1
|
Latos-Brozio M, Masek A, Czechowski L, Jastrzębska A, Miszczak S. Effect of the Addition of Naringenin Derived from Citrus on the Properties of Epoxy Resin Compositions. Molecules 2024; 29:512. [PMID: 38276590 PMCID: PMC10818364 DOI: 10.3390/molecules29020512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
This research concerns the modification of commercially available epoxy resin with flame retardants in order to obtain aging-resistant and antimicrobial polymeric materials with a plant stabilizer dedicated to use in rail transport. Polymer compositions based on epoxy resin, fiberglass fabric, and naringenin were prepared. Naringenin was added as a natural stabilizer at 2, 4, and 8 phr. The materials were subjected to solar aging lasting 800 h. The hardness of the samples, surface energy, and carbonyl indexes were determined, and the color change in the composition after aging was analyzed. In addition, microscopic observations, analyses of mechanical properties, and microbiological tests were performed. The hardness determination showed that the samples retained their functional properties after solar aging. The increase in the polar component of the surface energy of all materials indicated the beginning of the degradation process of the composites. The tensile one-directional tests were carried out for plane samples taken in three directions (0, 90, and 45 degrees referred to a plate edge) before and after the aging process. The addition of naringenin did not affect the functional and surface properties of the epoxy resin-based materials. Polyphenol stabilized polymer composites, as evidenced by the results of carbonyl indexes. Moreover, the obtained samples showed good antimicrobial properties for E. coli and C. albicans in the field of testing the viability of microbial cells in contact with the tested surfaces.
Collapse
Affiliation(s)
- Malgorzata Latos-Brozio
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| | - Anna Masek
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| | - Leszek Czechowski
- Department of Strength of Materials, Faculty of Mechanical Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-537 Lodz, Poland;
| | - Aleksandra Jastrzębska
- Institute of Materials Science and Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-537 Lodz, Poland; (A.J.); (S.M.)
| | - Sebastian Miszczak
- Institute of Materials Science and Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-537 Lodz, Poland; (A.J.); (S.M.)
| |
Collapse
|
2
|
Mayer J, Steinbrecher R, Metzsch-Zilligen E, Pfaendner R. Antioxidant Activity of Biogenic Cinnamic Acid Derivatives in Polypropylene. Polymers (Basel) 2023; 15:3621. [PMID: 37688246 PMCID: PMC10490272 DOI: 10.3390/polym15173621] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Antioxidants (AOs) from natural resources are an attractive research area, as petroleum-based products can be replaced in polymer stabilization. Therefore, novel esters based on the p-hydroxycinnamic acids p-coumaric acid, ferulic acid and sinapic acid were synthesized and their structure properties relationships were investigated. The structures of the novel bio-based antioxidants were verified using NMR and Fourier-transform infrared (FTIR) spectrometry. The high thermal stability above 280 °C and, therefore, their suitability as potential plastic stabilizers were shown using thermal gravimetric analysis (TGA). The radical scavenging activity of the synthesized esters was evaluated by using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. Stabilization performance was evaluated in polypropylene (PP) using extended extrusion experiments, oxidation induction time (OIT) measurements and accelerated heat aging. In particular, the sinapic acid derivative provides a processing stability of PP being superior to the commercial state-of-the-art stabilizer octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate.
Collapse
Affiliation(s)
- Jannik Mayer
- Division Plastics, Fraunhofer Institute for Structural Durability and System Reliability LBF, Schlossgartenstraße 6, D-64289 Darmstadt, Germany; (J.M.); (E.M.-Z.)
| | - René Steinbrecher
- Department Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, House 25, D-14476 Potsdam, Germany;
| | - Elke Metzsch-Zilligen
- Division Plastics, Fraunhofer Institute for Structural Durability and System Reliability LBF, Schlossgartenstraße 6, D-64289 Darmstadt, Germany; (J.M.); (E.M.-Z.)
| | - Rudolf Pfaendner
- Division Plastics, Fraunhofer Institute for Structural Durability and System Reliability LBF, Schlossgartenstraße 6, D-64289 Darmstadt, Germany; (J.M.); (E.M.-Z.)
