1
|
Kucuker MU, Almorsy AG, Sonmez AI, Ligezka AN, Doruk Camsari D, Lewis CP, Croarkin PE. A Systematic Review of Neuromodulation Treatment Effects on Suicidality. Front Hum Neurosci 2021; 15:660926. [PMID: 34248523 PMCID: PMC8267816 DOI: 10.3389/fnhum.2021.660926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022] Open
Abstract
Introduction: Neuromodulation is an important group of therapeutic modalities for neuropsychiatric disorders. Prior studies have focused on efficacy and adverse events associated with neuromodulation. Less is known regarding the influence of neuromodulation treatments on suicidality. This systematic review sought to examine the effects of various neuromodulation techniques on suicidality. Methods: A systematic review of the literature from 1940 to 2020 following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guideline was conducted. Any reported suicide-related outcome, including suicidal ideation, suicide intent, suicide attempt, completed suicide in reports were considered as a putative measure of treatment effect on suicidality. Results: The review identified 129 relevant studies. An exploratory analysis of a randomized controlled trial comparing the effects of sertraline and transcranial direct-current stimulation (tDCS) for treating depression reported a decrease in suicidal ideation favoring tDCS vs. placebo and tDCS combined with sertraline vs. placebo. Several studies reported an association between repetitive transcranial magnetic stimulation and improvements in suicidal ideation. In 12 of the studies, suicidality was the primary outcome, ten of which showed a significant improvement in suicidal ideation. Electroconvulsive therapy (ECT) and magnetic seizure therapy was also shown to be associated with lower suicidal ideation and completed suicide rates. There were 11 studies which suicidality was the primary outcome and seven of these showed an improvement in suicidal ideation or suicide intent and fewer suicide attempts or completed suicides in patients treated with ECT. There was limited literature focused on the potential protective effect of vagal nerve stimulation with respect to suicidal ideation. Data were mixed regarding the potential effects of deep brain stimulation on suicidality. Conclusions: Future prospective studies of neuromodulation that focus on the primary outcome of suicidality are urgently needed. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=125599, identifier: CRD42019125599.
Collapse
Affiliation(s)
- Mehmet Utku Kucuker
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Ammar G. Almorsy
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Ayse Irem Sonmez
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Anna N. Ligezka
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, United States
| | - Deniz Doruk Camsari
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Charles P. Lewis
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Paul E. Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
2
|
Lai CH. Fronto-limbic neuroimaging biomarkers for diagnosis and prediction of treatment responses in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2021; 107:110234. [PMID: 33370569 DOI: 10.1016/j.pnpbp.2020.110234] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/02/2020] [Accepted: 12/21/2020] [Indexed: 12/23/2022]
Abstract
The neuroimaging is an important tool for understanding the biomarkers and predicting treatment responses in major depressive disorder (MDD). The potential biomarkers and prediction of treatment response in MDD will be addressed in the review article. The brain regions of cognitive control and emotion regulation, such as the frontal and limbic regions, might represent the potential targets for MDD biomarkers. The potential targets of frontal lobes might include anterior cingulate cortex (ACC), dorsolateral prefrontal cortex (DLPFC) and orbitofrontal cortex (OFC). For the limbic system, hippocampus and amygdala might be the potentially promising targets for MDD. The potential targets of fronto-limbic regions have been found in the studies of several major neuroimaging modalities, such as the magnetic resonance imaging, near-infrared spectroscopy, electroencephalography, positron emission tomography, and single-photon emission computed tomography. Additional regions, such as brainstem and midbrain, might also play a part in the MDD biomarkers. For the prediction of treatment response, the gray matter volumes, white matter tracts, functional representations and receptor bindings of ACC, DLPFC, OFC, amygdala, and hippocampus might play a role in the prediction of antidepressant responses in MDD. For the response prediction of psychotherapies, the fronto-limbic, reward regions, and insula will be the potential targets. For the repetitive transcranial magnetic stimulation, the DLPFC, ACC, limbic, and visuospatial regions might represent the predictive targets for treatment. The neuroimaging targets of MDD might be focused in the fronto-limbic regions. However, the neuroimaging targets for the prediction of treatment responses might be inconclusive and beyond the fronto-limbic regions.
