1
|
Jain S, John A, George CE, Johnson RP. Tyrosine-Derived Polymers as Potential Biomaterials: Synthesis Strategies, Properties, and Applications. Biomacromolecules 2023; 24:531-565. [PMID: 36702743 DOI: 10.1021/acs.biomac.2c01232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Peptide-based polymers are evolving as promising materials for various biomedical applications. Among peptide-based polymers, polytyrosine (PTyr)-based and l-tyrosine (Tyr)-derived polymers are unique, due to their excellent biocompatibility, degradability, and functional as well as engineering properties. To date, different polymerization techniques (ring-opening polymerization, enzymatic polymerization, condensation polymerization, solution-interfacial polymerization, and electropolymerization) have been used to synthesize various PTyr-based and Tyr-derived polymers. Even though the synthesis starts from Tyr, different synthesis routes yield different polymers (polypeptides, polyarylates, polyurethanes, polycarbonates, polyiminocarbonate, and polyphosphates) with unique functional characteristics, and these polymers have been successfully used for various biomedical applications in the past decades. This Review comprehensively describes the synthesis approaches, classification, and properties of various PTyr-based and Tyr-derived polymers employed in drug delivery, tissue engineering, and biosensing applications.
Collapse
Affiliation(s)
- Supriya Jain
- Polymer Nanobiomaterial Research Laboratory, Nanoscience and Microfluidics Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Alona John
- Polymer Nanobiomaterial Research Laboratory, Nanoscience and Microfluidics Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Christina Elizhabeth George
- Polymer Nanobiomaterial Research Laboratory, Nanoscience and Microfluidics Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Renjith P Johnson
- Polymer Nanobiomaterial Research Laboratory, Nanoscience and Microfluidics Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| |
Collapse
|
2
|
Abstract
A simple phosgene- and halogen-free method for synthesizing α-amino acid N-carboxyanhydrides (NCAs) is described. The reaction between Boc-protected α-amino acids and T3P reagent gave the corresponding NCA derivatives in good yield and purity with no detectable epimerization. The process is safe, is easy-to-operate, and does not require any specific installation. It generates nontoxic, easy to remove byproducts. It can apply to the preparation of NCAs for the on-demand on-site production of either little or large quantities.
Collapse
Affiliation(s)
- Guillaume Laconde
- Institut des Biomolécules Max Mousseron, IBMM UMR 5247 CNRS, Université Montpellier, ENSCM, Faculté de Pharmacie, 15 Av. C. Flahault, 34093 Montpellier, France
| | - Muriel Amblard
- Institut des Biomolécules Max Mousseron, IBMM UMR 5247 CNRS, Université Montpellier, ENSCM, Faculté de Pharmacie, 15 Av. C. Flahault, 34093 Montpellier, France
| | - Jean Martinez
- Institut des Biomolécules Max Mousseron, IBMM UMR 5247 CNRS, Université Montpellier, ENSCM, Faculté de Pharmacie, 15 Av. C. Flahault, 34093 Montpellier, France
| |
Collapse
|
3
|
Cencha LG, Allasia M, Ronco LI, Luque GC, Picchio ML, Minari RJ, Gugliotta LM. Proteins as Promising Biobased Building Blocks for Preparing Functional Hybrid Protein/Synthetic Polymer Nanoparticles. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05958] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Luisa G. Cencha
- Polymer Reaction Engineering Group, INTEC, Universidad Nacional del Litoral, CONICET, Santa
Fe, Santa Fe, S3000, Argentina
- Facultad de Ingeniería y Ciencias Hídricas, Universidad Nacional del Litoral, Santa Fe, Santa Fe, S3000, Argentina
| | - Mariana Allasia
- Polymer Reaction Engineering Group, INTEC, Universidad Nacional del Litoral, CONICET, Santa
Fe, Santa Fe, S3000, Argentina
| | - Ludmila I. Ronco
- Polymer Reaction Engineering Group, INTEC, Universidad Nacional del Litoral, CONICET, Santa
Fe, Santa Fe, S3000, Argentina
- Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Santa Fe, S3000, Argentina
| | - Gisela C. Luque
- Polymer Reaction Engineering Group, INTEC, Universidad Nacional del Litoral, CONICET, Santa
Fe, Santa Fe, S3000, Argentina
- Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Santa Fe, S3000, Argentina