| |
Collapse
|
3
|
Deka R, Sarmah JK, Baruah S, Dutta RR. An okra polysaccharide (Abelmoschus esculentus) reinforced green hydrogel based on guar gum and poly-vinyl alcohol double network for controlled release of nanocurcumin. Int J Biol Macromol 2023; 234:123618. [PMID: 36780964 DOI: 10.1016/j.ijbiomac.2023.123618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/03/2023] [Accepted: 02/06/2023] [Indexed: 02/13/2023]
Abstract
A novel green hydrogel (PGCO) of Okra (Abelmoschus esculentus) mucilage-reinforced poly-vinyl alcohol-guar gum (PG) cross-linked by citric acid containing nanocurcumin (NC) as a model drug is reported. The citric acid (CA) cross-linked hydrogel (PGC) without okra is also prepared. The hydrogels are characterized using FTIR, XRD, FE-SEM, and TGA techniques. Okra reinforced green hydrogel (PGCO) provided comparable swelling behaviour with better mechanical and thermal properties compared to the neat PGC hydrogel. Network parameters of PGC and PGCO hydrogels are estimated using Flory-Rehner equation and strong correlation between the cross-link density and swelling behaviour is established. 45.68 % NC loading in the PGCO hydrogel is achieved. Release study in phosphate buffer (PB) of pH 7.4 provided sustained release of NC over a period of 100 h. The release study of NC followed primarily the Korsmeyer-Peppas model with less-Fickian diffusional character (n < 0.5). The average diffusion coefficients of NC and curcumin are found to be 3.52 × 10-5 cm2 s-1, and 3.43 × 10-5 cm2 s-1 respectively demonstrating the quick release of NC in early time, which is a pre-requisite in drug delivery. The study provides initial evidence of the usefulness of okra mucilage in green hydrogel development and drug delivery applications.
Collapse
Affiliation(s)
- Rishikesh Deka
- Department of Chemistry, School of Basic Sciences, The Assam Kaziranga University, Jorhat, Assam PIN 785006, India
| | - Jayanta K Sarmah
- Department of Chemistry, School of Basic Sciences, The Assam Kaziranga University, Jorhat, Assam PIN 785006, India.
| | - Sudeepta Baruah
- Department of Chemistry, School of Basic Sciences, The Assam Kaziranga University, Jorhat, Assam PIN 785006, India
| | - Rekha Rani Dutta
- Department of Chemistry, School of Basic Sciences, The Assam Kaziranga University, Jorhat, Assam PIN 785006, India
| |
Collapse
|
4
|
Rossomme E, Hart-Cooper WM, Orts WJ, McMahan CM, Head-Gordon M. Computational Studies of Rubber Ozonation Explain the Effectiveness of 6PPD as an Antidegradant and the Mechanism of Its Quinone Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5216-5230. [PMID: 36961979 PMCID: PMC10079164 DOI: 10.1021/acs.est.2c08717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
The discovery that the commercial rubber antidegradant 6PPD reacts with ozone (O3) to produce a highly toxic quinone (6PPDQ) spurred a significant research effort into nontoxic alternatives. This work has been hampered by lack of a detailed understanding of the mechanism of protection that 6PPD affords rubber compounds against ozone. Herein, we report high-level density functional theory studies into early steps of rubber and PPD (p-phenylenediamine) ozonation, identifying key steps that contribute to the antiozonant activity of PPDs. In this, we establish that our density functional theory approach can achieve chemical accuracy for many ozonation reactions, which are notoriously difficult to model. Using adiabatic energy decomposition analysis, we examine and dispel the notion that one-electron charge transfer initiates ozonation in these systems, as is sometimes argued. Instead, we find direct interaction between O3 and the PPD aromatic ring is kinetically accessible and that this motif is more significant than interactions with PPD nitrogens. The former pathway results in a hydroxylated PPD intermediate, which reacts further with O3 to afford 6PPD hydroquinone and, ultimately, 6PPDQ. This mechanism directly links the toxicity of 6PPDQ to the antiozonant function of 6PPD. These results have significant implications for development of alternative antiozonants, which are discussed.
