1
|
Sinha S, Das S, Ray KK, Maity S, Roymahapatra G, Giri S. In silico investigation on the separation of disulfide bonds by N-heterocyclic carbene. Phys Chem Chem Phys 2024; 26:23073-23079. [PMID: 39176465 DOI: 10.1039/d4cp02672a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Herein, the separation of a disulfide bond using different nucleophilic agents like tri-methyl phosphine (TMP), tris (2-carboxyethyl) phosphine (TCEP), and N-heterocyclic carbene (NHC) has been investigated. Both TMP and TCEP have demonstrated their ability to break disulfide bonds through the SN2 mechanism. However, it is worth noting that these reactions are endothermic. While searching for a suitable nucleophile, it was observed that the NHC-mediated reaction was exothermic. The natural bond orbital (NBO), principal interacting orbital (PIO) and extended transition state-natural orbitals for chemical valence (ETS-NOCV) studies help understand the electron transfer process between interacting orbitals during the chemical reactions.
Collapse
Affiliation(s)
- Swapan Sinha
- School of Applied Science and Humanities, Haldia Institute of Technology, Haldia, 721657, India.
- Maulana Abul Kalam Azad University of Technology, Haringhata, 741249, India
| | - Subhra Das
- School of Applied Science and Humanities, Haldia Institute of Technology, Haldia, 721657, India.
- Department of Chemistry, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, 736101, India
| | - Kritish Kumar Ray
- Department of Chemistry, National Institute of Technology Rourkela, Odisha, 769008, India
| | - Sibaprasad Maity
- Sagardighi Kamada Kinkar Smriti Mahavidyalaya, Murshidabad, West Bengal, 742226, India
| | - Gourisankar Roymahapatra
- School of Applied Science and Humanities, Haldia Institute of Technology, Haldia, 721657, India.
| | - Santanab Giri
- School of Applied Science and Humanities, Haldia Institute of Technology, Haldia, 721657, India.
| |
Collapse
|
2
|
Passos J, Lopes LB, Panitch A. Collagen-Binding Nanoparticles for Paclitaxel Encapsulation and Breast Cancer Treatment. ACS Biomater Sci Eng 2023; 9:6805-6820. [PMID: 37982792 PMCID: PMC10716849 DOI: 10.1021/acsbiomaterials.3c01332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/21/2023]
Abstract
In this study, we developed a novel hybrid collagen-binding nanocarrier for potential intraductal administration and local breast cancer treatment. The particles were formed by the encapsulation of nanostructured lipid carriers (NLCs) containing the cytotoxic drug paclitaxel within a shell of poly(N-isopropylacrylamide) (pNIPAM), and were functionalized with SILY, a peptide that binds to collagen type I (which is overexpressed in the mammary tumor microenvironment) to improve local retention and selectivity. The encapsulation of the NLCs in the pNIPAM shell increased nanoparticle size by approximately 140 nm, and after purification, a homogeneous system of hybrid nanoparticles (∼96%) was obtained. The nanoparticles exhibited high loading efficiency (<76%) and were capable of prolonging paclitaxel release for up to 120 h. SILY-modified nanoparticles showed the ability to bind to collagen-coated surfaces and naturally elaborated collagen. Hybrid nanoparticles presented cytotoxicity up to 3.7-fold higher than pNIPAM-only nanoparticles on mammary tumor cells cultured in monolayers. In spheroids, the increase in cytotoxicity was up to 1.8-fold. Compared to lipid nanoparticles, the hybrid nanoparticle modified with SILY increased the viability of nontumor breast cells by up to 1.59-fold in a coculture model, suggesting the effectiveness and safety of the system.
Collapse
Affiliation(s)
- Julia
Sapienza Passos
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- Department
of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP 05508-000, Brazil
| | - Luciana B. Lopes
- Department
of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP 05508-000, Brazil
| | - Alyssa Panitch
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| |
Collapse
|
3
|
Mercer IG, Italiano AN, Gazaryan IG, Steiner AB, Kazakov SV. Degradation Kinetics of Disulfide Cross-Linked Microgels: Real-Time Monitoring by Confocal Microscopy. Gels 2023; 9:782. [PMID: 37888355 PMCID: PMC10606370 DOI: 10.3390/gels9100782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Although biodegradable microgels represent a useful drug delivery system, questions remain regarding the kinetics of gel degradation and subsequent drug release. Spherical microgels (~Ø10-300 µm) were synthesized using an inverse suspension polymerization method. Specifically, acrylamide and acrylonitrile monomers were thermally co-polymerized with N,N'-bis(acryloyl)cystamine as a cross-linker with disulfide bridges. The kinetics and mechanism of degradation of these cross-linked, degradable, fluorescently labeled microgels (PAAm-AN-BAC-FA) were quantitatively studied under confocal microscopy at various concentrations of glutathione (reducing agent) ranging from 0.06 to 91.8 mM. It was found that polymer network degradation via the cleavage of disulfide bonds was accompanied by two overlapping processes: diffusion-driven swelling and dissolution-driven erosion. A slow increase in microgel size (swelling) resulted from partial de-cross-linking in the bulk of the microgel, whereas a faster decrease in fluorescence intensity (erosion) resulted from the complete cleavage of disulfide bonds and the release of uncleaved polymeric chains from the microgel immediate surface into the solution. Swelling and erosion exhibited distinct kinetics and characteristic times. Importantly, the dependence of kinetics on glutathione concentration for both swelling and erosion suggests that degradation would occur faster in cancer cells (higher concentration of reductants) than in normal cells (lower concentration of reductants), such that drug release profiles would be correspondingly different. A greater comprehension of microgel degradation kinetics would help in (i) predicting the drug release profiles for novel multifunctional drug delivery systems and (ii) using redox-sensitive degradable hydrogel particles to determine the concentrations of reducing agents either in vitro or in vivo.
Collapse
Affiliation(s)
- Iris G. Mercer
- Department of Chemistry and Physical Sciences, Pace University, Pleasantville, NY 10570, USA; (I.G.M.); (A.N.I.); (I.G.G.)
| | - Angelina N. Italiano
- Department of Chemistry and Physical Sciences, Pace University, Pleasantville, NY 10570, USA; (I.G.M.); (A.N.I.); (I.G.G.)
| | - Irina G. Gazaryan
- Department of Chemistry and Physical Sciences, Pace University, Pleasantville, NY 10570, USA; (I.G.M.); (A.N.I.); (I.G.G.)
| | - Aaron B. Steiner
- Department of Biology, Pace University, Pleasantville, NY 10570, USA;
| | - Sergey V. Kazakov
- Department of Chemistry and Physical Sciences, Pace University, Pleasantville, NY 10570, USA; (I.G.M.); (A.N.I.); (I.G.G.)
| |
Collapse
|
4
|
Younas F, Zaman M, Aman W, Farooq U, Raja MAG, Amjad MW. Thiolated Polymeric Hydrogels for Biomedical Applications: A Review. Curr Pharm Des 2023; 29:3172-3186. [PMID: 37622704 DOI: 10.2174/1381612829666230825100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/06/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023]
Abstract
Hydrogels are a three-dimensional (3D) network of hydrophilic polymers. The physical and chemical crosslinking of polymeric chains maintains the structure of the hydrogels even when they are swollen in water. They can be modified with thiol by thiol epoxy, thiol-ene, thiol-disulfide, or thiol-one reactions. Their application as a matrix for protein and drug delivery, cellular immobilization, regenerative medicine, and scaffolds for tissue engineering was initiated in the early 21st century. This review focuses on the ingredients, classification techniques, and applications of hydrogels, types of thiolation by different thiol-reducing agents, along with their mechanisms. In this study, different applications for polymers used in thiolated hydrogels, including dextran, gelatin, polyethylene glycol (PEG), cyclodextrins, chitosan, hyaluronic acid, alginate, poloxamer, polygalacturonic acid, pectin, carrageenan gum, arabinoxylan, carboxymethyl cellulose (CMC), gellan gum, and polyvinyl alcohol (PVA) are reviewed.
