1
|
Jindal M, Chhetri A, Ludhiadch A, Singh P, Peer S, Singh J, Brar RS, Munshi A. Neuroimaging Genomics a Predictor of Major Depressive Disorder (MDD). Mol Neurobiol 2024; 61:3427-3440. [PMID: 37989980 DOI: 10.1007/s12035-023-03775-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/05/2023] [Indexed: 11/23/2023]
Abstract
Depression is a complex psychiatric disorder influenced by various genetic and environmental factors. Strong evidence has established the contribution of genetic factors in depression through twin studies and the heritability rate for depression has been reported to be 37%. Genetic studies have identified genetic variations associated with an increased risk of developing depression. Imaging genetics is an integrated approach where imaging measures are combined with genetic information to explore how specific genetic variants contribute to brain abnormalities. Neuroimaging studies allow us to examine both structural and functional abnormalities in individuals with depression. This review has been designed to study the correlation of the significant genetic variants with different regions of neural activity, connectivity, and structural alteration in the brain as detected by imaging techniques to understand the scope of biomarkers in depression. This might help in developing novel therapeutic interventions targeting specific genetic pathways or brain circuits and the underlying pathophysiology of depression based on this integrated approach can be established at length.
Collapse
Affiliation(s)
- Manav Jindal
- Department of Radiodiagnosis, All India Institute of Medical Sciences, Bathinda, India
| | - Aakash Chhetri
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151401, India
| | - Abhilash Ludhiadch
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151401, India
| | - Paramdeep Singh
- Department of Radiodiagnosis, All India Institute of Medical Sciences, Bathinda, India
| | - Sameer Peer
- Department of Radiodiagnosis, All India Institute of Medical Sciences, Bathinda, India
| | - Jawahar Singh
- Department of Psychiatry, All India Institute of Medical Sciences, Bathinda, India
| | - Rahatdeep Singh Brar
- Department of Diagnostic and Interventional Radiology, Homi Bhabha Cancer Hospital & Research Center, Mohali, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151401, India.
| |
Collapse
|
2
|
Liu C, Li K, Fu M, Zhang Y, Sindermann C, Montag C, Zheng X, Zhang H, Yao S, Wang Z, Zhou B, Kendrick KM, Becker B. A central serotonin regulating gene polymorphism (TPH2) determines vulnerability to acute tryptophan depletion-induced anxiety and ventromedial prefrontal threat reactivity in healthy young men. Eur Neuropsychopharmacol 2023; 77:24-34. [PMID: 37666184 DOI: 10.1016/j.euroneuro.2023.08.484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 09/06/2023]
Abstract
Serotonin (5-HT) has long been implicated in adaptive emotion regulation as well as the development and treatment of emotional dysregulations in mental disorders. Accumulating evidence suggests a genetic vulnerability may render some individuals at a greater risk for the detrimental effects of transient variations in 5-HT signaling. The present study aimed to investigate whether individual variations in the Tryptophan hydroxylase 2 (TPH2) genetics influence susceptibility for behavioral and neural threat reactivity dysregulations during transiently decreased 5-HT signaling. To this end, interactive effects between TPH2 (rs4570625) genotype and acute tryptophan depletion (ATD) on threat reactivity were examined in a within-subject placebo-controlled pharmacological fMRI trial (n = 51). A priori genotype stratification of extreme groups (GG vs. TT) allowed balanced sampling. While no main effects of ATD on neural reactivity to threat-related stimuli and mood state were observed in the entire sample, accounting for TPH2 genotype revealed an ATD-induced increase in subjective anxious arousal in the GG but not the TT carriers. The effects were mirrored on the neural level, such that ATD specifically reduced ventromedial prefrontal cortex reactivity towards threat-related stimuli in the GG carriers. Furthermore, the ATD-induced increase in subjective anxiety positively associated with the extent of ATD-induced changes in ventromedial prefrontal cortex activity in response to threat-related stimuli in GG carriers. Together the present findings suggest for the first time that individual variations in TPH2 genetics render individuals susceptible to the anxiogenic and neural effects of a transient decrease in 5-HT signaling.