Collapse
Affiliation(s)
- Elliot Rossomme
- Bioproducts
Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, California 94710, United States
- Berkeley
Center for Green Chemistry, University of
California, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - William M. Hart-Cooper
- Bioproducts
Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, California 94710, United States
| | - William J. Orts
- Bioproducts
Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, California 94710, United States
| | - Colleen M. McMahan
- Bioproducts
Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, California 94710, United States
| | - Martin Head-Gordon
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Kenneth
S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
5
|
Li X, Zhang J, Liu C, Mu W, Kong Z, Li Y, Wang Z, Yu Q, Cheng G, Chen L. Effects of Pine Needle Extracts on the Degradation of LLDPE. Polymers (Basel) 2022; 15:polym15010032. [PMID: 36616382 PMCID: PMC9824879 DOI: 10.3390/polym15010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Polyolefin suffers from degradation during processing and application. To prolong the service life, antioxidants are needed in the packing formula of polyolefin products. The usage of natural antioxidants could avoid potential health hazards aroused by synthetic ones. Pine needles have long lives and hardly rot, suggesting their high resistance to degradation. To provide a new candidate of natural antioxidants and add more value to pine needles, pine needle extracts (PNE) were investigated as the antioxidant of linear low-density polyethylene (LLDPE). PNE-modified LLDPE (PE-PNE) exhibited much better short-term and long-term aging resistance than pure LLDPE (PE): Oxidation induction time (OIT) of PE-PNE was 52 times higher than that of PE, and the increments of carbonyl index (CI) of PE-PNE-1st samples placed under daylight and in the dark were approximately 75% and 63% of PE under the same conditions. It could be attributed to the attractive antioxidant capacity of PNE (IC50 of DPPH radical scavenging was 115 μg/mL). In addition, the PE-PNE sample showed high processing stability and maintenance of the mechanical property during multiple extrusions: only a 0.2 g/10 min decrease in melting flow rate was found after five extrusions; the tensile strength and elongation at break were almost unchanged. All results reveal that pine needle extracts could play a role in LLDPE stabilization. Moreover, as pine needles are mainly considered a kind of waste, the present study would benefit the budget-reducing polyolefin industry.
Collapse
Affiliation(s)
- Xiangyao Li
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Jie Zhang
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Chengchao Liu
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Wenmin Mu
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Zhe Kong
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yan Li
- School of Biological and Chemical Engineering, Qingdao Technical College, Qingdao 266555, China
| | - Zhongwei Wang
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Qing Yu
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- Correspondence: (Q.Y.); (L.C.)
| | - Guiqing Cheng
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Long Chen
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- Correspondence: (Q.Y.); (L.C.)
| |
Collapse
|
6
|
Chioreanu A, Mot IC, Horhat DI, Balica NC, Sarau CA, Morar R, Domuta EM, Dumitru C, Negrean RA, Bumbu BA, Ravulapalli M, Alambaram S, Akshay R, Pricop M. Development and Preliminary Characterization of Polyester-Urethane Microparticles Used in Curcumin Drug Delivery System for Oropharyngeal Cancer. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1689. [PMID: 36422227 PMCID: PMC9693431 DOI: 10.3390/medicina58111689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 07/30/2023]
Abstract
Background and Objectives: Curcumin (Cc) as an active substance is known for its anti-inflammatory, anticoagulant, antioxidant, and anti-carcinogenic effects, together with its role in cholesterol regulation, and its use in different gastrointestinal derangements. On the other hand, curcumin can be used for its properties as an inactive substance, with Cc particles being more often tested in pharmaceutical formulations for drug delivery, with promising safety records and kinetics. The aim of this research was to obtain and characterize polyurethane microparticles that can be used as a carrier with a controlled Cc release. Materials and Methods: The in vitro samples were characterized by the Zetasizer procedure, and UV-Vis spectroscopy, while the in-vivo measurements on human subjects were performed by non-invasive skin assays (trans-epidermal water loss, erythema, and skin hydration). A total of 16 patients with oropharyngeal cancer stages II and III in equal proportions were recruited for participation. Results: The experimental values of sample characteristics using the Zetasizer identified a mean structural size of 215 nm in the polyester-urethane preparate (PU), compared to 271 nm in the curcumin-based PU. Although the size was statistically significantly different, the IPDI and Zeta potential did not differ significantly (22.91 mV vs. 23.74 mV). The average age during the study period was 57.6 years for patients in the PU group, respectively, and 55.1 years in those who received the curcumin preparations. The majority of oropharyngeal cancers were of HPV-related etiology. There were no significant side effects; 75.0% of patients in the PU group reporting no side effects, compared to 87.5% in the Cc group. The 48 h TEWL measurement at the end of the experiment found a statistically significant difference between the PU and the Cc group (2.2 g/h/m2 vs. 2.6 g/h/m2). The erythema assessment showed a starting measurement point for both research groups with a 5.1-unit difference. After 48 h, the difference between PU and PU_Cc was just 1.7 units (p-value = 0.576). The overall difference compared to the reference group with sodium lauryl sulfate (SLS) was statistically significant at a 95% significance level. Conclusions: Our findings indicate the obtaining of almost homogeneous particles with a medium tendency to form agglomerations, with a good capacity of encapsulation (around 60%), a medium release rate, and a non-irritative potential. Therefore, this polyester-urethane with Cc microparticles can be tested in other clinical evaluations.