Collapse
Affiliation(s)
- Farhan Younas
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | - Muhammad Zaman
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | - Waqar Aman
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | - Umer Farooq
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | | | - Muhammad Wahab Amjad
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, PA 15213, USA
| |
Collapse
|
5
|
Dynamic Chemistry: The Next Generation Platform for Various Elastomers and Their Mechanical Properties with Self-Healing Performance. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
6
|
Tao Y, Liang X, Zhang J, Lei IM, Liu J. Polyurethane vitrimers: Chemistry, properties and applications. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yue Tao
- Department of Mechanical and Energy Engineering Southern University of Science and Technology Shenzhen China
| | - Xiangyu Liang
- Department of Mechanical and Energy Engineering Southern University of Science and Technology Shenzhen China
- Agricultural Genomics Institute at Shenzhen Chinese Academy of Agricultural Sciences Shenzhen China
- Institute of Bast Fiber Crops and Center of Southern Economic Crops Chinese Academy of Agricultural Sciences Changsha China
| | - Jun Zhang
- Department of Mechanical and Energy Engineering Southern University of Science and Technology Shenzhen China
| | - Iek Man Lei
- Department of Mechanical and Energy Engineering Southern University of Science and Technology Shenzhen China
- Department of Electromechanical Engineering, Faculty of Science and Technology University of Macau Macau China
| | - Ji Liu
- Department of Mechanical and Energy Engineering Southern University of Science and Technology Shenzhen China
| |
Collapse
|
7
|
Room temperature Self-healable and extremely stretchable elastomer with improved mechanical Properties: Exploring a simplistic Metal-Ligand interaction. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Preparation and properties of the decomposable thermoreversible hydrogels based on novel dendritic crosslinkers derived from cystamine. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03664-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Pätzold F, Stamm N, Kamps D, Specht M, Bolduan P, Dehmelt L, Weberskirch R. Synthesis and Characterization of Cationic Hydrogels from Thiolated Copolymers for Independent Manipulation of Mechanical and Chemical Properties of Cell Substrates. Macromol Biosci 2022; 22:e2100453. [DOI: 10.1002/mabi.202100453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/17/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Florian Pätzold
- Faculty of Chemistry and Chemical Biology Otto‐Hahn‐Str. 6 TU Dortmund University Dortmund D‐44227 Germany
| | - Nils Stamm
- Faculty of Chemistry and Chemical Biology Otto‐Hahn‐Str. 6 TU Dortmund University Dortmund D‐44227 Germany
| | - Dominic Kamps
- Max‐Planck‐Institute of Molecular Physiology Otto‐Hahn‐Str. 11 Dortmund D‐44227 Germany
| | - Maria Specht
- Faculty of Chemistry and Chemical Biology Otto‐Hahn‐Str. 6 TU Dortmund University Dortmund D‐44227 Germany
| | - Patrick Bolduan
- Faculty of Chemistry and Chemical Biology Otto‐Hahn‐Str. 6 TU Dortmund University Dortmund D‐44227 Germany
| | - Leif Dehmelt
- Max‐Planck‐Institute of Molecular Physiology Otto‐Hahn‐Str. 11 Dortmund D‐44227 Germany
| | - Ralf Weberskirch
- Faculty of Chemistry and Chemical Biology Otto‐Hahn‐Str. 6 TU Dortmund University Dortmund D‐44227 Germany
| |
Collapse
|
10
|
Mueller E, Poulin I, Bodnaryk WJ, Hoare T. Click Chemistry Hydrogels for Extrusion Bioprinting: Progress, Challenges, and Opportunities. Biomacromolecules 2022; 23:619-640. [PMID: 34989569 DOI: 10.1021/acs.biomac.1c01105] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The emergence of 3D bioprinting has allowed a variety of hydrogel-based "bioinks" to be printed in the presence of cells to create precisely defined cell-loaded 3D scaffolds in a single step for advancing tissue engineering and/or regenerative medicine. While existing bioinks based primarily on ionic cross-linking, photo-cross-linking, or thermogelation have significantly advanced the field, they offer technical limitations in terms of the mechanics, degradation rates, and the cell viabilities achievable with the printed scaffolds, particularly in terms of aiming to match the wide range of mechanics and cellular microenvironments. Click chemistry offers an appealing solution to this challenge given that proper selection of the chemistry can enable precise tuning of both the gelation rate and the degradation rate, both key to successful tissue regeneration; simultaneously, the often bio-orthogonal nature of click chemistry is beneficial to maintain high cell viabilities within the scaffolds. However, to date, relatively few examples of 3D-printed click chemistry hydrogels have been reported, mostly due to the technical challenges of controlling mixing during the printing process to generate high-fidelity prints without clogging the printer. This review aims to showcase existing cross-linking modalities, characterize the advantages and disadvantages of different click chemistries reported, highlight current examples of click chemistry hydrogel bioinks, and discuss the design of mixing strategies to enable effective 3D extrusion bioprinting of click hydrogels.
Collapse
Affiliation(s)
- Eva Mueller
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Isabelle Poulin
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - William James Bodnaryk
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| |
Collapse
|
11
|
Das M, Naskar K. Development, characterization and applications of a unique self-healable elastomer: Exploring a facile metal-ligand interaction. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124373] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Grace J, Flitz ES, Hwang DS, Bowden NB. Polymerization of Aniline Derivatives to Yield Poly[ N, N-(phenylamino)disulfides] as Polymeric Auxochromes. Macromolecules 2021; 54:10405-10414. [PMID: 34853482 PMCID: PMC8619564 DOI: 10.1021/acs.macromol.1c01548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/20/2021] [Indexed: 11/29/2022]
Abstract
Polymerizations of phenylamines with a disulfide transfer reagent to yield poly[N,N-(phenylamino) disulfides] (poly-NADs) were investigated due to their unique repeat units that resulted in conjugation along the backbone that was perturbed by the aromatic rings and gave different colors for the polymers. These polymers were synthesized from 10 different anilines and sulfur monochloride in a step-growth polymerization. The polymers were characterized by nuclear magnetic resonance spectroscopy, size exclusion chromatography-multiangle light scattering, and UV-vis spectroscopy. These polymers possessed a polymeric backbone solely consisting of nitrogen and sulfur [-N(R)SS-], which was conjugated and yielded polymers of moderate molecular weight. Most notably, these polymers were an array of colors ranging from pale yellow to a deep purple depending on the substitution of the aromatic ring. The more electron-poor systems produced lighter yellow polymers, while the electron-rich systems gave orange, green, red, and even purple polymers.