Collapse
Affiliation(s)
- Congcong Liu
- School of Psychology, Xinxiang Medical University, Xinxiang, PR China; The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China.
| | - Keshuang Li
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China; School of Psychology and Cognitive Science, East China Normal University, Shanghai, PR China
| | - Meina Fu
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Yingying Zhang
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Cornelia Sindermann
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany; Interchange Forum for Reflecting on Intelligent Systems, University of Stuttgart, Stuttgart, Germany
| | - Christian Montag
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Xiaoxiao Zheng
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China; Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Hongxing Zhang
- School of Psychology, Xinxiang Medical University, Xinxiang, PR China
| | - Shuxia Yao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Zheng Wang
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, IDG/McGovern Institute for Brain Research, Peking. Tsinghua Center for Life Sciences, Peking University, Beijing, PR China
| | - Bo Zhou
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Keith M Kendrick
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, PR China; Department of Psychology, The University of Hong Kong, Hong Kong, PR China.
| |
Collapse
|
3
|
Spies M, Murgaš M, Vraka C, Philippe C, Gryglewski G, Nics L, Balber T, Baldinger-Melich P, Hartmann AM, Rujescu D, Hacker M, Winkler-Pjrek E, Winkler D, Lanzenberger R. Impact of genetic variants within serotonin turnover enzymes on human cerebral monoamine oxidase A in vivo. Transl Psychiatry 2023; 13:208. [PMID: 37322010 PMCID: PMC10272199 DOI: 10.1038/s41398-023-02506-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/28/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023] Open
Abstract
Variants within the monoamine oxidase A (MAO-A, MAOA) and tryptophan hydroxylase 2 (TPH2) genes, the main enzymes in cerebral serotonin (5-HT) turnover, affect risk for depression. Depressed cohorts show increased cerebral MAO-A in positron emission tomography (PET) studies. TPH2 polymorphisms might also influence brain MAO-A because availability of substrates (i.e. monoamine concentrations) were shown to affect MAO-A levels. We assessed the effect of MAOA (rs1137070, rs2064070, rs6323) and TPH2 (rs1386494, rs4570625) variants associated with risk for depression and related clinical phenomena on global MAO-A distribution volume (VT) using [11C]harmine PET in 51 participants (21 individuals with seasonal affective disorder (SAD) and 30 healthy individuals (HI)). Statistical analyses comprised general linear models with global MAO-A VT as dependent variable, genotype as independent variable and age, sex, group (individuals with SAD, HI) and season as covariates. rs1386494 genotype significantly affected global MAO-A VT after correction for age, group and sex (p < 0.05, corr.), with CC homozygotes showing 26% higher MAO-A levels. The role of rs1386494 on TPH2 function or expression is poorly understood. Our results suggest rs1386494 might have an effect on either, assuming that TPH2 and MAO-A levels are linked by their common product/substrate, 5-HT. Alternatively, rs1386494 might influence MAO-A levels via another mechanism, such as co-inheritance of other genetic variants. Our results provide insight into how genetic variants within serotonin turnover translate to the cerebral serotonin system. Clinicaltrials.gov Identifier: NCT02582398. EUDAMED Number: CIV-AT-13-01-009583.
Collapse
Affiliation(s)
- Marie Spies
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Matej Murgaš
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Chrysoula Vraka
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Cecile Philippe
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Gregor Gryglewski
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
- Child Study Center, Yale University, New Haven, CT, USA
| | - Lukas Nics
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Theresa Balber
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Pia Baldinger-Melich
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Annette M Hartmann
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Dan Rujescu
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Edda Winkler-Pjrek
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Dietmar Winkler
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
4
|
Hou Z, Jiang W, Li F, Liu X, Hou Z, Yin Y, Zhang H, Zhang H, Xie C, Zhang Z, Kong Y, Yuan Y. Linking individual variability in functional brain connectivity to polygenic risk in major depressive disorder. J Affect Disord 2023; 329:55-63. [PMID: 36842648 DOI: 10.1016/j.jad.2023.02.104] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/28/2023]
Abstract
BACKGROUND Major depressive disorder (MDD) is a highly heterogeneous disease, which brings great difficulties to clinical diagnosis and therapy. Its mechanism is still unknown. Prior neuroimaging studies mainly focused on mean differences between patients and healthy controls (HC), largely ignoring individual differences between patients. METHODS This study included 112 MDD patients and 93 HC subjects. Resting-state functional MRI data were obtained to examine the patterns of individual variability of brain functional connectivity (IVFC). The genetic risk of pathways including dopamine, 5-hydroxytryptamine (5-HT), norepinephrine (NE), hypothalamic-pituitary-adrenal (HPA) axis, and synaptic plasticity was assessed by multilocus genetic profile scores (MGPS), respectively. RESULTS The IVFC pattern of the MDD group was similar but higher than that in HCs. The inter-network functional connectivity in the default mode network contributed to altered IVFC in MDD. 5-HT, NE, and HPA pathway genes affected IVFC in MDD patients. The age of onset, duration, severity, and treatment response, were correlated with IVFC. IVFC in the left ventromedial prefrontal cortex had a mediating effect between MGPS of the 5-HT pathway and baseline depression severity. LIMITATIONS Environmental factors and differences in locations of functional areas across individuals were not taken into account. CONCLUSIONS This study found MDD patients had significantly different inter-individual functional connectivity variations than healthy people, and genetic risk might affect clinical manifestations through brain function heterogeneity.