| | - Matías L. Picchio
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, IPQA—CONICET, Córdoba, Córdoba, X5000, Argentina
| | - Roque J. Minari
- Polymer Reaction Engineering Group, INTEC, Universidad Nacional del Litoral, CONICET, Santa
Fe, Santa Fe, S3000, Argentina
- Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Santa Fe, S3000, Argentina
| | - Luis M. Gugliotta
- Polymer Reaction Engineering Group, INTEC, Universidad Nacional del Litoral, CONICET, Santa
Fe, Santa Fe, S3000, Argentina
- Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Santa Fe, S3000, Argentina
| |
Collapse
|
4
|
Saini P, Sonika, Singh G, Kaur G, Singh J, Singh H. Robust and Versatile Cu(I) metal frameworks as potential catalysts for azide-alkyne cycloaddition reactions: Review. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
5
|
Zashikhina NN, Yudin DV, Tarasenko II, Osipova OM, Korzhikova-Vlakh EG. Multilayered Particles Based on Biopolyelectrolytes as Potential Peptide Delivery Systems. POLYMER SCIENCE SERIES A 2020. [DOI: 10.1134/s0965545x20010125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Neumann S, Biewend M, Rana S, Binder WH. The CuAAC: Principles, Homogeneous and Heterogeneous Catalysts, and Novel Developments and Applications. Macromol Rapid Commun 2019; 41:e1900359. [PMID: 31631449 DOI: 10.1002/marc.201900359] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/06/2019] [Indexed: 01/08/2023]
Abstract
The copper-catalyzed azide/alkyne cycloaddition reaction (CuAAC) has emerged as the most useful "click" chemistry. Polymer science has profited enormously from CuAAC by its simplicity, ease, scope, applicability and efficiency. Basic principles of the CuAAC are reviewed with a focus on homogeneous and heterogeneous catalysts, ligands, anchimeric assistance, and basic chemical principles. Recent developments of ligand design and acceleration are discussed.
Collapse
Affiliation(s)
- Steve Neumann
- Institute of Chemistry, Chair of Macromolecular Chemistry, Martin-Luther University Halle-Wittenberg, von Danckelmannplatz 4, D-06120, Halle (Saale), Germany
| | - Michel Biewend
- Institute of Chemistry, Chair of Macromolecular Chemistry, Martin-Luther University Halle-Wittenberg, von Danckelmannplatz 4, D-06120, Halle (Saale), Germany
| | - Sravendra Rana
- School of Engineering University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, 248007, India
| | - Wolfgang H Binder
- Institute of Chemistry, Chair of Macromolecular Chemistry, Martin-Luther University Halle-Wittenberg, von Danckelmannplatz 4, D-06120, Halle (Saale), Germany
| |
Collapse
|
7
|
Levit M, Zashikhina N, Dobrodumov A, Kashina A, Tarasenko I, Panarin E, Fiorucci S, Korzhikova-Vlakh E, Tennikova T. Synthesis and characterization of well-defined poly(2-deoxy-2-methacrylamido-d-glucose) and its biopotential block copolymers via RAFT and ROP polymerization. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Martens S, Holloway JO, Du Prez FE. Click and Click-Inspired Chemistry for the Design of Sequence-Controlled Polymers. Macromol Rapid Commun 2017; 38. [PMID: 28990247 DOI: 10.1002/marc.201700469] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 08/18/2017] [Indexed: 01/09/2023]
Abstract
During the previous decade, many popular chemical reactions used in the area of "click" chemistry and similarly efficient "click-inspired" reactions have been applied for the design of sequence-defined and, more generally, sequence-controlled structures. This combination of topics has already made quite a significant impact on scientific research to date and has enabled the synthesis of highly functionalized and complex oligomeric and polymeric structures, which offer the prospect of many exciting further developments and applications in the near future. This minireview highlights the fruitful combination of these two topics for the preparation of sequence-controlled oligomeric and macromolecular structures and showcases the vast number of publications in this field within a relatively short span of time. It is divided into three sections according to the click-(inspired) reaction that has been applied: copper-catalyzed azide-alkyne cycloaddition, thiol-X, and related thiolactone-based reactions, and finally Diels-Alder-chemistry-based routes are outlined, respectively.