Collapse
Affiliation(s)
- James
P. Grace
- Department of Chemistry, University
of Iowa, Iowa City, Iowa 52242, United States
| | - Evan S. Flitz
- Department of Chemistry, University
of Iowa, Iowa City, Iowa 52242, United States
| | - Dae Sun Hwang
- Department of Chemistry, University
of Iowa, Iowa City, Iowa 52242, United States
| | - Ned B. Bowden
- Department of Chemistry, University
of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
13
|
Nechikkattu R, Kong J, Lee YS, Moon HJ, Bae JH, Kim SH, Park SS, Ha CS. Tunable multi-responsive nano-gated mesoporous silica nanoparticles as drug carriers. Colloids Surf B Biointerfaces 2021; 208:112119. [PMID: 34571469 DOI: 10.1016/j.colsurfb.2021.112119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022]
Abstract
Tunable multi-responsive mesoporous silica nanoparticles were prepared by post-condensation/surface modification of MCM-41 nanoparticles. Surface grafting of a poly(N,N-dimethylaminoethyl methacrylate)-based polymer containing disulfide bonds was achieved by a click reaction. Chemical modification, morphological characteristics, and textural properties of the nanoparticles were studied using multiple characterization techniques such as Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy, small-angle X-ray scattering, and nitrogen adsorption/desorption behavior. The nanoparticles retained the meso-structural integrity of MCM41 and particle size < 100 nm after grafting with the polymer. The pH and redox-responsive behavior of the nanoparticles were also studied. The nanoparticles possess excellent drug-loading capacity owing to their large surface area and 'closed gate' mechanism of the grafted polymer chains. The release profile of doxorubicin at two different pH (7.4 and 5.5) and in the presence of dithiothreitol showed a dual response behavior. The nano drug carrier device exhibited efficient intracellular uptake in cancer cells with suitable cytotoxicity and pharmacokinetic behavior, and may therefore be considered a good candidate for cancer therapy.
Collapse
Affiliation(s)
- Riyasudheen Nechikkattu
- Department of Polymer Science and Engineering, School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jungwon Kong
- Department of Polymer Science and Engineering, School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Young-Shin Lee
- Department of Biochemistry, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Hyun-Jung Moon
- Department of Biochemistry, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jae-Ho Bae
- Department of Biochemistry, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Sun-Hee Kim
- Department of Biochemistry, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Sung Soo Park
- Department of Polymer Science and Engineering, School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Chang-Sik Ha
- Department of Polymer Science and Engineering, School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
14
|
Lu CH, Yu CH, Yeh YC. Engineering nanocomposite hydrogels using dynamic bonds. Acta Biomater 2021; 130:66-79. [PMID: 34098090 DOI: 10.1016/j.actbio.2021.05.055] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/27/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
Nanocomposite (NC) hydrogels are promising biomaterials that possess versatile properties and functions for biomedical applications such as drug delivery, biosensor development, imaging and tissue engineering. Different strategies and chemistries have been utilized to define the structure and properties of NC hydrogels. In this review, we discuss NC hydrogels synthesized using dynamic bonds, including dynamic covalent bonds (e.g., Schiff base and boronate ester bond) and non-covalent bonds (e.g., hydrogen bonds and metal-ligand coordination). Dynamic bonds can reversibly break and reform to provide self-healing properties to NC hydrogels as well as be influenced by external factors to allow NC hydrogels with stimulus-responsiveness. The presence of dynamic bonds in NC hydrogels can occur at the polymer-polymer or polymer-particle interfaces, which also determines whether the particles act as fillers or crosslinkers in hydrogels. Several representative examples of NC hydrogels fabricated using dynamic bonds are discussed here, focusing on their design, preparation, properties, applications and future prospects. STATEMENT OF SIGNIFICANCE: This review provides an overview of the current progress in NC hydrogel development using dynamic bonds, summarizing the material design, fabrication approaches, unique performance and promising biomedical applications. The presence of both nanoparticles and dynamic bonds in hydrogels shows a combined or synergistic effect to provide hydrogels with dynamic features, definable properties, multi-functionality and stimulus-responsiveness for advanced applications. We believe that this review will be of interest to the hydrogel community and inspire researchers to develop next-generation hydrogels.
Collapse
|
15
|
Exploring piperazine for intrinsic weather-proof, robust and self-healable poly(urethane urea) toward surface and tire protection. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
Rizwan M, Baker AEG, Shoichet MS. Designing Hydrogels for 3D Cell Culture Using Dynamic Covalent Crosslinking. Adv Healthc Mater 2021; 10:e2100234. [PMID: 33987970 DOI: 10.1002/adhm.202100234] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/22/2021] [Indexed: 12/17/2022]
Abstract
Designing simple biomaterials to replicate the biochemical and mechanical properties of tissues is an ongoing challenge in tissue engineering. For several decades, new biomaterials have been engineered using cytocompatible chemical reactions and spontaneous ligations via click chemistries to generate scaffolds and water swollen polymer networks, known as hydrogels, with tunable properties. However, most of these materials are static in nature, providing only macroscopic tunability of the scaffold mechanics, and do not reflect the dynamic environment of natural extracellular microenvironment. For more complex applications such as organoids or co-culture systems, there remain opportunities to investigate cells that locally remodel and change the physicochemical properties within the matrices. In this review, advanced biomaterials where dynamic covalent chemistry is used to produce stable 3D cell culture models and high-resolution constructs for both in vitro and in vivo applications, are discussed. The implications of dynamic covalent chemistry on viscoelastic properties of in vitro models are summarized, case studies in 3D cell culture are critically analyzed, and opportunities to further improve the performance of biomaterials for 3D tissue engineering are discussed.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Department of Chemical Engineering and Applied Chemistry University of Toronto Toronto Ontario M5S 3E5 Canada
- Institute of Biomedical Engineering University of Toronto Toronto Ontario M5S 3G9 Canada
- Donnelly Centre for Cellular and Biomolecular Research University of Toronto Toronto Ontario M5S 3E1 Canada
| | - Alexander E. G. Baker
- Department of Chemical Engineering and Applied Chemistry University of Toronto Toronto Ontario M5S 3E5 Canada
- Institute of Biomedical Engineering University of Toronto Toronto Ontario M5S 3G9 Canada
- Donnelly Centre for Cellular and Biomolecular Research University of Toronto Toronto Ontario M5S 3E1 Canada
| | - Molly S. Shoichet
- Department of Chemical Engineering and Applied Chemistry University of Toronto Toronto Ontario M5S 3E5 Canada
- Institute of Biomedical Engineering University of Toronto Toronto Ontario M5S 3G9 Canada
- Donnelly Centre for Cellular and Biomolecular Research University of Toronto Toronto Ontario M5S 3E1 Canada
| |
Collapse
|
17
|
Joyce K, Fabra GT, Bozkurt Y, Pandit A. Bioactive potential of natural biomaterials: identification, retention and assessment of biological properties. Signal Transduct Target Ther 2021; 6:122. [PMID: 33737507 PMCID: PMC7973744 DOI: 10.1038/s41392-021-00512-8] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/29/2020] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
Biomaterials have had an increasingly important role in recent decades, in biomedical device design and the development of tissue engineering solutions for cell delivery, drug delivery, device integration, tissue replacement, and more. There is an increasing trend in tissue engineering to use natural substrates, such as macromolecules native to plants and animals to improve the biocompatibility and biodegradability of delivered materials. At the same time, these materials have favourable mechanical properties and often considered to be biologically inert. More importantly, these macromolecules possess innate functions and properties due to their unique chemical composition and structure, which increase their bioactivity and therapeutic potential in a wide range of applications. While much focus has been on integrating these materials into these devices via a spectrum of cross-linking mechanisms, little attention is drawn to residual bioactivity that is often hampered during isolation, purification, and production processes. Herein, we discuss methods of initial material characterisation to determine innate bioactivity, means of material processing including cross-linking, decellularisation, and purification techniques and finally, a biological assessment of retained bioactivity of a final product. This review aims to address considerations for biomaterials design from natural polymers, through the optimisation and preservation of bioactive components that maximise the inherent bioactive potency of the substrate to promote tissue regeneration.