Collapse
Affiliation(s)
- Zhuoliang Hou
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medical, Southeast University, Nanjing 210009, China
| | - Wenhao Jiang
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medical, Southeast University, Nanjing 210009, China
| | - Fan Li
- Jiangsu Provincial Joint International Research Laboratory of Medical Information Processing, School of Computer Science and Engineering, Southeast University, Nanjing 210096, China
| | - Xiaoyun Liu
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medical, Southeast University, Nanjing 210009, China
| | - Zhenghua Hou
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medical, Southeast University, Nanjing 210009, China
| | - Yingying Yin
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medical, Southeast University, Nanjing 210009, China
| | - Haisan Zhang
- Departments of Clinical Magnetic Resonance Imaging, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
| | - Hongxing Zhang
- Departments of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; School of Psychology, Xinxiang Medical University, Xinxiang 453003, China
| | - Chunming Xie
- Department of Neurology, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Zhijun Zhang
- Department of Neurology, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Youyong Kong
- Jiangsu Provincial Joint International Research Laboratory of Medical Information Processing, School of Computer Science and Engineering, Southeast University, Nanjing 210096, China.
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medical, Southeast University, Nanjing 210009, China.
| |
Collapse
|
5
|
Vrshek-Schallhorn S, Corneau GM, Grillo AR, Sapuram VR, Plieger T, Reuter M. Additive serotonergic genetic sensitivity and cortisol reactivity to lab-based social evaluative stress: Influence of severity across two samples. Psychoneuroendocrinology 2022; 142:105767. [PMID: 35525123 DOI: 10.1016/j.psyneuen.2022.105767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/28/2022] [Accepted: 04/10/2022] [Indexed: 11/29/2022]
Abstract
Prior work demonstrates that an additive serotonergic multilocus genetic profile score (MGPS) predicts amplified risk for depression following significant life stress, and that it interacts with elevations in the cortisol awakening response to predict depression. The serotonin system and HPA-axis have bidirectional influence, but whether this MGPS predicts acute cortisol reactivity, which might then serve as a mechanism for depression, is unknown. Our prior work suggests that depression risk factors predict blunted cortisol reactivity to explicit negative evaluative lab-based stress. Thus, we hypothesized that a 4-variant serotonergic MGPS (three SNPs from the original 5-variant version plus 5HTTLPR) would predict blunted cortisol reactivity to explicit negative evaluative stress versus a control. In Sample 1, growth curve modeling showed that the MGPS predicted heightened cortisol reactivity (p = 0.0001) in an explicitly negative evaluative Trier Social Stress Test variant (TSST) versus a control condition among non-depressed emerging adults (N = 152; 57% female). In Sample 2, 125 males completed the Socially Evaluative Cold Pressor Test (SECPT), an ambiguously negative evaluative manipulation; findings displayed a similar pattern but did not reach statistical significance (ps.075-.091). A participant-level meta-analysis of the two samples demonstrated a significant effect of negative evaluation severity, such that the MGPS effect size on reactivity increased linearly from control to SECPT to an explicitly negative evaluative TSST. Findings indicate that this MGPS contributes to sensitivity to social threat and that cortisol dysregulation in the context of social stress may be one mechanism by which this MGPS contributes to depression.
