1
|
Riga MS, Paz V, Didriksen M, Celada P, Artigas F. Lu AF35700 reverses the phencyclidine-induced disruption of thalamo-cortical activity by blocking dopamine D 1 and D 2 receptors. Eur J Pharmacol 2023:175802. [PMID: 37295763 DOI: 10.1016/j.ejphar.2023.175802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023]
Abstract
Antipsychotic drugs of different chemical/pharmacological families show preferential dopamine (DA) D2 receptor (D2-R) vs. D1 receptor (D1-R) affinity, with the exception of clozapine, the gold standard of schizophrenia treatment, which shows a comparable affinity for both DA receptors. Here, we examined the ability of Lu AF35700 (preferential D1-R>D2-R antagonist), to reverse the alterations in thalamo-cortical activity induced by phencyclidine (PCP), used as a pharmacological model of schizophrenia. Lu AF35700 reversed the PCP-induced alteration of neuronal discharge and low frequency oscillation (LFO, 0.15-4 Hz) in thalamo-cortical networks. Likewise, Lu AF35700 prevented the increased c-fos mRNA expression induced by PCP in thalamo-cortical regions of awake rats. We next examined the contribution of D1-R and D2-R to the antipsychotic reversal of PCP effects. The D2-R antagonist haloperidol reversed PCP effects on thalamic discharge rate and LFO. Remarkably, the combination of sub-effective doses of haloperidol and SCH-23390 (DA D1-R antagonist) fully reversed the PCP-induced fall in thalamo-cortical LFO. However, unlike with haloperidol, SCH-23390 elicited different degrees of potentiation of the effects of low clozapine and Lu AF35700 doses. Overall, the present data support a synergistic interaction between both DA receptors to reverse the PCP-induced alterations of oscillatory activity in thalamo-cortical networks, possibly due to their simultaneous blockade in direct and indirect pathways of basal ganglia. The mild potentiation induced by SCH-23390 in the case of clozapine and Lu AF35700 suggests that, at effective doses, these agents reverse PCP effects through the simultaneous blockade of both DA receptors.
Collapse
Affiliation(s)
- Maurizio S Riga
- Department of Neuroscience and Experimental Therapeutics, CSIC-Institut d'Investigacions Biomèdiques de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
| | - Veronica Paz
- Department of Neuroscience and Experimental Therapeutics, CSIC-Institut d'Investigacions Biomèdiques de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Michael Didriksen
- H. Lundbeck A/S, Synaptic Transmission, Neuroscience Research DK, Valby, Denmark
| | - Pau Celada
- Department of Neuroscience and Experimental Therapeutics, CSIC-Institut d'Investigacions Biomèdiques de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Francesc Artigas
- Department of Neuroscience and Experimental Therapeutics, CSIC-Institut d'Investigacions Biomèdiques de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Castañé A, Cano M, Ruiz-Avila L, Miquel-Rio L, Celada P, Artigas F, Riga MS. Dual 5-HT3 and 5-HT6 Receptor Antagonist FPPQ Normalizes Phencyclidine-Induced Disruption of Brain Oscillatory Activity in Rats. Int J Neuropsychopharmacol 2022; 25:425-431. [PMID: 35022720 PMCID: PMC9154270 DOI: 10.1093/ijnp/pyac003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/22/2021] [Accepted: 01/11/2022] [Indexed: 12/31/2022] Open
Abstract
Schizophrenia is a severe mental disorder featuring psychotic, depressive, and cognitive alterations. Current antipsychotic drugs preferentially target dopamine D2-R and/or serotonergic 5-HT2A/1A-R. They partly alleviate psychotic symptoms but fail to treat negative symptoms and cognitive deficits. Here we report on the putative antipsychotic activity of (1-[(3-fluorophenyl)sulfonyl]-4-(piperazin-1-yl)-1H-pyrrolo[3,2-c]quinoline dihydrochloride) (FPPQ), a dual serotonin 5-HT3-R/5-HT6-R antagonist endowed with pro-cognitive properties. FPPQ fully reversed phencyclidine-induced decrease of low-frequency oscillations in the medial prefrontal cortex of anaesthetized rats, a fingerprint of antipsychotic activity. This effect was mimicked by the combined administration of the 5-HT3-R and 5-HT6-R antagonists ondansetron and SB-399 885, respectively, but not by either drug alone. In freely moving rats, FPPQ countered phencyclidine-induced hyperlocomotion and augmentation of gamma and high-frequency oscillations in medial prefrontal cortex, dorsal hippocampus, and nucleus accumbens. Overall, this supports that simultaneous blockade of 5-HT3R and 5-HT6-R-like that induced by FPPQ-can be a new target in antipsychotic drug development.