Collapse
Affiliation(s)
- Kieran Joyce
- School of Medicine, National University of Ireland, Galway, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| | - Georgina Targa Fabra
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| | - Yagmur Bozkurt
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland.
| |
Collapse
|
18
|
Verdugo P, Lligadas G, Ronda JC, Galià M, Cádiz V. Bio-based ABA triblock copolymers with central degradable moieties. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Raeisi M, Tsarevsky NV. Radical
ring‐opening
polymerization of lipoates: Kinetic and thermodynamic aspects. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20200765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Mojdeh Raeisi
- Department of Chemistry Southern Methodist University Dallas Texas USA
| | | |
Collapse
|
20
|
Yang HS, Cho S, Eom Y, Park SA, Hwang SY, Jeon H, Oh DX, Park J. Preparation of Self-Healable and Spinnable Hydrogel by Dynamic Boronate Ester Bond from Hyperbranched Polyglycerol and Boronic Acid-Containing Polymer. Macromol Res 2021. [DOI: 10.1007/s13233-021-9016-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Thiolated polymeric hydrogels for biomedical application: Cross-linking mechanisms. J Control Release 2021; 330:470-482. [DOI: 10.1016/j.jconrel.2020.12.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/11/2022]
|
22
|
Bhat SS, Mukherjee D, Sukharamwala P, Dehuri R, Murali A, Teja BV. Thiolated polymer nanocarrier reinforced with glycyrrhetinic acid for targeted delivery of 5-fluorouracil in hepatocellular carcinoma. Drug Deliv Transl Res 2021; 11:2252-2269. [PMID: 33432520 DOI: 10.1007/s13346-020-00894-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2020] [Indexed: 02/01/2023]
Abstract
The present work investigates the targeting efficacy of a novel thiolated polymer-based nanocomposite reinforced with glycyrrhetinic acid (GA) and loaded with 5-fluorouracil in hepatocellular carcinoma (HCC). The thiolated polymers were synthesized by EDAC-mediated conjugation reactions and lyophilization. The nanoparticles were prepared by solvent diffusion and high-pressure homogenization method. The prepared nanocomposite was characterized by Fourier transform infrared (FTIR) radiation, x-ray diffraction (XRD), dynamic light scattering (DLS), scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. Pharmacological evaluation of the formulation was carried out on a rat model of diethylnitrosamine (DEN), and carbon tetrachloride (CCl4)-induced HCC and MTT assay was carried out with HEP-G2 cell line. In silico studies were conducted to investigate the probable mechanistic pathway of the nanocomposite. FTIR and XRD analysis indicated the successful thiolation of the polymers and confirmed the formation of the nanocomposite without any incompatibilities. DLS, SEM/EDX and AFM characterization confirmed that the nanoparticles were within the nano-size range. MTT assay implied the cytotoxic nature of the nanocomposite against hepatic carcinoma cells. The in vivo study revealed that serum SGOT, SGPT, ALP, GGT and total bilirubin levels were significantly reduced, in comparison with disease control and the result was confirmed by histopathology studies. The results of the HPLC analysis of liver homogenate confirmed the liver targeting ability of the nanocomposite. In silico studies exhibited significant binding affinity of GA and thiolated Eudragit towards liver homolog receptor-1 (LRH-1) suggesting that the developed nanocomposite could be a potential material for the treatment of HCC.
Collapse
Affiliation(s)
- Sachin S Bhat
- Department of Pharmacology, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Karnataka, Bengaluru, India
| | - Dhrubojyoti Mukherjee
- Department of Pharmaceutics, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Karnataka, Bengaluru, India.
| | - Pinal Sukharamwala
- Department of Pharmaceutics, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Karnataka, Bengaluru, India
| | - Rachita Dehuri
- Department of Pharmacy Practice, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Karnataka, Bengaluru, India
| | - Anita Murali
- Department of Pharmacology, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Karnataka, Bengaluru, India
| | - Banala Venkatesh Teja
- Pharmaceutics and Pharmacokinetics Division, Central Drug Research Institute, Uttar Pradesh, 226031, Lucknow, India
| |
Collapse
|
23
|
Guidotti G, Soccio M, Gazzano M, Bloise N, Bruni G, Aluigi A, Visai L, Munari A, Lotti N. Biocompatible PBS-based copolymer for soft tissue engineering: Introduction of disulfide bonds as winning tool to tune the final properties. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Sivaram AJ, Wardiana A, Alcantara S, Sonderegger SE, Fletcher NL, Houston ZH, Howard CB, Mahler SM, Alexander C, Kent SJ, Bell CA, Thurecht KJ. Controlling the Biological Fate of Micellar Nanoparticles: Balancing Stealth and Targeting. ACS NANO 2020; 14:13739-13753. [PMID: 32936613 DOI: 10.1021/acsnano.0c06033] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Integrating nanomaterials with biological entities has led to the development of diagnostic tools and biotechnology-derived therapeutic products. However, to optimize the design of these hybrid bionanomaterials, it is essential to understand how controlling the biological interactions will influence desired outcomes. Ultimately, this knowledge will allow more rapid translation from the bench to the clinic. In this paper, we developed a micellar system that was assembled using modular antibody-polymer amphiphilic materials. The amphiphilic nature was established using either poly(ethylene glycol) (PEG) or a single-chain variable fragment (scFv) from an antibody as the hydrophile and a thermoresponsive polymer (poly(oligoethylene glycol) methyl ether methacrylate) as the hydrophobe. By varying the ratios of these components, a series of nanoparticles with different antibody content was self-assembled, where the surface presentation of targeting ligand was carefully controlled. In vitro and in vivo analysis of these systems identified a mismatch between the optimal targeting ligand density to achieve maximum cell association in vitro compared to tumor accumulation in vivo. For this system, we determined an optimum antibody density for both longer circulation and enhanced targeting to tumors that balanced stealthiness of the particle (to evade immune recognition as determined in both mouse models and in whole human blood) with enhanced accumulation achieved through receptor binding on tumor cells in solid tumors. This approach provides fundamental insights into how different antibody densities affect the interaction of designed nanoparticles with both target cells and immune cells, thereby offering a method to probe the intricate interplay between increased targeting efficiency and the subsequent immune response to nanoparticles.
Collapse
Affiliation(s)
- Amal J Sivaram
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Andri Wardiana
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Sheilajen Alcantara
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria 3010, Australia
| | - Stefan E Sonderegger
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Nicholas L Fletcher
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zachary H Houston
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Christopher B Howard
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Stephen M Mahler
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Cameron Alexander
- School of Pharmacy, The University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Stephen J Kent
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria 3010, Australia
| | - Craig A Bell
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Kristofer J Thurecht
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
25
|
Zheng S, Brook MA. Reversible Redox Crosslinking of Thiopropylsilicones. Macromol Rapid Commun 2020; 42:e2000375. [PMID: 32794287 DOI: 10.1002/marc.202000375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 07/29/2020] [Indexed: 01/17/2023]
Abstract
Most silicone elastomers are thermosets. As a response to the new paradigm of polymer recyclability, the development of silicone elastomers that can be reversibly and repeatedly cured and uncrosslinked using redox conditions is reported. Thiopropyl-modified silicones are oxidized to elastomers with disulfide crosslinks using the organosoluble oxidant PhI(OAc)2 . As with any elastomer, mechanical properties can be tuned by varying crosslink density. Thermal stabilities in air show that the products are comparable to traditional silicone thermosets, with degradation only starting over 300 °C. Uncrosslinking back to the same thiopropyl-modified silicones involves reductive S-S bridge cleavage using a Piers-Rubinsztajn reaction with hydrosilanes catalyzed by B(C6 F5 )3 ; HSiMe2 OSiMe3 is identified as a convenient reducing agent. The initially formed silicone-(CH2 )3 S-SiMe2 OSiMe3 products need deprotection with water in isopropanol/water to completely regenerate the thiopropylsilicones. This oxidation/reduction crosslinking/uncrosslinking cycle is practiced thrice, with a yield of 89% per cycle, with essentially no change in the Young's moduli of the elastomers, or 1 H NMR spectra of the uncrosslinked fluids after reduction. Further oxidation of disulfide groups on the elastomer surface permanently and significantly improved water wettability.