Collapse
Affiliation(s)
| | - Gail M Corneau
- Department of Psychology, University of North Carolina at Greensboro, USA
| | | | - Vaibhav R Sapuram
- Department of Psychology, University of North Carolina at Greensboro, USA
| | - Thomas Plieger
- Department of Psychology and Center for Economics & Neuroscience, Bonn University, Germany
| | - Martin Reuter
- Department of Psychology and Center for Economics & Neuroscience, Bonn University, Germany
| |
Collapse
|
6
|
Li M, Su S, Cai W, Cao J, Miao X, Zang W, Gao S, Xu Y, Yang J, Tao YX, Ai Y. Differentially Expressed Genes in the Brain of Aging Mice With Cognitive Alteration and Depression- and Anxiety-Like Behaviors. Front Cell Dev Biol 2020; 8:814. [PMID: 33015035 PMCID: PMC7493670 DOI: 10.3389/fcell.2020.00814] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/31/2020] [Indexed: 01/21/2023] Open
Abstract
Despite the great increase in human lifespan with improved medical care, the physiological and pathological changes such as memory and cognitive disorders and associated anxiety and depression are major concern with aging. Molecular mechanisms underlying these changes are little known. The present study examined the differentially expressed genes (DEGs) and the genes with differentially expressed isoforms in three brain regions, anterior cingulate cortex (ACC), amygdala and hippocampus, throughout the lifespan of mice. Compared to 2-month old mice, both 12- and 24-month old mice displayed memory and cognitive impairments in the Morris water maze, Y-maze, and novel object recognition tests and depression- and anxiety-like behaviors in the tail suspension, forced swimming, open field, and elevated plus maze tests. RNA sequencing analysis identified 634 and 1078 DEGs in ACC, 453 and 1015 DEGs in the amygdala and 884 and 1054 DEGs in hippocampus in the 12- and 24-month old mice, respectively. Similarly, many genes with differentially expressed isoforms were also identified in these three brain regions in the 12- and 24-month old mice. Further functional analysis revealed that many DEGs and the genes with differentially expressed isoforms in the ACC and amygdala were mapped to depression- and anxiety-related genes, respectively and that a lot of DEGs and the genes with differentially expressed isoforms in hippocampus were mapped to cognitive dysfunction-related genes from both 12- and 24-month old mice. All of these mapped DEGs and the genes with differentially expressed isoforms were closely related to neuroinflammation. Our findings indicate that these neuroinflammation-related DEGs and the genes with differentially expressed isoforms are likely new targets in the management of memory/cognitive impairment and emotional disorders during the aging.
Collapse
Affiliation(s)
- Mengqi Li
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China
| | - Songxue Su
- Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China.,Department of Anatomy, College of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Weihua Cai
- Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China.,Department of Anatomy, College of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Jing Cao
- Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China.,Department of Anatomy, College of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Xuerong Miao
- Department of Anesthesiology and Intensive Care, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Weidong Zang
- Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China.,Department of Anatomy, College of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Shichao Gao
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York, Buffalo, NY, United States
| | - Ying Xu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York, Buffalo, NY, United States
| | - Jianjun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Yanqiu Ai
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China
| |
Collapse
|
7
|
Vorobyeva EV, Ermakov PN, Borokhovski EF, Kovsh EM, Stoletniy AS. Association between categorization of emotionally-charged and neutral visual scenes and parameters of event-related potentials in carriers of COMT, HTR2A, BDNF gene polymorphisms. F1000Res 2020; 9:446. [PMID: 32983417 PMCID: PMC7495216 DOI: 10.12688/f1000research.22503.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/05/2020] [Indexed: 03/30/2024] Open
Abstract
Background: This study aimed to discover the association between parameters of event-related potentials (ERPs) and categorization of images of visual scenes, both emotionally-charged and neutral, in carriers of polymorphisms of the COMT, HTR2A, BDNF genes. Methods: Electroencephalogram (EEG) and ERPs were recorded at 128 leads, with two ear referents. Images of different visual scenes were presented to the study participants sequentially on a monitor screen. The participants' task was to examine these images and indicate what emotions (negative, neutral or positive) they elicit. Comparison of event-related potentials was carried out using unpaired Student t-test in EEGLAB toolbox. Results: COMT. A stronger reaction, as reflected in the amplitude of the ERPs, in participants with the recessive homozygous Met/Met genotype was observed on latency around 200 ms to the stimuli, assessed as positive. Carriers of dominant homozygous Val/Val genotype had higher amplitude of 200 ms peak when assessed scene images as either neutral or negative in comparison to other genotypes. Participant with the Val/Met heterozygous genotype had higher amplitude of ERP that Met/Met group on same latency when assessed stimuli as negative. HTR2A . Significant increase in negativity in the parietal-occipital regions revealed in the range of 350-420 ms in participants with the recessive homozygous A/A genotype when choosing any type of assessment, compared to carriers of the heterozygous genotype A/G and the dominant homozygous G/G genotype. BDNF. Participants with Val/Val genotype categorized the visual images more thoroughly, as reflected in greater activation of the parietal-occipital zones and higher amplitude on ERP peak on 190 ms (negative assessment) and 160 ms (neutral assessment) then Val/Met carriers. Conclusions: The COMT, HTR2A, BDNF gene polymorphisms are associated with the process of categorizing emotionally charged and neutral visual scenes, and this relationship is reflected in the ERP parameters.