Collapse
Affiliation(s)
- Alexandru Chioreanu
- Department of Ear-Nose-Throat, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Ion Cristian Mot
- Department of Ear-Nose-Throat, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Delia Ioana Horhat
- Department of Ear-Nose-Throat, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Nicolae Constantin Balica
- Department of Ear-Nose-Throat, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Cristian Andrei Sarau
- Department of Ear-Nose-Throat, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Raluca Morar
- Department of Ear-Nose-Throat, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Eugenia Maria Domuta
- Surgery Department, Faculty of Medicine and Pharmacy, University of Oradea, Piata 1 Decembrie 10, 410073 Oradea, Romania
| | - Catalin Dumitru
- Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
| | | | - Bogdan Andrei Bumbu
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Madhavi Ravulapalli
- School of General Medicine, Bhaskar Medical College, Amdapur Road 156-162, Hyderabad 500075, India
| | - Satish Alambaram
- School of General Medicine, Bhaskar Medical College, Amdapur Road 156-162, Hyderabad 500075, India
| | - Raja Akshay
- Malla Reddy Institute of Medical Sciences, Suraram Main Road 138, Hyderabad 500055, India
| | - Marius Pricop
- Discipline of Oral and Maxillo-Facial Surgery, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| |
Collapse
|
7
|
Mayer J, Metzsch-Zilligen E, Pfaendner R. Corrected version: Novel multifunctional antioxidants for polymers using eugenol as biogenic building block. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.109954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Rachtanapun P, Klunklin W, Jantrawut P, Jantanasakulwong K, Phimolsiripol Y, Seesuriyachan P, Leksawasdi N, Chaiyaso T, Ruksiriwanich W, Phongthai S, Sommano SR, Punyodom W, Reungsang A, Ngo TMP. Characterization of Chitosan Film Incorporated with Curcumin Extract. Polymers (Basel) 2021; 13:polym13060963. [PMID: 33801132 PMCID: PMC8004135 DOI: 10.3390/polym13060963] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 12/25/2022] Open
Abstract
Curcumin is a phenolic compound derived from turmeric roots (Curcuma longa L.). This research studied the effects of curcumin extract on the properties of chitosan films. The film characteristics measured included mechanical properties, visual aspects, color parameters, light transmission, moisture content, water solubility, water vapor permeability, infrared spectroscopy, and antioxidant activity. The results suggest that adding curcumin to chitosan-based films increases yellowness and light barriers. Infrared spectroscopy analysis showed interactions between the phenolic compounds of the extract and the chitosan, which may have improved the mechanical properties and reduced the moisture content, water solubility, and water vapor permeability of the films. The antioxidant activity of the films increased with increasing concentrations of the curcumin extract. This study shows the potential benefits of incorporating curcumin extract into chitosan films used as active packaging.
Collapse
Affiliation(s)
- Pornchai Rachtanapun
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (W.K.); (K.J.); (Y.P.); (P.S.); (N.L.); (T.C.); (S.P.)
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; (P.J.); (W.R.)
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; (S.R.S.); (W.P.)
- Correspondence:
| | - Warinporn Klunklin
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (W.K.); (K.J.); (Y.P.); (P.S.); (N.L.); (T.C.); (S.P.)
| | - Pensak Jantrawut
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; (P.J.); (W.R.)
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kittisak Jantanasakulwong
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (W.K.); (K.J.); (Y.P.); (P.S.); (N.L.); (T.C.); (S.P.)
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; (P.J.); (W.R.)
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; (S.R.S.); (W.P.)
| | - Yuthana Phimolsiripol
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (W.K.); (K.J.); (Y.P.); (P.S.); (N.L.); (T.C.); (S.P.)
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; (P.J.); (W.R.)
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; (S.R.S.); (W.P.)
| | - Phisit Seesuriyachan
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (W.K.); (K.J.); (Y.P.); (P.S.); (N.L.); (T.C.); (S.P.)
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; (P.J.); (W.R.)
| | - Noppol Leksawasdi
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (W.K.); (K.J.); (Y.P.); (P.S.); (N.L.); (T.C.); (S.P.)