Collapse
Affiliation(s)
- Sijia Zheng
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4M1, Canada
| | - Michael A Brook
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4M1, Canada
| |
Collapse
|
26
|
Bansode ND, Sindhu KR, Morel C, Rémy M, Verget J, Boiziau C, Barthélémy P. A disulfide based low molecular weight gel for the selective sustained release of biomolecules. Biomater Sci 2020; 8:3186-3192. [PMID: 32369051 DOI: 10.1039/d0bm00508h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Constructing biocompatible soft materials via supramolecular approaches remains an important challenge for in vivo applications. Substantial efforts have been made to develop biocompatible non-polymeric materials allowing sustained release of biomolecules and/or drugs in vivo. Herein, we introduce disulfide based low molecular weight gels (LMWGs) allowing the in vitro selective sustained release of proteins containing thiol residues. The novel glycosylated nucleoside based bola-amphiphile (GNBA), which features a disulfide bond inserted in the hydrophobic segment, self-assembles to stabilize the resulting hydrogel. Rheological studies show the dominant elastic character and thixotropic properties of the disulfide LMWG demonstrating its injectability. In vitro and in vivo biodegradation investigations reveal that the disulfide LMWG is stable for several weeks. Importantly, disulfide bonds can be cleaved through the thiol-disulfide exchange reactions with small redox molecules such as dithiothreitol (DTT). The disulfide LMWG loaded with a thiol-containing protein (bovine serum albumin) features sustained release in vitro, whereas a dextran of the same molecular weight, lacking a thiol biomolecule, shows quick release. The disulfide GNBA is the first example of a LMWG allowing selective long term sustained release in vitro via a disulfide reshuffling mechanism.
Collapse
Affiliation(s)
- Nitin D Bansode
- University of Bordeaux, INSERM U1212, UMR CNRS 5320, F-33076 Bordeaux, France.
| | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Reprogrammable Permanent Shape Memory Materials Based on Reversibly Crosslinked Epoxy/PCL Blends. Molecules 2020; 25:molecules25071568. [PMID: 32235334 PMCID: PMC7180467 DOI: 10.3390/molecules25071568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 01/21/2023] Open
Abstract
Epoxy/Polycaprolactone (PCL) blends cured with a conventional diamine (4,4′-diaminodiphenylmethane, DDM) and with different amounts of a disulfide containing diamine (4, 4´-dithioaniline, DSS) were prepared through melting. The curing process was studied by FTIR and differential scanning calorimetry (DSC) and the mechanical behavior of the networks was studied by DMA. The shape memory properties and the recyclability of the materials were also analyzed. All blends showed a very high curing degree and temperature activated shape memory effect, related to the glass transition of the epoxy resin. The PCL plasticized the mixture, allowing tailoring of the epoxy glass transition. In addition, in the blends cured with DSS, as a consequence of the disulfide exchange reaction, the permanent shape could be erased and a new shape could be reprogrammed. Using this strategy, reprogrammable permanent shape memory materials were obtained.
Collapse
|
29
|
Latha AV, Ayyappan M, Kallar AR, Kakkadavath RV, Victor SP, Selvam S. Fluorescence imaging of nitric oxide in living cells using o-phenylenediamine-rhodamine based polymeric nanosensors. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110463. [DOI: 10.1016/j.msec.2019.110463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/03/2019] [Accepted: 11/17/2019] [Indexed: 01/12/2023]
|
30
|
Zhao Y, Simon C, Daoud Attieh M, Haupt K, Falcimaigne-Cordin A. Reduction-responsive molecularly imprinted nanogels for drug delivery applications. RSC Adv 2020; 10:5978-5987. [PMID: 35497405 PMCID: PMC9049337 DOI: 10.1039/c9ra07512g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/07/2020] [Indexed: 11/21/2022] Open
Abstract
Degradable molecularly imprinted polymers (MIPs) with affinity for S-propranolol were prepared by the copolymerization of methacrylic acid as functional monomer and a disulfide-containing cross-linker, bis(2-methacryloyloxyethyl)disulfide (DSDMA), using bulk polymerization or high dilution polymerization for nanogels synthesis. The specificity and the selectivity of DSDMA-based molecularly imprinted polymers toward S-propranolol were studied in batch binding experiments, and their binding properties were compared to a traditional ethylene glycol dimethacrylate (EDMA)-based MIP. Nanosized MIPs prepared with DSDMA as crosslinker could be degraded into lower molecular weight linear polymers by cleaving the disulfide bonds and thus reversing cross-linking using different reducing agents (NaBH4, DTT, GSH). Turbidity, viscosity, polymer size and IR-spectra were measured to study the polymer degradation. The loss of specific recognition and binding capacity of S-propranolol was also observed after MIP degradation. This phenomenon was applied to modulate the release properties of the MIP. In presence of GSH at its intracellular concentration, the S-propranolol release was higher, showing that these materials could potentially be applied as intracellular controlled drug delivery system.
Collapse
Affiliation(s)
- Y Zhao
- Sorbonne Universités - Université de Technologie de Compiègne, CNRS Enzyme and Cell Engineering Laboratory CS 60319 60203 Compiègne Cedex France
| | - C Simon
- Sorbonne Universités - Université de Technologie de Compiègne, CNRS Enzyme and Cell Engineering Laboratory CS 60319 60203 Compiègne Cedex France
| | - M Daoud Attieh
- Sorbonne Universités - Université de Technologie de Compiègne, CNRS Enzyme and Cell Engineering Laboratory CS 60319 60203 Compiègne Cedex France
| | - K Haupt
- Sorbonne Universités - Université de Technologie de Compiègne, CNRS Enzyme and Cell Engineering Laboratory CS 60319 60203 Compiègne Cedex France
| | - A Falcimaigne-Cordin
- Sorbonne Universités - Université de Technologie de Compiègne, CNRS Enzyme and Cell Engineering Laboratory CS 60319 60203 Compiègne Cedex France
| |
Collapse
|
31
|
Arslan M, Sanyal R, Sanyal A. Thiol-reactive thiosulfonate group containing copolymers: facile entry to disulfide-mediated polymer conjugation and redox-responsive functionalizable networks. Polym Chem 2020. [DOI: 10.1039/c9py01851d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report a synthetic approach to thiol-reactive polymers containing methanethiosulfonate groups as side chains, and demonstrate their application in post-polymerization functionalization through reversible disulfide linkages.