Collapse
Affiliation(s)
- Elena V. Vorobyeva
- Department of Psychophysiology and Clinical Psychology, Academy of Psychology and Education Sciences of Southern Federal University, Rostov-on-Don, 344006, Russian Federation
| | - Pavel N. Ermakov
- Department of Psychophysiology and Clinical Psychology, Academy of Psychology and Education Sciences of Southern Federal University, Rostov-on-Don, 344006, Russian Federation
| | - Evgenij F. Borokhovski
- Department of Education, Centre for the Study of Learning and Performance of Concordia University, Montreal, H3H 2S2, Canada
| | - Ekaterina M. Kovsh
- Department of Psychophysiology and Clinical Psychology, Academy of Psychology and Education Sciences of Southern Federal University, Rostov-on-Don, 344006, Russian Federation
| | - Alexander S. Stoletniy
- Department of Psychophysiology and Clinical Psychology, Academy of Psychology and Education Sciences of Southern Federal University, Rostov-on-Don, 344006, Russian Federation
| |
Collapse
|
8
|
Vorobyeva EV, Ermakov PN, Borokhovski EF, Kovsh EM, Stoletniy AS. Association between categorization of emotionally-charged and neutral visual scenes and parameters of event-related potentials in carriers of different COMT, HTR2A, BDNF gene genotypes. F1000Res 2020; 9:446. [PMID: 32983417 PMCID: PMC7495216 DOI: 10.12688/f1000research.22503.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/18/2020] [Indexed: 11/24/2022] Open
Abstract
Background: This study aimed to discover the association between parameters of event-related potentials (ERPs) and categorization of images of visual scenes, both emotionally-charged and neutral, in carriers of different genotypes of the COMT, HTR2A, BDNF genes. Methods: Electroencephalogram (EEG) and ERPs were recorded at 128 leads, with two ear referents. Images of different visual scenes were presented to the study participants sequentially on a monitor screen. The participants' task was to examine these images and indicate what emotions (negative, neutral or positive) they elicit. Comparison of event-related potentials was carried out using unpaired Student t-test in EEGLAB toolbox. Results: COMT. A stronger reaction, as reflected in the amplitude of the ERPs, in participants with the recessive homozygous Met/Met genotype was observed on latency around 200 ms to the stimuli, assessed as positive. Carriers of dominant homozygous Val/Val genotype had higher amplitude of 200 ms peak when assessed scene images as either neutral or negative in comparison to other genotypes. Participant with the Val/Met heterozygous genotype had higher amplitude of ERP that Met/Met group on same latency when assessed stimuli as negative. HTR2A . Significant increase in negativity in the parietal-occipital regions revealed in the range of 350-420 ms in participants with the recessive homozygous A/A genotype when choosing any type of assessment, compared to carriers of the heterozygous genotype A/G and the dominant homozygous G/G genotype. BDNF. Participants with Val/Val genotype categorized the visual images more thoroughly, as reflected in greater activation of the parietal-occipital zones and higher amplitude on ERP peak on 190 ms (negative assessment) and 160 ms (neutral assessment) then Val/Met carriers. Conclusions: The COMT, HTR2A, BDNF gene different genotypes are associated with the process of categorizing emotionally charged and neutral visual scenes, and this relationship is reflected in the ERP parameters.