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; (P.J.); (W.R.)
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; (S.R.S.); (W.P.)
| | - Thanongsak Chaiyaso
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (W.K.); (K.J.); (Y.P.); (P.S.); (N.L.); (T.C.); (S.P.)
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; (P.J.); (W.R.)
| | - Warintorn Ruksiriwanich
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; (P.J.); (W.R.)
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Suphat Phongthai
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (W.K.); (K.J.); (Y.P.); (P.S.); (N.L.); (T.C.); (S.P.)
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; (P.J.); (W.R.)
| | - Sarana Rose Sommano
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; (S.R.S.); (W.P.)
- Plant Bioactive Compound Laboratory (BAC), Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Winita Punyodom
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; (S.R.S.); (W.P.)
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Alissara Reungsang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand;
- Research Group for Development of Microbial Hydrogen Production Process, Khon Kaen University, Khon Kaen 40002, Thailand
- Academy of Science, Royal Society of Thailand, Bangkok 10300, Thailand
| | - Thi Minh Phuong Ngo
- Department of Chemical Technology and Environment, The University of Danang-University of Technology and Education, Danang 550000, Vietnam;
| |
Collapse
|
9
|
Concerning Synthesis of New Biobased Polycarbonates with Curcumin in Replacement of Bisphenol A and Recycled Diphenyl Carbonate as Example of Circular Economy. Polymers (Basel) 2021; 13:polym13030361. [PMID: 33498668 PMCID: PMC7866156 DOI: 10.3390/polym13030361] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 11/25/2022] Open
Abstract
Curcumin (CM) is a natural polyphenol well-known for its antioxidant and pharmaceutical properties, that can represent a renewable alternative to bisphenol A (BPA) for the synthesis of bio-based polycarbonates (PC). In the presented strategy, preparation of the CM-based PC was coupled with chemical recycling of the fossil-based BPA polycarbonate (BPA-PC) conducting a two-steps trans-polymerization that replaces BPA monomer with CM or its tetrahydrogenated colorless product (THCM). In the first step of synthetic strategy, depolymerization of commercial BPA-PC was carried out with phenol as nucleophile, according to our previous procedure based on zinc derivatives and ionic liquids as catalysts, thus producing quantitatively diphenyl carbonate (DPC) e BPA. In the second step, DPC underwent a melt transesterification with CM or THCM monomers affording the corresponding bio-based polycarbonates, CM-PC and THCM-PC, respectively. THCM was prepared by reducing natural bis-phenol with cyclohexene as a hydrogen donor and characterized by 1H-NMR and MS techniques. Polymerization reactions were monitored by infrared spectroscopy and average molecular weights and dispersity of the two biobased polymers THCM-PC and CM-PC were determined by means of gel permeation chromatography (GPC). Optical properties of the prepared polymers were also measured.
Collapse
|
10
|
On the Use of Phenolic Compounds Present in Citrus Fruits and Grapes as Natural Antioxidants for Thermo-Compressed Bio-Based High-Density Polyethylene Films. Antioxidants (Basel) 2020; 10:antiox10010014. [PMID: 33375591 PMCID: PMC7823819 DOI: 10.3390/antiox10010014] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 01/04/2023] Open
Abstract
This study originally explores the use of naringin (NAR), gallic acid (GA), caffeic acid (CA), and quercetin (QUER) as natural antioxidants for bio-based high-density polyethylene (bio-HDPE). These phenolic compounds are present in various citrus fruits and grapes and can remain in their leaves, peels, pulp, and seeds as by-products or wastes after juice processing. Each natural additive was first melt-mixed at 0.8 parts per hundred resin (phr) of bio-HDPE by extrusion and the resultant pellets were shaped into films by thermo-compression. Although all the phenolic compounds colored the bio-HDPE films, their contact transparency was still preserved. The chemical analyses confirmed the successful inclusion of the phenolic compounds in bio-HDPE, though their interaction with the green polyolefin matrix was low. The mechanical performance of the bio-HDPE films was nearly unaffected by the natural compounds, presenting in all cases a ductile behavior. Interestingly, the phenolic compounds successfully increased the thermo-oxidative stability of bio-HDPE, yielding GA and QUER the highest performance. In particular, using these phenolic compounds, the onset oxidation temperature (OOT) value was improved by 43 and 41.5 °C, respectively. Similarly, the oxidation induction time (OIT) value, determined in isothermal conditions at 210 °C, increased from 4.5 min to approximately 109 and 138 min. Furthermore, the onset degradation temperature in air of bio-HDPE, measured for the 5% of mass loss (T5%), was improved by up to 21 °C after the addition of NAR. Moreover, the GA- and CA-containing bio-HDPE films showed a high antioxidant activity in alcoholic solution due to their favored release capacity, which opens up novel opportunities in active food packaging. The improved antioxidant performance of these phenolic compounds was ascribed to the multiple presence of hydroxyl groups and aromatic heterocyclic rings that provide these molecules with the features to permit the delocalization and the scavenging of free radicals. Therefore, the here-tested phenolic compounds, in particular QUER, can represent a sustainable and cost-effective alternative of synthetic antioxidants in polymer and biopolymer formulations, for which safety and environmental issues have been raised over time.