Collapse
Affiliation(s)
- Chien-Han Lai
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan; PhD Psychiatry & Neuroscience Clinic, Taoyuan, Taiwan.
| |
Collapse
|
3
|
Park MJ, Kim H, Kim EJ, Yook V, Chung IW, Lee SM, Jeon HJ. Recent Updates on Electro-Convulsive Therapy in Patients with Depression. Psychiatry Investig 2021; 18:1-10. [PMID: 33321557 PMCID: PMC7897863 DOI: 10.30773/pi.2020.0350] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/03/2020] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Electro-convulsive therapy (ECT) has been established as a treatment modality for patients with treatment-resistant depression and with some specific subtypes of depression. This narrative review intends to provide psychiatrists with the latest findings on the use of ECT in depression, devided into total eight sub-topics. METHODS We searched PubMed for English-language articles using combined keywords and tried to analyze journals published from 1995-2020. RESULTS Pharmacotherapy such as antidepressants or maintenance ECT is more effective than a placebo as prevention of recurrence after ECT. The use of ECT in treatment-resistant depression, depressed patients with suicidal risks, elderly depression, bipolar depression, psychotic depression, and depression during pregnancy or postpartum have therapeutic benefits. As possible mechanisms of ECT, the role of neurotransmitters such as serotonin, dopamine, gamma-aminobutyric acid (GABA), and other findings in the field of neurophysiology, neuro-immunology, and neurogenesis are also supported. CONCLUSION ECT is evolving toward reducing cognitive side effects and maximizing therapeutic effects. If robust evidence for ECT through randomized controlled studies are more established and the mechanism of ECT gets further clarified, the scope of its use in the treatment of depression will be more expanded in the future.
Collapse
Affiliation(s)
- Mi Jin Park
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyewon Kim
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Eun Ji Kim
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Vidal Yook
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - In Won Chung
- Department of Psychiatry and Electroconvulsive Therapy Center, Dongguk University International Hospital, Goyang, Republic of Korea
| | - Sang Min Lee
- Department of Psychiatry, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hong Jin Jeon
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Health Sciences & Technology, Department of Medical Device Management & Research, and Department of Clinical Research Design & Evaluation, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Horrillo I, Ortega JE, Diez-Alarcia R, Urigüen L, Meana JJ. Chronic fluoxetine reverses the effects of chronic corticosterone treatment on α 2-adrenoceptors in the rat frontal cortex but not locus coeruleus. Neuropharmacology 2019; 158:107731. [PMID: 31376424 DOI: 10.1016/j.neuropharm.2019.107731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 01/27/2023]
Abstract
Disruption of the hypothalamic-pituitary-adrenal axis is an established finding in patients with anxiety and/or depression. Chronic corticosterone administration in animals has been proposed as a model for the study of these stress-related disorders and the antidepressant action. Alterations of the central noradrenergic system and specifically of inhibitory α2-adrenoceptors seem to be part of the pathophysiology of depression and contribute to the antidepressant activity. The present study evaluates in male rats the effect of chronic corticosterone treatment during 35 days (16-20 mg kg-1 day-1) on the sensitivity of α2-adrenoceptors expressed in the somatodendritic and terminal noradrenergic areas locus coeruleus (LC) and prefrontal cortex (PFC), respectively. Further, the effect of chronic fluoxetine treatment (5 mg kg-1, i.p., since the 15th day) on the sensitivity of α2-adrenoceptors was examined under control conditions and in corticosterone-treated rats. The α2-adrenoceptor functionality was analysed in vitro by agonist-mediated [35S]GTPγS binding stimulation and in vivo through the modulation of noradrenaline (NA) release evaluated by dual-probe microdialysis. The concentration-effect curves of the [35S]GTPγS binding stimulation by the agonist UK14304 (5-bromo-N-(4,5-dihydro-1H-imidazol-2-yl)-6-quinoxalinamine) demonstrated a desensitization of cortical α2-adrenoceptors induced by corticosterone (-logEC50 = 6.7 ± 0.2 vs 8.2 ± 0.3 in controls) that was reverted by fluoxetine treatment (-logEC50 = 7.5 ± 