Collapse
Affiliation(s)
- Elena V. Vorobyeva
- Department of Psychophysiology and Clinical Psychology, Academy of Psychology and Education Sciences of Southern Federal University, Rostov-on-Don, 344006, Russian Federation
| | - Pavel N. Ermakov
- Department of Psychophysiology and Clinical Psychology, Academy of Psychology and Education Sciences of Southern Federal University, Rostov-on-Don, 344006, Russian Federation
| | - Evgenij F. Borokhovski
- Department of Education, Centre for the Study of Learning and Performance of Concordia University, Montreal, H3H 2S2, Canada
| | - Ekaterina M. Kovsh
- Department of Psychophysiology and Clinical Psychology, Academy of Psychology and Education Sciences of Southern Federal University, Rostov-on-Don, 344006, Russian Federation
| | - Alexander S. Stoletniy
- Department of Psychophysiology and Clinical Psychology, Academy of Psychology and Education Sciences of Southern Federal University, Rostov-on-Don, 344006, Russian Federation
| |
Collapse
|
9
|
Long Y, Liu Z, Chan CKY, Wu G, Xue Z, Pan Y, Chen X, Huang X, Li D, Pu W. Altered Temporal Variability of Local and Large-Scale Resting-State Brain Functional Connectivity Patterns in Schizophrenia and Bipolar Disorder. Front Psychiatry 2020; 11:422. [PMID: 32477194 PMCID: PMC7235354 DOI: 10.3389/fpsyt.2020.00422] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/24/2020] [Indexed: 11/13/2022] Open
Abstract
Schizophrenia and bipolar disorder share some common clinical features and are both characterized by aberrant resting-state functional connectivity (FC). However, little is known about the common and specific aberrant features of the dynamic FC patterns in these two disorders. In this study, we explored the differences in dynamic FC among schizophrenia patients (n = 66), type I bipolar disorder patients (n = 53), and healthy controls (n = 66), by comparing temporal variabilities of FC patterns involved in specific brain regions and large-scale brain networks. Compared with healthy controls, both patient groups showed significantly increased regional FC variabilities in subcortical areas including the thalamus and basal ganglia, as well as increased inter-network FC variability between the thalamus and sensorimotor areas. Specifically, more widespread changes were found in the schizophrenia group, involving increased FC variabilities in sensorimotor, visual, attention, limbic and subcortical areas at both regional and network levels, as well as decreased regional FC variabilities in the default-mode areas. The observed alterations shared by schizophrenia and bipolar disorder may help to explain their overlapped clinical features; meanwhile, the schizophrenia-specific abnormalities in a wider range may support that schizophrenia is associated with more severe functional brain deficits than bipolar disorder. Together, these findings highlight the potentials of using dynamic FC as an objective biomarker for the monitoring and diagnosis of either schizophrenia or bipolar disorder.
Collapse
Affiliation(s)
- Yicheng Long
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Mental Health Institute of Central South University, Changsha, China
| | - Zhening Liu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Mental Health Institute of Central South University, Changsha, China
| | | | - Guowei Wu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Mental Health Institute of Central South University, Changsha, China
| | - Zhimin Xue
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Mental Health Institute of Central South University, Changsha, China
| | - Yunzhi Pan
- Mental Health Institute of Central South University, Changsha, China
| | - Xudong Chen
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Mental Health Institute of Central South University, Changsha, China
| | - Xiaojun Huang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Mental Health Institute of Central South University, Changsha, China
| | - Dan Li
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weidan Pu
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Bas‐Hoogendam JM, van Steenbergen H, Blackford JU, Tissier RLM, van der Wee NJA, Westenberg PM. Impaired neural habituation to neutral faces in families genetically enriched for social anxiety disorder. Depress Anxiety 2019; 36:1143-1153. [PMID: 31600020 PMCID: PMC6916167 DOI: 10.1002/da.22962] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/22/2019] [Accepted: 08/24/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Social anxiety disorder (SAD) is an incapacitating disorder running in families. Previous work associated social fearfulness with a failure to habituate, but the habituation response to neutral faces has, as of yet, not been investigated in patients with SAD and their family members concurrently. Here, we examined whether impaired habituation to neutral faces is a putative neurobiological endophenotype of SAD by using data from the multiplex and multigenerational Leiden Family Lab study on SAD. METHODS Participants (n = 110; age, 9.2 - 61.5 years) performed a habituation paradigm involving neutral faces, as these are strong social stimuli with an ambiguous meaning. We used functional magnetic resonance imaging data to investigate whether brain activation related to habituation was associated with the level of social anxiety within the families. Furthermore, the heritability of the neural habituation response was estimated. RESULTS Our data revealed a relationship between impaired habituation to neutral faces and social anxiety in the right hippocampus and right amygdala. In addition, our data indicated that this habituation response displayed moderate - to-moderately high heritability in the right hippocampus. CONCLUSION The present results provide support for altered habituation as a candidate SAD endophenotype; impaired neural habitation cosegregrated with the disorder within families and was heritable. These findings shed light on the genetic susceptibility to SAD.
