morris water maze and the water T-maze but normal spatial learning, working memory and sociability, compared to their control siblings. Furthermore, Npy1rY5R-/- male mice display decreased 5-hydroxytriptamine (5-HT) positive fibres and increased baseline neural activity in OFC. Importantly, escitalopram normalizes OFC neural activity and restores behavioural flexibility of Npy1rY5R-/- male mice. These findings suggest that the inactivation of Y1R in Y5R containing neurons increases pyramidal neuron activity and dysregulates serotoninergic tone in OFC, whereby contributing to reversal learning impairment.
Collapse
Affiliation(s)
- Angela Longo
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, Regione Gonzole, 10, 10043, Orbassano, Turin, Italy; Department of Neuroscience, University of Turin, C.so Massimo d'Azeglio 52, 10126 Turin, Italy
| | - Melissa Fadda
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, Regione Gonzole, 10, 10043, Orbassano, Turin, Italy; Department of Neuroscience, University of Turin, C.so Massimo d'Azeglio 52, 10126 Turin, Italy
| | - Claudio Brasso
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, Regione Gonzole, 10, 10043, Orbassano, Turin, Italy; Department of Neuroscience, University of Turin, C.so Massimo d'Azeglio 52, 10126 Turin, Italy
| | - Paolo Mele
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, Regione Gonzole, 10, 10043, Orbassano, Turin, Italy; Department of Neuroscience, University of Turin, C.so Massimo d'Azeglio 52, 10126 Turin, Italy
| | - Paola Palanza
- Department of Medicine - Neuroscience Unit, University of Parma, Parma, Italy
| | - Ishira Nanavaty
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, Regione Gonzole, 10, 10043, Orbassano, Turin, Italy; Department of Neuroscience, University of Turin, C.so Massimo d'Azeglio 52, 10126 Turin, Italy
| | - Ilaria Bertocchi
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, Regione Gonzole, 10, 10043, Orbassano, Turin, Italy; Department of Neuroscience, University of Turin, C.so Massimo d'Azeglio 52, 10126 Turin, Italy
| | - Alessandra Oberto
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, Regione Gonzole, 10, 10043, Orbassano, Turin, Italy; Neuroscience Institute of Turin, Italy; Department of Neuroscience, University of Turin, C.so Massimo d'Azeglio 52, 10126 Turin, Italy
| | - Carola Eva
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, Regione Gonzole, 10, 10043, Orbassano, Turin, Italy; Neuroscience Institute of Turin, Italy; Department of Neuroscience, University of Turin, C.so Massimo d'Azeglio 52, 10126 Turin, Italy.
| |
Collapse
|
11
|
Nimitvilai S, Lopez MF, Mulholland PJ, Woodward JJ. Ethanol Dependence Abolishes Monoamine and GIRK (Kir3) Channel Inhibition of Orbitofrontal Cortex Excitability. Neuropsychopharmacology 2017; 42:1800-1812. [PMID: 28139680 PMCID: PMC5520780 DOI: 10.1038/npp.2017.22] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 01/18/2017] [Accepted: 01/21/2017] [Indexed: 01/03/2023]
Abstract
Alcohol abuse disorders are associated with dysfunction of frontal cortical areas including the orbitofrontal cortex (OFC). The OFC is extensively innervated by monoamines, and drugs that target monoamine receptors have been used to treat a number of neuropsychiatric diseases, including alcoholism. However, little is known regarding how monoamines affect OFC neuron excitability or whether this modulation is altered by chronic exposure to ethanol. In this study, we examined the effect of dopamine, norepinephrine, and serotonin on lOFC neuronal excitability in naive mice and in those exposed to chronic intermittent ethanol (CIE) treatment. All three monoamines decreased current-evoked spike firing of lOFC neurons and this action required Giα-coupled D2, α2-adrenergic, and 5HT1A receptors, respectively. Inhibition of firing by dopamine or the D2 agonist quinpirole, but not norepinephrine or serotonin, was prevented by the GABAA receptor antagonist picrotoxin. GABA-mediated tonic current was enhanced by dopamine or the D1 agonist SKF81297 but not quinpirole, whereas the amplitude of spontaneous IPSCs was increased by quinpirole but not dopamine. Spiking was also inhibited by the direct GIRK channel activator ML297, whereas blocking these channels with barium increased firing and eliminated the inhibitory actions of monoamines. In the presence of ML297 or the G-protein blocker GDP-β-S, DA induced a further decrease in spike firing, suggesting the involvement of a non-GIRK channel mechanism. In neurons from CIE-treated mice, spike frequency was nearly doubled and inhibition of firing by monoamines or ML297 was lost. These effects occurred in the absence of significant changes in expression of Gi/o or GIRK channel proteins. Together, these findings show that monoamines are important modulators of lOFC excitability and suggest that disruption of this process could contribute to various deficits associated with alcohol dependence.
Collapse
Affiliation(s)
- Sudarat Nimitvilai
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Marcelo F Lopez
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Patrick J Mulholland
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA,Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - John J Woodward
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA,Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA,Department of Neuroscience, Medical University of South Carolina, 67 President Street, IOP456N, Charleston, SC 29425, USA, Tel: 843 792 5225, Fax: 843 792 7353, E-mail:
| |
Collapse
|
12
|
Sadacca BF, Wikenheiser AM, Schoenbaum G. Toward a theoretical role for tonic norepinephrine in the orbitofrontal cortex in facilitating flexible learning. Neuroscience 2016; 345:124-129. [PMID: 27102419 DOI: 10.1016/j.neuroscience.2016.04.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 04/08/2016] [Accepted: 04/11/2016] [Indexed: 10/21/2022]
Abstract
To adaptively respond in a complex, changing world, animals need to flexibly update their understanding of the world when their expectations are violated. Though several brain regions in rodents and primates have been implicated in aspects of this updating, current models of orbitofrontal cortex (OFC) and norepinephrine neurons of the locus coeruleus (LC-NE) suggest that each plays a role in responding to environmental change, where the OFC allows updating of prior learning to occur without overwriting or unlearning one's previous understanding of the world that changed, while elevated tonic NE allows for increased flexibility in behavior that tracks an animal's uncertainty. In light of recent studies highlighting a specific LC-NE projection to the OFC, in this review we discuss current models of OFC and NE function, and their potential synergy in the updating of associations following environmental change.
Collapse
Affiliation(s)
- Brian F Sadacca
- Intramural Research Program of the National Institute on Drug Abuse, NIH, United States.
| | - Andrew M Wikenheiser
- Intramural Research Program of the National Institute on Drug Abuse, NIH, United States
| | - Geoffrey Schoenbaum
- Intramural Research Program of the National Institute on Drug Abuse, NIH, United States; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, United States; Department of Neuroscience, Johns Hopkins School of Medicine, United States.
| |
Collapse
|