Collapse
Affiliation(s)
- Mehmet Arslan
- Department of Polymer Engineering
- Faculty of Engineering
- Yalova University
- Yalova
- Turkey
| | - Rana Sanyal
- Department of Chemistry
- Bogazici University
- Istanbul
- Turkey
- Center for Life Sciences and Technologies
| | - Amitav Sanyal
- Department of Chemistry
- Bogazici University
- Istanbul
- Turkey
- Center for Life Sciences and Technologies
| |
Collapse
|
32
|
Juriga D, Sipos E, Hegedűs O, Varga G, Zrínyi M, Nagy KS, Jedlovszky-Hajdú A. Fully amino acid-based hydrogel as potential scaffold for cell culturing and drug delivery. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:2579-2593. [PMID: 31921537 PMCID: PMC6941446 DOI: 10.3762/bjnano.10.249] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
Polymer hydrogels are ideal scaffolds for both tissue engineering and drug delivery. A great advantage of poly(amino acid)-based hydrogels is their high similarity to natural proteins. However, their expensive and complicated synthesis often limits their application. The use of poly(aspartic acid) (PASP) seems an appropriate solution for this problem due to the relatively cheap and simple synthesis of PASP. Using amino acids not only as building blocks in the polymer backbone but also as cross-linkers can improve the biocompatibility and the biodegradability of the hydrogel. In this paper, PASP cross-linked with cystamine (CYS) and lysine-methylester (LYS) was introduced as fully amino acid-based polymer hydrogel. Gels were synthesized employing six different ratios of CYS and LYS. The pH dependent swelling degree and the concentration of the elastically active chain were determined. After reduction of the disulfide bonds of CYS, the presence of thiol side groups was also detected. To determine the concentration of the reactive cross-linkers in the hydrogels, a new method based on the examination of the swelling behavior was established. Using metoprolol as a model drug, cell proliferation and drug release kinetics were studied at different LYS contents and in the presence of thiol groups. The optimal ratio of cross-linkers for the proliferation of periodontal ligament cells was found to be 60-80% LYS and 20-40% CYS. The reductive conditions resulted in an increased drug release due to the cleavage of disulfide bridges in the hydrogels. Consequently, these hydrogels provide new possibilities in the fields of both tissue engineering and controlled drug delivery.
Collapse
Affiliation(s)
- Dávid Juriga
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Nagyvarad square 4, Budapest, Hungary
| | - Evelin Sipos
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Nagyvarad square 4, Budapest, Hungary
| | - Orsolya Hegedűs
- Department of Oral Biology, Semmelweis University, Nagyvarad square 4, Budapest, Hungary
| | - Gábor Varga
- Department of Oral Biology, Semmelweis University, Nagyvarad square 4, Budapest, Hungary
| | - Miklós Zrínyi
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Nagyvarad square 4, Budapest, Hungary
| | - Krisztina S Nagy
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Nagyvarad square 4, Budapest, Hungary
- Department of Oral Biology, Semmelweis University, Nagyvarad square 4, Budapest, Hungary
| | - Angéla Jedlovszky-Hajdú
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Nagyvarad square 4, Budapest, Hungary
| |
Collapse
|
33
|
Van Hoorick J, Tytgat L, Dobos A, Ottevaere H, Van Erps J, Thienpont H, Ovsianikov A, Dubruel P, Van Vlierberghe S. (Photo-)crosslinkable gelatin derivatives for biofabrication applications. Acta Biomater 2019; 97:46-73. [PMID: 31344513 DOI: 10.1016/j.actbio.2019.07.035] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/20/2019] [Accepted: 07/19/2019] [Indexed: 12/28/2022]
Abstract
Over the recent decades gelatin has proven to be very suitable as an extracellular matrix mimic for biofabrication and tissue engineering applications. However, gelatin is prone to dissolution at typical cell culture conditions and is therefore often chemically modified to introduce (photo-)crosslinkable functionalities. These modifications allow to tune the material properties of gelatin, making it suitable for a wide range of biofabrication techniques both as a bioink and as a biomaterial ink (component). The present review provides a non-exhaustive overview of the different reported gelatin modification strategies to yield crosslinkable materials that can be used to form hydrogels suitable for biofabrication applications. The different crosslinking chemistries are discussed and classified according to their mechanism including chain-growth and step-growth polymerization. The step-growth polymerization mechanisms are further classified based on the specific chemistry including different (photo-)click chemistries and reversible systems. The benefits and drawbacks of each chemistry are also briefly discussed. Furthermore, focus is placed on different biofabrication strategies using either inkjet, deposition or light-based additive manufacturing techniques, and the applications of the obtained 3D constructs. STATEMENT OF SIGNIFICANCE: Gelatin and more specifically gelatin-methacryloyl has emerged to become one of the gold standard materials as an extracellular matrix mimic in the field of biofabrication. However, also other modification strategies have been elaborated to take advantage of a plethora of crosslinking chemistries. Therefore, a review paper focusing on the different modification strategies and processing of gelatin is presented. Particular attention is paid to the underlying chemistry along with the benefits and drawbacks of each type of crosslinking chemistry. The different strategies were classified based on their basic crosslinking mechanism including chain- or step-growth polymerization. Within the step-growth classification, a further distinction is made between click chemistries as well as other strategies. The influence of these modifications on the physical gelation and processing conditions including mechanical properties is presented. Additionally, substantial attention is put to the applied photoinitiators and the different biofabrication technologies including inkjet, deposition or light-based technologies.
Collapse
Affiliation(s)
- Jasper Van Hoorick
- Polymer Chemistry & Biomaterials Group - Centre of Macromolecular Chemistry (CMaC) - Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium; Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium
| | - Liesbeth Tytgat
- Polymer Chemistry & Biomaterials Group - Centre of Macromolecular Chemistry (CMaC) - Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium; Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium
| | - Agnes Dobos
- Research Group 3D Printing and Biofabrication, Institute of Materials Science and Technology, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Heidi Ottevaere
- Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium
| | - Jürgen Van Erps
- Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium
| | - Hugo Thienpont
- Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium
| | - Aleksandr Ovsianikov
- Research Group 3D Printing and Biofabrication, Institute of Materials Science and Technology, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Peter Dubruel
- Polymer Chemistry & Biomaterials Group - Centre of Macromolecular Chemistry (CMaC) - Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry & Biomaterials Group - Centre of Macromolecular Chemistry (CMaC) - Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium; Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium.
| |
Collapse
|
34
|
Yao X, Liu J, Yang C, Yang X, Wei J, Xia Y, Gong X, Suo Z. Hydrogel Paint. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1903062. [PMID: 31379064 DOI: 10.1002/adma.201903062] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/24/2019] [Indexed: 06/10/2023]
Abstract
For a hydrogel coating on a substrate to be stable, covalent bonds polymerize monomer units into polymer chains, crosslink the polymer chains into a polymer network, and interlink the polymer network to the substrate. The three processes-polymerization, crosslinking, and interlinking-usually concur. This concurrency hinders widespread applications of hydrogel coatings. Here a principle is described to create hydrogel paints that decouple polymerization from crosslinking and interlinking. Like a common paint, a hydrogel paint divides the labor between the paint maker and the paint user. The paint maker formulates the hydrogel paint by copolymerizing monomer units and coupling agents into polymer chains, but does not crosslink them. The paint user applies the paint on various materials (elastomer, plastic, glass, ceramic, or metal), and by various operations (brush, cast, dip, spin, or spray). During cure, the coupling agents crosslink the polymer chains into a network and interlink the polymer network to the substrate. As an example, hydrogels with thickness in the range of 2-20 µm are dip coated on medical nitinol wires. The coated wires reduce friction by eightfold, and remain stable over 50 test cycles. Also demonstrated are several proof-of-concept applications, including stimuli-responsive structures and antifouling model boats.