Collapse
|
11
|
Xia H, Gao H, Sun Q, Wu F, Ge T, Sui K, Wang Z, Song L, Huang X, Yu Q. Puerarin, an efficient natural stabilizer for both polyethylene and
polypropylene. J Appl Polym Sci 2020. [DOI: 10.1002/app.49599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Huimin Xia
- Shandong University of Science and Technology College of Materials Science and Engineering Qingdao China
| | - Hui Gao
- Shandong University of Science and Technology College of Materials Science and Engineering Qingdao China
| | - Qiqi Sun
- Shandong University of Science and Technology College of Materials Science and Engineering Qingdao China
| | - Fazong Wu
- Shandong University of Science and Technology College of Materials Science and Engineering Qingdao China
| | - Tengteng Ge
- Shandong University of Science and Technology College of Materials Science and Engineering Qingdao China
| | - Kun Sui
- Shandong University of Science and Technology College of Materials Science and Engineering Qingdao China
| | - Zhongwei Wang
- Shandong University of Science and Technology College of Materials Science and Engineering Qingdao China
| | - Liang Song
- Shandong University of Science and Technology College of Materials Science and Engineering Qingdao China
| | - Xiaowen Huang
- Shandong University of Science and Technology College of Materials Science and Engineering Qingdao China
| | - Qing Yu
- Shandong University of Science and Technology College of Materials Science and Engineering Qingdao China
| |
Collapse
|
12
|
Li C, Li Y, Xia X, Huang J, Sun P, Zhang N, Wang J, Li F. Influence of the chemical structure of para‐bridged group on the antioxidant behavior of hindered phenol antioxidants in HDPE resin. J Appl Polym Sci 2020. [DOI: 10.1002/app.49505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Cuiqin Li
- Provincial Key Laboratory of Oil&Gas Chemical Technology, College of Chemistry & EngineeringNortheast Petroleum University Daqing Heilongjiang China
| | - Yang Li
- Provincial Key Laboratory of Oil&Gas Chemical Technology, College of Chemistry & EngineeringNortheast Petroleum University Daqing Heilongjiang China
| | - Xinxin Xia
- Provincial Key Laboratory of Oil&Gas Chemical Technology, College of Chemistry & EngineeringNortheast Petroleum University Daqing Heilongjiang China
| | - Jin Huang
- Provincial Key Laboratory of Oil&Gas Chemical Technology, College of Chemistry & EngineeringNortheast Petroleum University Daqing Heilongjiang China
- Heilongjiang Provincial Key Laboratory of Oilfield Applied Chemistry and TechnologyDaqing Normal University Daqing Heilongjiang China
| | - Peng Sun
- Provincial Key Laboratory of Oil&Gas Chemical Technology, College of Chemistry & EngineeringNortheast Petroleum University Daqing Heilongjiang China
| | - Na Zhang
- Provincial Key Laboratory of Oil&Gas Chemical Technology, College of Chemistry & EngineeringNortheast Petroleum University Daqing Heilongjiang China
| | - Jun Wang
- Provincial Key Laboratory of Oil&Gas Chemical Technology, College of Chemistry & EngineeringNortheast Petroleum University Daqing Heilongjiang China
| | - Feng Li
- Provincial Key Laboratory of Oil&Gas Chemical Technology, College of Chemistry & EngineeringNortheast Petroleum University Daqing Heilongjiang China
| |
Collapse
|
13
|
Xia H, Sui K, Ge T, Wu F, Sun Q, Wang Z, Song L, Huang X, Yu Q. Natural compounds from
Punica granatum
peel as multiple stabilizers for polyethylene. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Huimin Xia
- Shandong University of Science and Technology College of Materials Science and Engineering Qingdao China
| | - Kun Sui
- Shandong University of Science and Technology College of Materials Science and Engineering Qingdao China