Collapse
Affiliation(s)
- Anna Castañé
- Departament de Neurociències i Terapèutica Experimental, CSIC-Institut d'Investigacions Biomèdiques de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - Lluís Miquel-Rio
- Departament de Neurociències i Terapèutica Experimental, CSIC-Institut d'Investigacions Biomèdiques de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Pau Celada
- Departament de Neurociències i Terapèutica Experimental, CSIC-Institut d'Investigacions Biomèdiques de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Francesc Artigas
- Departament de Neurociències i Terapèutica Experimental, CSIC-Institut d'Investigacions Biomèdiques de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Maurizio S Riga
- Departament de Neurociències i Terapèutica Experimental, CSIC-Institut d'Investigacions Biomèdiques de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Present and future antipsychotic drugs: a systematic review of the putative mechanisms of action for efficacy and a critical appraisal under a translational perspective. Pharmacol Res 2022; 176:106078. [PMID: 35026403 DOI: 10.1016/j.phrs.2022.106078] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/23/2021] [Accepted: 01/07/2022] [Indexed: 01/10/2023]
Abstract
Antipsychotics represent the mainstay of schizophrenia pharmacological therapy, and their role has been expanded in the last years to mood disorders treatment. Although introduced in 1952, many years of research were required before an accurate picture of how antipsychotics work began to emerge. Despite the well-recognized characterization of antipsychotics in typical and atypical based on their liability to induce motor adverse events, their main action at dopamine D2R to elicit the "anti-psychotic" effect, as well as the multimodal action at other classes of receptors, their effects on intracellular mechanisms starting with receptor occupancy is still not completely understood. Significant lines of evidence converge on the impact of these compounds on multiple molecular signaling pathways implicated in the regulation of early genes and growth factors, dendritic spine shape, brain inflammation, and immune response, tuning overall the function and architecture of the synapse. Here we present, based on PRISMA approach, a comprehensive and systematic review of the above mechanisms under a translational perspective to disentangle those intracellular actions and signaling that may underline clinically relevant effects and represent potential targets for further innovative strategies in antipsychotic therapy.
Collapse
|
4
|
Involvement of NMDA receptors containing the GluN2C subunit in the psychotomimetic and antidepressant-like effects of ketamine. Transl Psychiatry 2020; 10:427. [PMID: 33303736 PMCID: PMC7729946 DOI: 10.1038/s41398-020-01110-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 11/05/2020] [Accepted: 11/17/2020] [Indexed: 12/24/2022] Open
Abstract
Acute ketamine administration evokes rapid and sustained antidepressant effects in treatment-resistant patients. However, ketamine also produces transient perceptual disturbances similarly to those evoked by other non-competitive NMDA-R antagonists like phencyclidine (PCP). Although the brain networks involved in both ketamine actions are not fully understood, PCP and ketamine activate thalamo-cortical networks after NMDA-R blockade in GABAergic neurons of the reticular thalamic nucleus (RtN). Given the involvement of thalamo-cortical networks in processing sensory information, these networks may underlie psychotomimetic action. Since the GluN2C subunit is densely expressed in the thalamus, including the RtN, we examined the dependence of psychotomimetic and antidepressant-like actions of ketamine on the presence of GluN2C subunits, using wild-type and GluN2C knockout (GluN2CKO) mice. Likewise, since few studies have investigated ketamine's effects in females, we used mice of both sexes. GluN2C deletion dramatically reduced stereotyped (circling) behavior induced by ketamine in male and female mice, while the antidepressant-like effect was fully preserved in both genotypes and sexes. Despite ketamine appeared to induce similar effects in both sexes, some neurobiological differences were observed between male and female mice regarding c-fos expression in thalamic nuclei and cerebellum, and glutamate surge in prefrontal cortex. In conclusion, the GluN2C subunit may discriminate between antidepressant-like and psychotomimetic actions of ketamine. Further, the abundant presence of GluN2C subunits in the cerebellum and the improved motor coordination of GluN2CKO mice after ketamine treatment suggest the involvement of cerebellar NMDA-Rs in some behavioral actions of ketamine.
Collapse
|
5
|
Efficacy and safety of brexpiprazole in acute management of psychiatric disorders: a meta-analysis of randomized controlled trials. Int Clin Psychopharmacol 2020; 35:119-128. [PMID: 32141908 DOI: 10.1097/yic.0000000000000308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Brexpiprazole is a new atypical antipsychotic for schizophrenia management and as adjunct in major depressive disorder (MDD). We searched randomized controlled trials (RCT) to review brexpiprazole efficacy and tolerability in acute management of schizophrenia and MDD using PubMed, EUDRACT, ClinicalTrials.gov and Cochrane Central Register of Controlled Trials. A meta-analysis was conducted using the identified 14 RCT to assess its efficacy using positive and negative syndrome scale (PANSS), clinical global impressions - severity of illness (CGI-S), personal and social performance scale (PSP), Montgomery-Åsberg depression rating scale (MADRS), Sheehan disability scale (SDS) and Hamilton depression rating scale (HDRS17). The mean difference comparing brexpiprazole and placebo were PANSS -4.48, CGI-S -0.23 and PSP 3.24 favoring brexpiprazole. Compared to aripiprazole and quetiapine, brexpiprazole showed similar efficacy. In MDD, brexpiprazole showed efficacy compared to placebo demonstrated by MADRS -1.25, SDS -0.37 and HDRS17 -1.28. Brexpiprazole was associated with side effects including akathisia risk ratio (RR) = 1.72; weight increase RR = 2.74 and somnolence RR = 1.87. Compared to 4 mg, brexpiprazole 2 mg was associated with less risk of akathisia and somnolence. Brexpiprazole demonstrated significant improvements in schizophrenia and MDD and is well-tolerated; however, associated with akathisia and somnolence. These findings will guide psychiatrists and pharmacists in their clinical role for supporting psychiatric patients care.
Collapse
|