Collapse
Affiliation(s)
- Janna M. Bas‐Hoogendam
- Developmental and Educational Psychology, Institute of PsychologyLeiden UniversityLeidenThe Netherlands,Department of PsychiatryLeiden University Medical CenterLeidenThe Netherlands,Leiden Institute for Brain and CognitionLeidenThe Netherlands
| | - Henk van Steenbergen
- Leiden Institute for Brain and CognitionLeidenThe Netherlands,Cognitive Psychology Unit, Institute of PsychologyUniversity of LeidenLeidenThe Netherlands
| | - Jennifer Urbano Blackford
- Department of Psychiatry and Behavioral SciencesVanderbilt University Medical CenterNashvilleTennessee,Department of Veterans Affairs Medical CenterResearch Service, Research and DevelopmentNashvilleTennessee
| | - Renaud L. M. Tissier
- Developmental and Educational Psychology, Institute of PsychologyLeiden UniversityLeidenThe Netherlands
| | - Nic J. A. van der Wee
- Department of PsychiatryLeiden University Medical CenterLeidenThe Netherlands,Leiden Institute for Brain and CognitionLeidenThe Netherlands
| | - P. Michiel Westenberg
- Developmental and Educational Psychology, Institute of PsychologyLeiden UniversityLeidenThe Netherlands,Leiden Institute for Brain and CognitionLeidenThe Netherlands
| |
Collapse
|
11
|
The Sensitivity to Threat and Affiliative Reward (STAR) model and the development of callous-unemotional traits. Neurosci Biobehav Rev 2019; 107:656-671. [PMID: 31618611 DOI: 10.1016/j.neubiorev.2019.10.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/20/2022]
Abstract
Research implicates callous-unemotional (CU) traits (i.e., lack of empathy, prosociality, and guilt, and reduced sensitivity to others' emotions) in the development of severe and persistent antisocial behavior. To improve etiological models of antisocial behavior and develop more effective treatments, we need a better understanding of the origins of CU traits. In this review, we discuss the role of two psychobiological and mechanistic precursors to CU traits: low affiliative reward (i.e., deficits in seeking out or getting pleasure from social bonding and closeness with others) and low threat sensitivity (i.e., fearlessness to social and non-social threat). We outline the Sensitivity to Threat and Affiliative Reward (STAR) model and review studies that have examined the development of affiliative reward and threat sensitivity across animal, neuroimaging, genetic, and behavioral perspectives. We next evaluate evidence for the STAR model, specifically the claim that CU traits result from deficits in both affiliative reward and threat sensitivity. We end with constructive suggestions for future research to test the hypotheses generated by the STAR model.
Collapse
|
12
|
Langenecker SA, Mickey BJ, Eichhammer P, Sen S, Elverman KH, Kennedy SE, Heitzeg MM, Ribeiro SM, Love TM, Hsu DT, Koeppe RA, Watson SJ, Akil H, Goldman D, Burmeister M, Zubieta JK. Cognitive Control as a 5-HT 1A-Based Domain That Is Disrupted in Major Depressive Disorder. Front Psychol 2019; 10:691. [PMID: 30984083 PMCID: PMC6450211 DOI: 10.3389/fpsyg.2019.00691] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/12/2019] [Indexed: 12/21/2022] Open
Abstract
Heterogeneity within Major Depressive Disorder (MDD) has hampered identification of biological markers (e.g., intermediate phenotypes, IPs) that might increase risk for the disorder or reflect closer links to the genes underlying the disease process. The newer characterizations of dimensions of MDD within Research Domain Criteria (RDoC) domains may align well with the goal of defining IPs. We compare a sample of 25 individuals with MDD compared to 29 age and education matched controls in multimodal assessment. The multimodal RDoC assessment included the primary IP biomarker, positron emission tomography (PET) with a selective radiotracer for 5-HT1A [(11C)WAY-100635], as well as event-related functional MRI with a Go/No-go task targeting the Cognitive Control network, neuropsychological assessment of affective perception, negative memory bias and Cognitive Control domains. There was also an exploratory genetic analysis with the serotonin transporter (5-HTTLPR) and monamine oxidase A (MAO-A) genes. In regression analyses, lower 5-HT1A binding potential (BP) in the MDD group was related to diminished engagement of the Cognitive Control network, slowed resolution of interfering cognitive stimuli, one element of Cognitive Control. In contrast, higher/normative levels of 5-HT1A BP in MDD (only) was related to a substantial memory bias toward negative information, but intact resolution of interfering cognitive stimuli and greater engagement of Cognitive Control circuitry. The serotonin transporter risk allele was associated with lower 1a BP and the corresponding imaging and cognitive IPs in MDD. Lowered 5HT 1a BP was present in half of the MDD group relative to the control group. Lowered 5HT 1a BP may represent a subtype including decreased engagement of Cognitive Control network and impaired resolution of interfering cognitive stimuli. Future investigations might link lowered 1a BP to neurobiological pathways and markers, as well as probing subtype-specific treatment targets.