0.3). Local administration of the α2-adrenoceptor antagonist RS79948 ((8aR,12aS,13aS)-5,8,8a,9,10,11,12,12a,13,13a-decahydro-3-methoxy-12-(ethylsulfonyl)-6H-isoquino[2,1-g][1,6]naphthyridine) (0.1-100 μmol L-1) into the LC induced a concentration-dependent NA increase in the PFC of the control group (Emax = 191 ± 30%) but non-significant effect was observed in corticosterone-treated rats (Emax = 133 ± 46%), reflecting a desensitization of α2-adrenoceptors that control the firing of noradrenergic neurons. Fluoxetine treatment did not alter the corticosterone-induced desensitization in this area (Emax = 136 ± 19%). No effect of fluoxetine on α2-adrenoceptor functionality was observed in control animals (Emax = 223 ± 30%). In PFC, the local administration of RS79948 increased NA in controls (Emax = 226 ± 27%) without effect in the corticosterone group (Emax = 115 ± 26%), suggesting a corticosterone-induced desensitization of terminal α2-adrenoceptors. Fluoxetine administration prevented the desensitization induced by corticosterone in the PFC (Emax = 233 ± 33%) whereas desensitized α2-adrenoceptors in control animals (Emax = -24 ± 10%). These data indicate that chronic corticosterone increases noradrenergic activity by acting at different α2-adrenoceptor subpopulations. Treatment with the antidepressant fluoxetine seems to counteract these changes by acting mainly on presynaptic α2-adrenoceptors expressed in terminal areas.
Collapse
Affiliation(s)
- Igor Horrillo
- Department of Pharmacology, University of the Basque Country UPV/EHU, Spain; Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain; Biocruces Bizkaia Health Research Institute, Spain
| | - Jorge E Ortega
- Department of Pharmacology, University of the Basque Country UPV/EHU, Spain; Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain; Biocruces Bizkaia Health Research Institute, Spain
| | - Rebeca Diez-Alarcia
- Department of Pharmacology, University of the Basque Country UPV/EHU, Spain; Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain; Biocruces Bizkaia Health Research Institute, Spain
| | - Leyre Urigüen
- Department of Pharmacology, University of the Basque Country UPV/EHU, Spain; Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain; Biocruces Bizkaia Health Research Institute, Spain
| | - J Javier Meana
- Department of Pharmacology, University of the Basque Country UPV/EHU, Spain; Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain; Biocruces Bizkaia Health Research Institute, Spain.
| |
Collapse
|
5
|
Hvilsom AST, Lillethorup TP, Iversen P, Doudet DJ, Wegener G, Landau AM. Cortical and striatal serotonin transporter binding in a genetic rat model of depression and in response to electroconvulsive stimuli. Eur Neuropsychopharmacol 2019; 29:493-500. [PMID: 30826156 DOI: 10.1016/j.euroneuro.2019.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/10/2019] [Accepted: 02/14/2019] [Indexed: 10/27/2022]
Abstract
Depression is a debilitating mental illness and two thirds of patients respond insufficiently to conventional antidepressants. Electroconvulsive therapy (ECT) remains the most effective treatment to alleviate drug-refractory depression, however the neurobiological mechanisms are mostly unknown. The serotonergic system plays an important role in depression and alterations in the serotonin transporter (SERT) are seen both in depression and response to antidepressant pharmacotherapies. The first aim of this study was to investigate SERT density in a genetic rat model of depression, Flinders Sensitive Line (FSL), compared to control Flinders Resistant Line (FRL) and Sprague-Dawley (SD) rats. The second aim was to investigate SERT density in response to electroconvulsive stimuli (ECS), an animal model of ECT. Female rats of each strain were treated with ECS or sham (ear-clip placement with no current) for 10 days before brains were removed, frozen and cut into 20 µm thick sections. SERT density was measured in striatal and cortical regions by quantitative in vitro autoradiography using the SERT-radioligand, [3H]-DASB. Higher SERT density was observed in FSL rats compared to SD rats by 36-48% in motor cortex and striatum under sham conditions. In response to ECS, SD rats displayed a significant effect of treatment, whereas no changes were observed in FRL and FSL rats. Increased SERT binding in FSL rats compared to SD supports a dysfunction of the serotonergic system in depression. The increased SERT density after ECS, seen in SD rats but not FSL rats, suggests a different mechanism of action between depressive-like rats and controls.