Collapse
Affiliation(s)
- Xi Yao
- School of Engineering and Applied Sciences, Kavli Institute for Bionano Science and Technology, Harvard University, MA, 02138, USA
| | - Junjie Liu
- School of Engineering and Applied Sciences, Kavli Institute for Bionano Science and Technology, Harvard University, MA, 02138, USA
- State Key Laboratory of Fluid Power and Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, and Center for X-Mechanics, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Canhui Yang
- School of Engineering and Applied Sciences, Kavli Institute for Bionano Science and Technology, Harvard University, MA, 02138, USA
| | - Xuxu Yang
- School of Engineering and Applied Sciences, Kavli Institute for Bionano Science and Technology, Harvard University, MA, 02138, USA
- State Key Laboratory of Fluid Power and Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, and Center for X-Mechanics, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Jichang Wei
- Innomed Medical Device Co., Ltd., Suzhou, Jiangsu, 215123, China
| | - Yin Xia
- School of Engineering and Applied Sciences, Kavli Institute for Bionano Science and Technology, Harvard University, MA, 02138, USA
- Innomed Medical Device Co., Ltd., Suzhou, Jiangsu, 215123, China
- Soft Intelligent Materials Co., Ltd., Suzhou, Jiangsu, 215123, China
| | - Xiaoyan Gong
- School of Engineering and Applied Sciences, Kavli Institute for Bionano Science and Technology, Harvard University, MA, 02138, USA
- Innomed Medical Device Co., Ltd., Suzhou, Jiangsu, 215123, China
| | - Zhigang Suo
- School of Engineering and Applied Sciences, Kavli Institute for Bionano Science and Technology, Harvard University, MA, 02138, USA
| |
Collapse
|
35
|
Moreno A, Ronda JC, Cádiz V, Galià M, Lligadas G, Percec V. SET-LRP from Programmed Difunctional Initiators Encoded with Double Single-Cleavage and Double Dual-Cleavage Groups. Biomacromolecules 2019; 20:3200-3210. [DOI: 10.1021/acs.biomac.9b00892] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Adrian Moreno
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona 43007, Spain
| | - Juan C. Ronda
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona 43007, Spain
| | - Virginia Cádiz
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona 43007, Spain
| | - Marina Galià
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona 43007, Spain
| | - Gerard Lligadas
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona 43007, Spain
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
36
|
Bingol HB, Agopcan‐Cinar S, Bal T, Oran DC, Kizilel S, Kayaman‐Apohan N, Avci D. Stimuli‐responsive poly(hydroxyethyl methacrylate) hydrogels from carboxylic acid‐functionalized crosslinkers. J Biomed Mater Res A 2019; 107:2013-2025. [DOI: 10.1002/jbm.a.36714] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/06/2019] [Accepted: 05/02/2019] [Indexed: 01/03/2023]
Affiliation(s)
| | | | - Tugba Bal
- Chemical and Biological EngineeringKoc University Istanbul Turkey
| | - D. Ceren Oran
- Biomedical Science and EngineeringKoc University Istanbul Turkey
| | - Seda Kizilel
- Chemical and Biological EngineeringKoc University Istanbul Turkey
- Biomedical Science and EngineeringKoc University Istanbul Turkey
| | | | - Duygu Avci
- Department of ChemistryBogazici University Istanbul Turkey
| |
Collapse
|
37
|
Han H, Kumar R, Tsarevsky NV. Responsive and Degradable Highly Branched Polymers with Hypervalent Iodine(III) Groups at the Branching Points. Macromol Rapid Commun 2019; 40:e1900073. [DOI: 10.1002/marc.201900073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/24/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Hongzhang Han
- Department of Chemistry Southern Methodist University 3215 Daniel Avenue Dallas TX 75275 USA
| | - Rajesh Kumar
- Department of Chemistry Southern Methodist University 3215 Daniel Avenue Dallas TX 75275 USA
| | - Nicolay V. Tsarevsky
- Department of Chemistry Southern Methodist University 3215 Daniel Avenue Dallas TX 75275 USA
| |
Collapse
|
38
|
Abdallh M, Yoshikawa C, Hearn MTW, Simon GP, Saito K. Photoreversible Smart Polymers Based on 2π + 2π Cycloaddition Reactions: Nanofilms to Self-Healing Films. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b01729] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | - Chiaki Yoshikawa
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | | | | | | |
Collapse
|
39
|
Ranucci E, Manfredi A. Polyamidoamines: Versatile Bioactive Polymers with Potential for Biotechnological Applications. CHEMISTRY AFRICA-A JOURNAL OF THE TUNISIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s42250-019-00046-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
40
|
Xue Y, Tian J, Xu L, Liu Z, Shen Y, Zhang W. Ultrasensitive redox-responsive porphyrin-based polymeric nanoparticles for enhanced photodynamic therapy. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.11.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
41
|
Mauri E, Perale G, Rossi F. Nanogel Functionalization: A Versatile Approach To Meet the Challenges of Drug and Gene Delivery. ACS APPLIED NANO MATERIALS 2018; 1:6525-6541. [DOI: 10.1021/acsanm.8b01686] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Emanuele Mauri
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131 Milan, Italy
- Department of Engineering, Tissue Engineering and Chemistry for Engineering Unit, Università Campus Bio-Medico di Roma, via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Giuseppe Perale
- Biomaterials Laboratory, Institute for Mechanical Engineering and Materials Technology, University of Applied Sciences and Arts of Southern Switzerland, via Cantonale 2C, Galleria 2, 6928 Manno, Switzerland
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131 Milan, Italy
| |
Collapse
|
42
|
Kollarigowda RH, Mathews AS, Abraham S. Super Mechanical Stimuli Responsive Hydrogel: Dynamic Cues for Cell Applications. ACS APPLIED BIO MATERIALS 2018; 2:277-283. [PMID: 35016350 DOI: 10.1021/acsabm.8b00595] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
43
|
Stefanov I, Hinojosa-Caballero D, Maspoch S, Hoyo J, Tzanov T. Enzymatic synthesis of a thiolated chitosan-based wound dressing crosslinked with chicoric acid. J Mater Chem B 2018; 6:7943-7953. [PMID: 32255040 DOI: 10.1039/c8tb02483a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This work describes the enzymatic synthesis of multifunctional hydrogels for chronic wound treatment using thiolated chitosan and the natural polyphenol chicoric acid. Gelation was achieved by laccase-catalyzed oxidation of chicoric acid, a natural compound used for the first time as a homobifunctional crosslinker, reacting subsequently with nucleophilic thiol and amino groups from the chitosan derivative. This approach allowed for twice as fast gelation at a three-fold reduced crosslinking reagent concentration, compared to reported enzymatic synthesis of hydrogels using gallic acid as a phenolic provider. Hydrogels with 600% swelling capacity, coupled with only 20% weight loss after 6 days under physiological conditions, were obtained. The clinically relevant Gram-positive Staphylococcus aureus and the Gram-negative Pseudomonas aeruginosa were reduced by up to 4.5 and 5.5 logs, respectively. A tunable, in the range of 20-95%, ex vivo inhibition of myeloperoxidase (MPO) activity in chronic wound exudate was achieved, together with control over the total matrix metalloproteinase (MMP) activities.
