1
|
Zhang HC, Du Y, Chen L, Yuan ZQ, Cheng Y. MicroRNA schizophrenia: Etiology, biomarkers and therapeutic targets. Neurosci Biobehav Rev 2023; 146:105064. [PMID: 36707012 DOI: 10.1016/j.neubiorev.2023.105064] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/11/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
The three sets of symptoms associated with schizophrenia-positive, negative, and cognitive-are burdensome and have serious effects on public health, which affects up to 1% of the population. It is now commonly believed that in addition to the traditional dopaminergic mesolimbic pathway, the etiology of schizophrenia also includes neuronal networks, such as glutamate, GABA, serotonin, BDNF, oxidative stress, inflammation and the immune system. Small noncoding RNA molecules called microRNAs (miRNAs) have come to light as possible participants in the pathophysiology of schizophrenia in recent years by having an impact on these systems. These small RNAs regulate the stability and translation of hundreds of target transcripts, which has an impact on the entire gene network. There may be improved approaches to treat and diagnose schizophrenia if it is understood how these changes in miRNAs alter the critical related signaling pathways that drive the development and progression of the illness.
Collapse
Affiliation(s)
- Heng-Chang Zhang
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yang Du
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Lei Chen
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Zeng-Qiang Yuan
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China; Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100850, China
| | - Yong Cheng
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China; Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China; Institute of National Security, Minzu University of China, Beijing, China.
| |
Collapse
|
2
|
Wang Y, Meng W, Liu Z, An Q, Hu X. Cognitive impairment in psychiatric diseases: Biomarkers of diagnosis, treatment, and prevention. Front Cell Neurosci 2022; 16:1046692. [DOI: 10.3389/fncel.2022.1046692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Psychiatric diseases, such as schizophrenia, bipolar disorder, autism spectrum disorder, and major depressive disorder, place a huge health burden on society. Cognitive impairment is one of the core characteristics of psychiatric disorders and a vital determinant of social function and disease recurrence in patients. This review thus aims to explore the underlying molecular mechanisms of cognitive impairment in major psychiatric disorders and identify valuable biomarkers for diagnosis, treatment and prevention of patients.
Collapse
|
3
|
Yamazaki M, Arai T, Yarimizu J, Matsumoto M. 5-HT5A Receptor Antagonist ASP5736 Ameliorates Several Abnormal Behaviors in an Fmr1-Targeted Transgenic Male Rat Model of Fragile X Syndrome. Int J Neuropsychopharmacol 2022; 25:786-793. [PMID: 35882205 PMCID: PMC9515134 DOI: 10.1093/ijnp/pyac041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/24/2022] [Accepted: 07/23/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Fragile X syndrome (FXS) is a genetic condition that causes a range of developmental problems, including intellectual disability, aggressive behavior, anxiety, abnormal sensory processing, and cognitive impairment. Despite intensive preclinical research in Fmr1-targeted transgenic mice, an effective treatment for FXS has yet to be developed. We previously demonstrated that ASP5736, a 5-Hydroxytryptamine (serotonin) receptor 5A receptor antagonist, ameliorated scopolamine-induced working memory deficits in mice, reference memory impairment in aged rats, and methamphetamine-induced positive symptoms and phencyclidine-induced cognitive impairment in animal models of schizophrenia. We hypothesized that ASP5736 may be effective for ameliorating similar behavior deficits in male Fmr1-targeted transgenic rats as a preclinical model of FXS. METHODS We evaluated the effect of acute oral administration of ASP5736 on the abnormal behavior of hyperactivity (0.01, 0.1 mg/kg), prepulse inhibition (0.01, 0.03, 0.1 mg/kg), and the novel object recognition task (0.1 mg/kg) in Frmr1-knockout (KO) rats. RESULTS Fmr1-KO rats showed body weight gain, hyperactivity, abnormal sensory motor gating, and cognitive impairment. ASP5736 (0.1 mg/kg) reversed the hyperactivity and ameliorated the sensory motor gating deficits (0.03-0.1 mg/kg). ASP5736 (0.01 mg/kg) also improved cognitive impairment. CONCLUSIONS ASP5736 is a potential drug candidate for FXS. Further studies are needed to confirm its clinical efficacy.