| | - Tengteng Ge
- Shandong University of Science and Technology College of Materials Science and Engineering Qingdao China
| | - Fazong Wu
- Shandong University of Science and Technology College of Materials Science and Engineering Qingdao China
| | - Qiqi Sun
- Shandong University of Science and Technology College of Materials Science and Engineering Qingdao China
| | - Zhongwei Wang
- Shandong University of Science and Technology College of Materials Science and Engineering Qingdao China
| | - Liang Song
- Shandong University of Science and Technology College of Materials Science and Engineering Qingdao China
| | - Xiaowen Huang
- Shandong University of Science and Technology College of Materials Science and Engineering Qingdao China
| | - Qing Yu
- Shandong University of Science and Technology College of Materials Science and Engineering Qingdao China
| |
Collapse
|
14
|
Schyns ZOG, Shaver MP. Mechanical Recycling of Packaging Plastics: A Review. Macromol Rapid Commun 2020; 42:e2000415. [DOI: 10.1002/marc.202000415] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/14/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Zoé O. G. Schyns
- Department of Materials The University of Manchester Manchester M1 7DN UK
| | - Michael P. Shaver
- Department of Materials The University of Manchester Manchester M1 7DN UK
| |
Collapse
|
15
|
Shababdoust A, Zandi M, Ehsani M, Shokrollahi P, Foudazi R. Controlled curcumin release from nanofibers based on amphiphilic-block segmented polyurethanes. Int J Pharm 2019; 575:118947. [PMID: 31837404 DOI: 10.1016/j.ijpharm.2019.118947] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/03/2019] [Accepted: 12/07/2019] [Indexed: 01/04/2023]
Abstract
A series of biodegradable amphiphilic-block segmented polyurethanes (SPUs) are designed and synthesized based on di-block and tri-block macrodiols of polycaprolactone (PCL) and polyethylene glycol (PEG). Curcumin, as a model herbal antibacterial agent, is used due to its effective inhibitory action against Gram-positive and Gram-negative bacteria. Curcumin-loaded nanofibers, with 400-900 nm diameter range, have been prepared by electrospinning of SPUs. The synthesized SPUs can be used for wound dressing applications due to their excellent mechanical properties and higher hydrophilicity in comparison to PCL-based polyurethane. The elongation-at-break of tri-block SPU with PEG-PCL-PEG soft segments is 350% when produced as an electrospun mat and that for film is 1500%. In vitro release of curcumin, examined by UV-Vis spectroscopy, shows a steady release during 18 days. The inclusion of PEG chains in the soft segment increases the hydrophilicity and biodegradation rate of the electrospun mats compared to a PCL-based polyurethane, which eventually results in a higher curcumin release rate. The antibacterial activity of 50 mg of 10% curcumin-loaded SPU nanofibers is about 100% and 93% against Escherichia coli (E. coli ATCC: 25922) and Staphylococcus aureus (S. aureus ATCC: 6538), respectively. Nontoxic behavior of the scaffolds is evaluated through MTT assay against L929 mouse fibroblast cells. The results show that the synthesized SPUs can be used as a nanoscale sustained release carrier. The SPU with PEG-PCL-PEG soft segments is an excellent candidate for wound dressing in tissues undergoing large deformations during normal activities.
Collapse
Affiliation(s)
- Ali Shababdoust
- Biomaterials Department, Iran Polymer and Petrochemical Institute, P.O. Box: 14965/115, Tehran, Iran
| | - Mojgan Zandi
- Biomaterials Department, Iran Polymer and Petrochemical Institute, P.O. Box: 14965/115, Tehran, Iran.