Collapse
Affiliation(s)
- Ivaylo Stefanov
- Grup de Biotecnologia Molecular i Industrial (GBMI), Department of Chemical Engineering, Universitat Politècnica de Catalunya - (UPC), Rambla Sant Nebridi, 22, 08222 Terrassa, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
44
|
Abstract
The conjugation of biomolecules can impart materials with the bioactivity necessary to modulate specific cell behaviors. While the biological roles of particular polypeptide, oligonucleotide, and glycan structures have been extensively reviewed, along with the influence of attachment on material structure and function, the key role played by the conjugation strategy in determining activity is often overlooked. In this review, we focus on the chemistry of biomolecule conjugation and provide a comprehensive overview of the key strategies for achieving controlled biomaterial functionalization. No universal method exists to provide optimal attachment, and here we will discuss both the relative advantages and disadvantages of each technique. In doing so, we highlight the importance of carefully considering the impact and suitability of a particular technique during biomaterial design.
Collapse
Affiliation(s)
- Christopher D. Spicer
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles Väg 2, Stockholm, Sweden
| | - E. Thomas Pashuck
- NJ
Centre for Biomaterials, Rutgers University, 145 Bevier Road, Piscataway, New Jersey United States
| | - Molly M. Stevens
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles Väg 2, Stockholm, Sweden
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, Exhibition Road, London, United Kingdom
| |
Collapse
|
45
|
|
46
|
Gevrek TN, Cosar M, Aydin D, Kaga E, Arslan M, Sanyal R, Sanyal A. Facile Fabrication of a Modular "Catch and Release" Hydrogel Interface: Harnessing Thiol-Disulfide Exchange for Reversible Protein Capture and Cell Attachment. ACS APPLIED MATERIALS & INTERFACES 2018; 10:14399-14409. [PMID: 29637775 DOI: 10.1021/acsami.8b00802] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Surfaces engineered to "specifically capture" and "release on demand" analytes ranging from biomolecules to cells find niche applications in areas such as diagnostics and detection. Utilization of a disulfide-based linker as a building block allows fabrication of a novel hydrogel-based platform that incorporates a "catch and release" attribute. Hydrogels incorporating pyridyl disulfide groups as thiol-reactive handles were prepared by photopolymerization in the presence of a poly(ethylene glycol) (PEG)-based cross-linker. A range of bulk and micropatterned hydrogels with varying amounts of the reactive group were prepared using PEG-based monomers with different chain lengths. Thiol-containing molecules were conjugated to these hydrogels through the thiol-disulfide exchange reaction under ambient conditions with high efficiencies, as determined by UV-vis spectroscopy. Facile conjugation of a thiol-containing fluorescent dye, namely 4,4-difluoro-1,3,5,7-tetramethyl-8-[(10-mercapto)]-4-bora-3 a,4 a-diaza- s-indacene, was demonstrated, followed by its effective cleavage in the presence of dithiothreitol (DTT), a thiol-containing disulfide-reducing agent. Conjugation of a biotin-containing ligand onto the hydrogels allowed specific binding of protein extravidin when exposed to a mixture of extravidin and bovine serum albumin. The bound protein could be released from the hydrogel by simple exposure to a DTT solution. Likewise, hydrogels modified with a cell-adhesive peptide unit containing the RGD sequence acted as favorable substrates for cellular attachment. Incubation of these cell-attached hydrogel surfaces in a DTT-containing solution leads to facile detachment of cells from the surfaces, while retaining a high level of cell viability. It can be envisioned that the benign nature of these hydrogels, their facile fabrication, and modular functionalization will make them attractive platforms for many applications.
Collapse
|
47
|
Polymer engineering based on reversible covalent chemistry: A promising innovative pathway towards new materials and new functionalities. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.03.002] [Citation(s) in RCA: 307] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
48
|
Fritze UF, Craig SL, von Delius M. Disulfide-centered poly(methyl acrylates): Four different stimuli to cleave a polymer. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Urs F. Fritze
- University of Ulm, Institute of Organic Chemistry and Advanced Materials, Albert-Einstein-Allee 11; Ulm 89081 Germany
| | - Stephen L. Craig
- Duke University, Department of Chemistry; 3221 French Family Science Center, 124 Science Drive; Durham North Carolina 27708
| | - Max von Delius
- University of Ulm, Institute of Organic Chemistry and Advanced Materials, Albert-Einstein-Allee 11; Ulm 89081 Germany
| |
Collapse
|
49
|
Wojciechowski JP, Martin AD, Thordarson P. Kinetically Controlled Lifetimes in Redox-Responsive Transient Supramolecular Hydrogels. J Am Chem Soc 2018; 140:2869-2874. [DOI: 10.1021/jacs.7b12198] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jonathan P. Wojciechowski
- School of Chemistry, the Australian
Centre for Nanomedicine and The ARC Centre of Excellence in Convergent
Bio-Nano Science and Technology, the University of New South Wales, Sydney, NSW 2052, Australia
| | - Adam D. Martin
- School of Chemistry, the Australian
Centre for Nanomedicine and The ARC Centre of Excellence in Convergent
Bio-Nano Science and Technology, the University of New South Wales, Sydney, NSW 2052, Australia
| | - Pall Thordarson
- School of Chemistry, the Australian
Centre for Nanomedicine and The ARC Centre of Excellence in Convergent
Bio-Nano Science and Technology, the University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
50
|
Wu S, Chou H, Yuh C, Mekuria SL, Kao Y, Tsai H. Radiation-Sensitive Dendrimer-Based Drug Delivery System. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700339. [PMID: 29610720 PMCID: PMC5827102 DOI: 10.1002/advs.201700339] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/10/2017] [Indexed: 05/13/2023]
Abstract
Combination of chemotherapy and radiotherapy is used to enhance local drug delivery while reducing off-target tissue effects. Anticancer drug doxorubicin (DOX) is loaded into l-cysteine modified G4.5 dendrimer (GC/DOX) and released at different pH values in the presence and absence of γ-radiation. Presence of γ-radiation significantly improves DOX release from the GC/DOX under acidic pH conditions, suggesting that GC dendrimer is a radiation-sensitive drug delivery system. GC/DOX is further evaluated by determining cytotoxicity in uterine cervical carcinoma HeLa cells. GC/DOX shows high affinity for cancer cells and effective drug release following an external stimulus (radiation exposure), whereas an in vivo zebrafish study confirms that l-cysteine acts as a radiosensitizer. GC/DOX treatment combined with radiotherapy synergistically and successfully inhibits cancer cell growth.
Collapse
Affiliation(s)
- Szu‐Yuan Wu
- Department of Radiation OncologyWan Fang HospitalTaipei Medical University116TaipeiTaiwan
- Department of Internal MedicineSchool of MedicineCollege of MedicineTaipei Medical University110TaipeiTaiwan
| | - Hsiao‐Ying Chou
- Graduate Institute of Applied Science and TechnologyNational Taiwan University of Science and Technology106TaipeiTaiwan
| | - Chiou‐Hwa Yuh
- Institute of Molecular and Genomic MedicineNational Health Research Institutes350ZhunanMiaoliTaiwan
- Institute of Bioinformatics and Structural BiologyNational Tsing Hua University300HsinchuTaiwan
- Department of Biological Science and TechnologyNational Chiao Tung University300HsinchuTaiwan
| | - Shewaye Lakew Mekuria
- Graduate Institute of Applied Science and TechnologyNational Taiwan University of Science and Technology106TaipeiTaiwan
| | - Yu‐Chih Kao
- Graduate Institute of Applied Science and TechnologyNational Taiwan University of Science and Technology106TaipeiTaiwan
| | - Hsieh‐Chih Tsai
- Graduate Institute of Applied Science and TechnologyNational Taiwan University of Science and Technology106TaipeiTaiwan
| |
Collapse
|