Collapse
Affiliation(s)
- Mayako Yamazaki
- Correspondence: Mayako Yamazaki, PhD, Research Fellow, Department of Neuroscience, Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki, 305-8585, Japan ()
| | - Takatomo Arai
- Department of Neuroscience, Drug Discovery Research, Astellas Pharma Inc., Tsukuba-shi, Ibaraki, Japan
| | - Junko Yarimizu
- Department of Neuroscience, Drug Discovery Research, Astellas Pharma Inc., Tsukuba-shi, Ibaraki, Japan
| | - Mitsuyuki Matsumoto
- Department of Neuroscience, Drug Discovery Research, Astellas Pharma Inc., Tsukuba-shi, Ibaraki, Japan,Neuroscience, La Jolla Laboratory, Astellas Research Institute of America LLC, San Diego, CA, USA
| |
Collapse
|
4
|
Cognitive Deficit in Schizophrenia: From Etiology to Novel Treatments. Int J Mol Sci 2021; 22:ijms22189905. [PMID: 34576069 PMCID: PMC8468549 DOI: 10.3390/ijms22189905] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 01/09/2023] Open
Abstract
Schizophrenia is a major mental illness characterized by positive and negative symptoms, and by cognitive deficit. Although cognitive impairment is disabling for patients, it has been largely neglected in the treatment of schizophrenia. There are several reasons for this lack of treatments for cognitive deficit, but the complexity of its etiology-in which neuroanatomic, biochemical and genetic factors concur-has contributed to the lack of effective treatments. In the last few years, there have been several attempts to develop novel drugs for the treatment of cognitive impairment in schizophrenia. Despite these efforts, little progress has been made. The latest findings point to the importance of developing personalized treatments for schizophrenia which enhance neuroplasticity, and of combining pharmacological treatments with non-pharmacological measures.
Collapse
|
5
|
Tanqueiro SR, Mouro FM, Ferreira CB, Freitas CF, Fonseca-Gomes J, Simões do Couto F, Sebastião AM, Dawson N, Diógenes MJ. Sustained NMDA receptor hypofunction impairs brain-derived neurotropic factor signalling in the PFC, but not in the hippocampus, and disturbs PFC-dependent cognition in mice. J Psychopharmacol 2021; 35:730-743. [PMID: 34008450 DOI: 10.1177/02698811211008560] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cognitive deficits profoundly impact on the quality of life of patients with schizophrenia. Alterations in brain derived neurotrophic factor (BDNF) signalling, which regulates synaptic function through the activation of full-length tropomyosin-related kinase B receptors (TrkB-FL), are implicated in the aetiology of schizophrenia, as is N-methyl-D-aspartate receptor (NMDA-R) hypofunction. However, whether NMDA-R hypofunction contributes to the disrupted BDNF signalling seen in patients remains unknown. AIMS The purpose of this study was to characterise BDNF signalling and function in a preclinical rodent model relevant to schizophrenia induced by prolonged NMDA-R hypofunction. METHODS Using the subchronic phencyclidine (PCP) model, we performed electrophysiology approaches, molecular characterisation and behavioural analysis. RESULTS The data showed that prolonged NMDA-R antagonism, induced by subchronic PCP treatment, impairs long-term potentiation (LTP) and the facilitatory effect of BDNF upon LTP in the medial prefrontal cortex (PFC) of adult mice. Additionally, TrkB-FL receptor expression is decreased in the PFC of these animals. By contrast, these changes were not present in the hippocampus of PCP-treated mice. Moreover, BDNF levels were not altered in the hippocampus or PFC of PCP-treated mice. Interestingly, these observations are paralleled by impaired performance in PFC-dependent cognitive tests in mice treated with PCP. CONCLUSIONS Overall, these data suggest that NMDA-R hypofunction induces dysfunctional BDNF signalling in the PFC, but not in the hippocampus, which may contribute to the PFC-dependent cognitive deficits seen in the subchronic PCP model. Additionally, these data suggest that targeting BDNF signalling may be a mechanism to improve PFC-dependent cognitive dysfunction in schizophrenia.
Collapse
Affiliation(s)
- Sara R Tanqueiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Francisco M Mouro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Catarina B Ferreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Céline F Freitas
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - João Fonseca-Gomes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Frederico Simões do Couto
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Serviço de Psiquiatria e Saúde Mental, Hospital de Santa Maria - Centro Hospitalar Lisboa Norte, Lisboa, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Neil Dawson
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Maria J Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
6
|
High frequency repetitive transcranial magnetic stimulation of dorsomedial prefrontal cortex for negative symptoms in patients with schizophrenia: A double-blind, randomized controlled trial. Psychiatry Res 2021; 299:113876. [PMID: 33770710 DOI: 10.1016/j.psychres.2021.113876] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/13/2021] [Indexed: 12/13/2022]
Abstract
Negative symptoms are the major challenge in clinical management of schizophrenia. Dorsomedial prefrontal cortex (DMPFC) has been suggested to be highly involved in the mechanisms of negative symptoms of schizophrenia. However, the effect of repetitive Transcranial Magnetic Stimulation (rTMS) over DMPFC has not yet been well studied. In this double-blind, randomized controlled rTMS clinical trial, thirty-three participants (17 in active group and 16 in sham group) were enrolled. This study includes the rTMS treatment phase (lasts for 4 weeks) and a subsequently naturalistic follow-up phase (lasts for another 4 weeks). Schizophrenia patients with prominently negative symptoms were randomly assigned to receive 10 Hz or sham rTMS intervention. The score change in Scale of Negative Symptoms (SANS) was defined as the primary outcome measure. There was a significant decrease in negative symptoms, especially affective flattening and anhedonia in schizophrenia patients after DMPFC-rTMS intervention. Moreover, the negative symptoms improvement could maintain at least another 4 weeks. In addition, no memory impairment or serious adverse reaction of rTMS emerged. Our results suggest that high frequency rTMS over DMPF may represent a safe and effective treatment for negative symptoms in patients with schizophrenia.