Collapse
Affiliation(s)
- Anna Sophie Thue Hvilsom
- Translational Neuropsychiatry Unit, Aarhus University, Denmark; Department of Nuclear Medicine and PET Center, Aarhus University, Nørrebrogade 44, Building 10G, 8000 Aarhus C, Denmark
| | - Thea P Lillethorup
- Department of Nuclear Medicine and PET Center, Aarhus University, Nørrebrogade 44, Building 10G, 8000 Aarhus C, Denmark
| | - Peter Iversen
- Department of Nuclear Medicine and PET Center, Aarhus University, Nørrebrogade 44, Building 10G, 8000 Aarhus C, Denmark
| | - Doris J Doudet
- Department of Nuclear Medicine and PET Center, Aarhus University, Nørrebrogade 44, Building 10G, 8000 Aarhus C, Denmark; Department of Medicine/Neurology, University of British Columbia, Canada
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Aarhus University, Denmark; Centre for Pharmaceutical Excellence, School of Pharmacy (Pharmacology), North-West University, Potchefstroom, South Africa
| | - Anne M Landau
- Translational Neuropsychiatry Unit, Aarhus University, Denmark; Department of Nuclear Medicine and PET Center, Aarhus University, Nørrebrogade 44, Building 10G, 8000 Aarhus C, Denmark.
| |
Collapse
|
6
|
Jahanshahi M, Nikmahzar E, Elyasi L, Babakordi F, Hooshmand E. α2-Adrenoceptor-ir neurons’ density changes after single dose of clonidine and yohimbine administration in the hippocampus of male rat. Int J Neurosci 2017; 128:404-411. [DOI: 10.1080/00207454.2017.1389926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- M. Jahanshahi
- Neuroscience Research Center, Department of Anatomy, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - E. Nikmahzar
- Neuroscience Research Center, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - L. Elyasi
- Neuroscience Research Center, Department of Anatomy, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - F. Babakordi
- Neuroscience Research Center, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - E. Hooshmand
- Neuroscience Research Center, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
7
|
Herold C, Paulitschek C, Palomero-Gallagher N, Güntürkün O, Zilles K. Transmitter receptors reveal segregation of the arcopallium/amygdala complex in pigeons (Columba livia). J Comp Neurol 2017; 526:439-466. [PMID: 29063593 DOI: 10.1002/cne.24344] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 12/21/2022]
Abstract
At the beginning of the 20th century it was suggested that a complex group of nuclei in the avian posterior ventral telencephalon is comparable to the mammalian amygdala. Subsequent findings, however, revealed that most of these structures share premotor characteristics, while some indeed constitute the avian amygdala. These developments resulted in 2004 in a change of nomenclature of these nuclei, which from then on were named arcopallial or amygdala nuclei and referred to as the arcopallium/amygdala complex. The structural basis for the similarities between avian and mammalian arcopallial and amygdala subregions is poorly understood. Therefore, we analyzed binding site densities for glutamatergic AMPA, NMDA and kainate, GABAergic GABAA , muscarinic M1 , M2 and nicotinic acetylcholine (nACh; α4 β2 subtype), noradrenergic α1 and α2 , serotonergic 5-HT1A and dopaminergic D1/5 receptors using quantitative in vitro receptor autoradiography combined with a detailed analysis of the cyto- and myelo-architecture. Our approach supports a segregation of the pigeon's arcopallium/amygdala complex into the following subregions: the arcopallium anterius (AA), the arcopallium ventrale (AV), the arcopallium dorsale (AD), the arcopallium intermedium (AI), the arcopallium mediale (AM), the arcopallium posterius (AP), the nucleus posterioris amygdalopallii pars basalis (PoAb) and pars compacta (PoAc), the nucleus taeniae amgygdalae (TnA) and the area subpallialis amygdalae (SpA). Some of these subregions showed further subnuclei and each region of the arcopallium/amygdala complex are characterized by a distinct multi-receptor density expression. Here we provide a new detailed map of the pigeon's arcopallium/amygdala complex and compare the receptor architecture of the subregions to their possible mammalian counterparts.