Collapse
Affiliation(s)
- Scott A. Langenecker
- The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Brian J. Mickey
- The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Peter Eichhammer
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Srijan Sen
- The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | | | - Susan E. Kennedy
- The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Mary M. Heitzeg
- The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Saulo M. Ribeiro
- The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Tiffany M. Love
- The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - David T. Hsu
- The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Robert A. Koeppe
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Stanley J. Watson
- The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Huda Akil
- The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - David Goldman
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Margit Burmeister
- The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Jon-Kar Zubieta
- The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
13
|
Tao S, Chattun MR, Yan R, Geng J, Zhu R, Shao J, Lu Q, Yao Z. TPH-2 Gene Polymorphism in Major Depressive Disorder Patients With Early-Wakening Symptom. Front Neurosci 2018; 12:827. [PMID: 30519155 PMCID: PMC6251472 DOI: 10.3389/fnins.2018.00827] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022] Open
Abstract
Background: Sleep disturbances, such as early wakening, are frequently observed in patients with major depressive disorder (MDD). The suprachiasmatic nuclei (SCN), which controls circadian rhythm, is innervated by the raphe nucleus, a region where Tryptophan hydroxylase-2 (TPH-2) gene is primarily expressed. Although TPH-2 is often implicated in the pathophysiology of depression, few studies have applied a genetic and imaging technique to investigate the mechanism of early wakening symptom in MDD. We hypothesized that TPH-2 variants could influence the function of SCN in MDD patients with early wakening symptom. Methods: One hundred and eighty five MDD patients (62 patients without early wakening and 123 patients with early wakening) and 64 healthy controls participated in this study. Blood samples were collected and genotyping of rs4290270, rs4570625, rs11178998, rs7305115, rs41317118, and rs17110747 were performed by next-generation sequencing (NGS) technology. Logistic regression model was employed for genetic data analysis using the PLINK software. Based on the allele type, rs4290270, which was significant in the early wakening MDD group, participants were categorized into two groups (A allele and T carrier). All patients underwent whole brain resting-state functional magnetic resonance imaging (rs-fMRI) scanning and a voxel-wise functional connectivity comparison was performed between the groups. Results: rs4290270 was significantly linked to MDD patients who exhibited early wakening symptom. The functional connectivities of the right SCN with the right fusiform gyrus and right middle frontal gyrus were increased in the T carrier group compared to the A allele group. In addition, the functional connectivities of the left SCN with the right lingual gyrus and left calcarine sulcus were decreased in the T carrier group compared to the A allele group. Conclusion: These findings suggested that the TPH-2 gene variant, rs4290270, affected the circadian regulating function of SCN. The altered functional connectivities, observed between the SCN and right fusiform gyrus, right middle frontal gyrus, the right lingual gyrus and left calcarine sulcus, could highlight the neural mechanism by which SCN induces sleep-related circadian disruption in T carrier MDD patients. Hence, rs4290270 could potentially serve as a reliable biomarker to identify MDD patients with early wakening symptom.
Collapse
Affiliation(s)
- Shiwan Tao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Mohammad Ridwan Chattun
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Yan
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jiting Geng
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Rongxin Zhu
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Junneng Shao
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China.,Key Laboratory of Child Development and Learning Science, Southeast University, Nanjing, China
| | - Qing Lu
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China.,Key Laboratory of Child Development and Learning Science, Southeast University, Nanjing, China
| | - Zhijian Yao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Medical School of Nanjing University, Nanjing Brain Hospital, Nanjing, China
| |
Collapse
|