Collapse
|
7
|
Popik P, Krawczyk M, Kuziak A, Bugno R, Hogendorf A, Staroń J, Nikiforuk A. Serotonin type 5A receptor antagonists inhibit D-lysergic acid diethylamide discriminatory cue in rats. J Psychopharmacol 2019; 33:1447-1455. [PMID: 31452444 DOI: 10.1177/0269881119867603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE Like other psychedelics, D-lysergic acid diethylamide (LSD) affects numerous serotonin receptors, and according to the current dogma, the 5-HT2A receptors are considered the main target for its hallucinogenic effects. LSD, however, also displays agonistic activity at the 5-HT5A receptors, which mediate some of LSD-induced behavioural effects. METHODS Using male Sprague Dawley rats, we examined the effects of 5-HT2A and 5-HT5A receptor antagonists on LSD-induced stimulus control in the two-lever drug discrimination test using a FR10 schedule of reinforcement. RESULTS In animals trained to discriminate 0.08 mg/kg LSD from vehicle 15 minutes after injection, LSD produced dose-related increases in response, with an ED50 (±95% confidence limits) of 0.0384 (± 0.025-0.051) mg/kg). LSD-like responses were observed when the training dose of LSD was given 5-30 but not 90 minutes before the test. Confirming earlier reports, the 5-HT antagonist ketanserin (2 mg/kg) attenuated the LSD response in 50% of rats, and due to pretreatment with 0.2 and 2 mg/kg MDL 100907, 63% and 67% of animals, respectively, failed to select the LSD lever. We then investigated the effects of two 5-HT5A receptor antagonists, and we found that 56% and 60% of rats pretreated with 3 and 10 mg/kg SB 699551, respectively, failed to select the LSD lever. Due to pretreatment with 0.01 mg/kg ASP 5736, 58% of rats did not select the LSD lever. This dose also reduced the response rate but not the number of rats failing to complete the test. CONCLUSIONS The present results suggest that antagonists of the 5-HT5A receptor may inhibit subjective effects of LSD in rats.
Collapse
Affiliation(s)
- Piotr Popik
- Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Martyna Krawczyk
- Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Agata Kuziak
- Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Ryszard Bugno
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Adam Hogendorf
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Jakub Staroń
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Agnieszka Nikiforuk
- Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
8
|
Li J, Yang S, Liu X, Han Y, Li Y, Feng J, Zhao H. Hypoactivity of the lateral habenula contributes to negative symptoms and cognitive dysfunction of schizophrenia in rats. Exp Neurol 2019; 318:165-173. [PMID: 31082390 DOI: 10.1016/j.expneurol.2019.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 04/12/2019] [Accepted: 05/08/2019] [Indexed: 12/21/2022]
Abstract
Dopaminergic (DAergic) hypofunction in the medial prefrontal cortex (mPFC) has been implicated in the negative and cognitive symptoms of schizophrenia and is regulated by serotonergic (5-HTergic) neurons in the dorsal raphe nucleus (DRN). The lateral habenula (LHb) is a key element in controlling DRN 5-HT neurons. We investigated how the LHb impacts the activity of mPFC neurons and whether it mediates the involvement of DRN on development of symptoms in a pharmacological animal model of schizophrenia. We used immunohisochemistry to assess cytochrome-c oxidase (COX) activity of the LHb in MK-801 model rats and extracellular firing recording to compare firing rates in LHb neurons of acute MK-801-treated rats. The sucrose preference, social interaction, and radial arm maze tests were used to access schizophrenia-like behavior in rats with electrolytically lesioned LHb. Finally, we examined levels of the dopamine D1 receptor (D1R) and tyrosine hydroxylase (TH) in the mPFC, and tryptophan hydroxylase 2 (TPH2) in the DRN of rats with LHb lesions to determine the possible mechanism underlying the schizophrenia-like behavior associated with lesioned LHb. We found that COX levels and LHb neuron firing rates decreased significantly in MK-801-treated animals. The LHb lesions induced negative and cognitive, but not positive symptoms of schizophrenia. The D1R and TH levels decreased in the mPFC while TPH2 expression elevated in the DRN and mPFC of LHb-lesioned rats. These results suggest that LHb hypoactivity may contribute to the negative and cognitive symptoms of schizophrenia by downregulating D1R expression in the mPFC, which might be mediated by DRN 5-HT neurons.
Collapse
Affiliation(s)
- Jicheng Li
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China
| | - Shaojun Yang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China
| | - Xiaofeng Liu
- Neuroscience Research Center, First Hospital of Jilin University, Changchun 130021, PR China
| | - Yuliang Han
- The department of neurology, second Hospital of Jilin University, Changchun 130021, PR China
| | - Yanhui Li
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China
| | - Jingjing Feng
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China
| | - Hua Zhao
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China; Neuroscience Research Center, First Hospital of Jilin University, Changchun 130021, PR China.
| |
Collapse
|