| | - Morteza Ehsani
- Plastic Department, Iran Polymer and Petrochemical Institute, P.O. Box: 14965/115, Tehran, Iran
| | - Parvin Shokrollahi
- Biomaterials Department, Iran Polymer and Petrochemical Institute, P.O. Box: 14965/115, Tehran, Iran
| | - Reza Foudazi
- Department of Chemical & Materials Engineering, New Mexico State University, MSC 3805, P.O. Box: 30001, Las Cruces, NM 88003-3805, USA
| |
Collapse
|
16
|
Nanni A, Battegazzore D, Frache A, Messori M. Thermal and UV aging of polypropylene stabilized by wine seeds wastes and their extracts. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2019.04.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
17
|
Zia J, Paul UC, Heredia-Guerrero JA, Athanassiou A, Fragouli D. Low-density polyethylene/curcumin melt extruded composites with enhanced water vapor barrier and antioxidant properties for active food packaging. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.05.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
|
19
|
Diouf-Lewis A, Commereuc S, Verney V. Biowastes from wine as natural additive of polyolefins: Thermo- and photo-oxidation efficiency. J Appl Polym Sci 2018. [DOI: 10.1002/app.46607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Audrey Diouf-Lewis
- SIGMA Clermont, CNRS, Université Clermont Auvergne, Institut de Chimie de Clermont-Ferrand; Clermont-Ferrand F-63000 France
| | - Sophie Commereuc
- SIGMA Clermont, CNRS, Université Clermont Auvergne, Institut de Chimie de Clermont-Ferrand; Clermont-Ferrand F-63000 France
| | - Vincent Verney
- SIGMA Clermont, CNRS, Université Clermont Auvergne, Institut de Chimie de Clermont-Ferrand; Clermont-Ferrand F-63000 France
| |
Collapse
|
20
|
Hári J, Sárközi M, Földes E, Pukánszky B. Long term stabilization of PE by the controlled release of a natural antioxidant from halloysite nanotubes. Polym Degrad Stab 2018. [DOI: 10.1016/j.polymdegradstab.2017.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
|
22
|
|
23
|
Kirschweng B, Bencze K, Sárközi M, Hégely B, Samu G, Hári J, Tátraaljai D, Földes E, Kállay M, Pukánszky B. Melt stabilization of polyethylene with dihydromyricetin, a natural antioxidant. Polym Degrad Stab 2016. [DOI: 10.1016/j.polymdegradstab.2016.08.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Doudin K, Al-Malaika S, Sheena H, Tverezovskiy V, Fowler P. New genre of antioxidants from renewable natural resources: Synthesis and characterisation of rosemary plant-derived antioxidants and their performance in polyolefins. Polym Degrad Stab 2016. [DOI: 10.1016/j.polymdegradstab.2016.05.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Efficiency of curcumin, a natural antioxidant, in the processing stabilization of PE: Concentration effects. Polym Degrad Stab 2015. [DOI: 10.1016/j.polymdegradstab.2015.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Thermo-oxidative resistant nanocomposites containing novel hybrid-nanoparticles based on natural polyphenol and carbon nanotubes. Polym Degrad Stab 2015. [DOI: 10.1016/j.polymdegradstab.2015.02.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Tátraaljai D, Földes E, Pukánszky B. Efficient melt stabilization of polyethylene with quercetin, a flavonoid type natural antioxidant. Polym Degrad Stab 2014. [DOI: 10.1016/j.polymdegradstab.2014.02.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Ambrogi V, Panzella L, Persico P, Cerruti P, Lonz CA, Carfagna C, Verotta L, Caneva E, Napolitano A, d'Ischia M. An antioxidant bioinspired phenolic polymer for efficient stabilization of polyethylene. Biomacromolecules 2013; 15:302-10. [PMID: 24313867 DOI: 10.1021/bm4015478] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The synthesis, structural characterization and properties of a new bioinspired phenolic polymer (polyCAME) produced by oxidative polymerization of caffeic acid methyl ester (CAME) with horseradish peroxidase (HRP)-H2O2 is reported as a new sustainable stabilizer toward polyethylene (PE) thermal and photo-oxidative degradation. PolyCAME exhibits high stability toward decarboxylation and oxidative degradation during the thermal processes associated with PE film preparation. Characterization of PE films by thermal methods, photo-oxidative treatments combined with chemiluminescence, and FTIR spectroscopy and mechanical tests indicate a significant effect of polyCAME on PE durability. Data from antioxidant capacity tests suggest that the protective effects of polyCAME are due to the potent scavenging activity on aggressive OH radicals, the efficient H-atom donor properties inducing free radical quenching, and the ferric ion reducing ability. PolyCAME is thus proposed as a novel easily accessible, eco-friendly, and biocompatible biomaterial for a sustainable approach to the stabilization of PE films in packaging and other applications.
Collapse
Affiliation(s)
- Veronica Ambrogi
- Department of Materials and Production Engineering, University of Naples "Federico II" , P.le Tecchio 80, 80125 Napoli, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
|