Collapse
Affiliation(s)
- Christina Herold
- C. and O. Vogt Institute of Brain Research, Medical Faculty, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| | - Christina Paulitschek
- C. and O. Vogt Institute of Brain Research, Medical Faculty, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| | | | - Onur Güntürkün
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine INM-1, Research Center Jülich, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, and JARA - Translational Brain Medicine, Aachen, Germany
| |
Collapse
|
8
|
Singh A, Kar SK. How Electroconvulsive Therapy Works?: Understanding the Neurobiological Mechanisms. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2017; 15:210-221. [PMID: 28783929 PMCID: PMC5565084 DOI: 10.9758/cpn.2017.15.3.210] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/06/2016] [Accepted: 12/21/2016] [Indexed: 12/29/2022]
Abstract
Electroconvulsive therapy (ECT) is a time tested treatment modality for the management of various psychiatric disorders. There have been a lot of modifications in the techniques of delivering ECT over decades. Despite lots of criticisms encountered, ECT has still been used commonly in clinical practice due to its safety and efficacy. Research evidences found multiple neuro-biological mechanisms for the therapeutic effect of ECT. ECT brings about various neuro-physiological as well as neuro-chemical changes in the macro- and micro-environment of the brain. Diverse changes involving expression of genes, functional connectivity, neurochemicals, permeability of blood-brain-barrier, alteration in immune system has been suggested to be responsible for the therapeutic effects of ECT. This article reviews different neurobiological mechanisms responsible for the therapeutic efficacy of ECT.
Collapse
Affiliation(s)
- Amit Singh
- Department of Psychiatry, King George's Medical University, Lucknow, U.P, India
| | - Sujita Kumar Kar
- Department of Psychiatry, King George's Medical University, Lucknow, U.P, India
| |
Collapse
|
9
|
García-Fuster MJ, García-Sevilla JA. Effects of anti-depressant treatments on FADD and p-FADD protein in rat brain cortex: enhanced anti-apoptotic p-FADD/FADD ratio after chronic desipramine and fluoxetine administration. Psychopharmacology (Berl) 2016; 233:2955-71. [PMID: 27259485 DOI: 10.1007/s00213-016-4342-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/20/2016] [Indexed: 12/27/2022]
Abstract
RATIONALE Fas-associated death domain (FADD) is an adaptor of death receptors that can also induce anti-apoptotic actions through its phosphorylated form (p-FADD). Activation of monoamine receptors, indirect targets of classic anti-depressant drugs (ADs), reduced FADD and increased p-FADD and p-FADD/FADD ratio in brain. OBJECTIVES To ascertain whether ADs, which indirectly regulate monoamine receptors, modulate FADD protein forms to promote anti-apoptotic actions. METHODS The effects of selected norepinephrine transporter (NET), serotonin transporter (SERT), monoamine oxidase (MAO) inhibitors, atypical ADs, and electroconvulsive shock (ECS) or behavioral procedures (forced swim test, FST) on FADD forms and pro-survival FADD-like interleukin-1β-converting enzyme-inhibitory protein (FLIP-L) and phosphoprotein enriched in astrocytes of 15 kDa (p-PEA-15) contents were assessed in rat brain cortex by western blot analysis. RESULTS Acute NET (e.g., nisoxetine) but not SERT (e.g., fluoxetine) inhibitors decreased cortical FADD (up to 37 %) and increased p-FADD/FADD ratio (up to 1.9-fold). Nisoxetine effects were prevented by α2-antagonist RX-821002, suggesting the involvement of presynaptic α2-autoreceptors. Immobility time in the FST correlated with increases of pro-apoptotic FADD and decreases of anti-apoptotic p-FADD. The MAO-A/B inhibitor phenelzine decreased FADD (up to 33 %) and increased p-FADD (up to 65 %) and p-FADD/FADD (up to 2.4-fold). Other MAO inhibitors (clorgyline, Ro 41-1049, rasagiline), atypical ADs (ketamine and mirtazapine), or ECS did not modulate cortical FADD. Chronic (14 days) desipramine and fluoxetine, but not phenelzine, increased p-FADD (up to 59 %), p-FADD/FADD ratio (up to 1.8-fold), and pro-survival p-PEA-15 (up to 46 %) in rat brain cortex. CONCLUSIONS Multifunctional FADD protein, through an increased p-FADD/FADD ratio, could participate in the mechanisms of anti-apoptotic actions induced by ADs.
Collapse
Affiliation(s)
- M Julia García-Fuster
- Neurobiology of Drug Abuse Group, IUNICS/IdISPa, University of the Balearic Islands, Cra. Valldemossa km 7.5, E-07122, Palma de Mallorca, Spain. .,Redes Temáticas de Investigación Cooperativa en Salud-Red de Trastornos Adictivos (RETICS-RTA), ISCIII, Madrid, Spain.
| | - Jesús A García-Sevilla
- Laboratory of Neuropharmacology, IUNICS/IdISPa, University of the Balearic Islands, Palma de Mallorca, Spain.,Redes Temáticas de Investigación Cooperativa en Salud-Red de Trastornos Adictivos (RETICS-RTA), ISCIII, Madrid, Spain
| |
Collapse
|
10
|
Andrade C, McCall WV, Youssef NA. Electroconvulsive therapy for post-traumatic stress disorder: efficacy, mechanisms and a hypothesis for new directions. Expert Rev Neurother 2016; 16:749-53. [DOI: 10.1080/14737175.2016.1179114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Chittaranjan Andrade
- Department of Psychopharmacology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - W. Vaughn McCall
- Department of Psychiatry and Health Behavior, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Nagy A. Youssef
- Department of Psychiatry and Health Behavior, Medical College of Georgia at Augusta University, Augusta, GA, USA
| |
Collapse
|
11
|
α2-adrenoceptor binding in Flinders-sensitive line compared with Flinders-resistant line and Sprague-Dawley rats. Acta Neuropsychiatr 2015; 27:345-52. [PMID: 25903810 DOI: 10.1017/neu.2015.24] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Disturbances in the noradrenergic system, including alterations in the densities of α2-adrenoceptors, are posited to be involved in the pathophysiology of depression. In this study, we investigate the binding of α2-adrenoceptors in regions relevant to depression in an animal model of depression. METHODS Using in vitro autoradiography techniques and the selective α2-ligand, [3H]RX 821002, we investigated the density of α2-adrenoceptors in female Flinders-sensitive line (FSL) rats, a validated model of depression, and in two traditional control groups - female Flinders-resistant line (FRL) and Sprague-Dawley (SD) rats. RESULTS The α2-adrenoceptor density was increased in most regions of the FSL rat brain when compared with SD rats (10% across regions). Moreover, the α2-adrenoceptor density was further increased in the FRL rats compared with both FSL (10% across regions) and SD rats (24% across regions). CONCLUSIONS The increase in α2-adrenoceptor binding in cortical regions in the FSL strain compared with the SD control strain is in accord with α2-adrenoceptor post-mortem binding data in suicide victims with untreated major depression. However, the differences in binding observed in the two control groups were unexpected and suggest the need for further studies in a larger cohort of animals of both sexes.
Collapse
|