Collapse
Affiliation(s)
- Steven Martens
- Polymer Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Centre of Macromolecular Chemistry (CMaC), Ghent University, Krijgslaan 281 S4-bis, B-9000, Ghent, Belgium
| | - Joshua O Holloway
- Polymer Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Centre of Macromolecular Chemistry (CMaC), Ghent University, Krijgslaan 281 S4-bis, B-9000, Ghent, Belgium
| | - Filip E Du Prez
- Polymer Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Centre of Macromolecular Chemistry (CMaC), Ghent University, Krijgslaan 281 S4-bis, B-9000, Ghent, Belgium
| |
Collapse
|
9
|
Trzebicka B, Szweda R, Kosowski D, Szweda D, Otulakowski Ł, Haladjova E, Dworak A. Thermoresponsive polymer-peptide/protein conjugates. Prog Polym Sci 2017. [DOI: 10.1016/j.progpolymsci.2016.12.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
Sutrisno J, Pramudya I, Aerken X, Fuchs A. Surface grafting of poly(pentafluorostyrene) on the iron and iron oxide particles via reversible addition fragmentation chain transfer (RAFT) polymerization. J Appl Polym Sci 2017. [DOI: 10.1002/app.44898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Joko Sutrisno
- Chemical and Materials Engineering; University of Nevada; Reno. 1664 North Virginia Street Reno Nevada 89557
| | - Irawan Pramudya
- Chemical and Materials Engineering; University of Nevada; Reno. 1664 North Virginia Street Reno Nevada 89557
| | - Xuekelaiti Aerken
- Chemical and Materials Engineering; University of Nevada; Reno. 1664 North Virginia Street Reno Nevada 89557
| | - Alan Fuchs
- Chemical and Materials Engineering; University of Nevada; Reno. 1664 North Virginia Street Reno Nevada 89557
| |
Collapse
|
11
|
Castro-Godoy WD, Heredia AA, Schmidt LC, Argüello JE. A straightforward and sustainable synthesis of 1,4-disubstituted 1,2,3-triazoles via visible-light-promoted copper-catalyzed azide–alkyne cycloaddition (CuAAC). RSC Adv 2017. [DOI: 10.1039/c7ra06390c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A simple and environmentally friendly synthesis of triazoles through the effective reduction of copper(ii) assisted by organic dyes and promoted by visible light was developed.
Collapse
Affiliation(s)
- Willber D. Castro-Godoy
- INFIQC
- Universidad Nacional de Córdoba
- CONICET
- Departamento de Química Orgánica
- Facultad de Ciencias Químicas
| | - Adrián A. Heredia
- INFIQC
- Universidad Nacional de Córdoba
- CONICET
- Departamento de Química Orgánica
- Facultad de Ciencias Químicas
| | - Luciana C. Schmidt
- INFIQC
- Universidad Nacional de Córdoba
- CONICET
- Departamento de Química Orgánica
- Facultad de Ciencias Químicas
| | - Juan E. Argüello
- INFIQC
- Universidad Nacional de Córdoba
- CONICET
- Departamento de Química Orgánica
- Facultad de Ciencias Químicas
| |
Collapse
|
12
|
Solimando X, Lherbier C, Babin J, Arnal-Herault C, Romero E, Acherar S, Jamart-Gregoire B, Barth D, Roizard D, Jonquieres A. Pseudopeptide bioconjugate additives for CO2separation membranes. POLYM INT 2016. [DOI: 10.1002/pi.5240] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Xavier Solimando
- Laboratoire de Chimie Physique Macromoléculaire; LCPM UMR CNRS Université de Lorraine 7375, ENSIC; 1 rue Grandville, BP 20451 54 001 Nancy Cedex France
| | - Clément Lherbier
- Laboratoire de Chimie Physique Macromoléculaire; LCPM UMR CNRS Université de Lorraine 7375, ENSIC; 1 rue Grandville, BP 20451 54 001 Nancy Cedex France
| | - Jérôme Babin
- Laboratoire de Chimie Physique Macromoléculaire; LCPM UMR CNRS Université de Lorraine 7375, ENSIC; 1 rue Grandville, BP 20451 54 001 Nancy Cedex France
| | - Carole Arnal-Herault
- Laboratoire de Chimie Physique Macromoléculaire; LCPM UMR CNRS Université de Lorraine 7375, ENSIC; 1 rue Grandville, BP 20451 54 001 Nancy Cedex France
| | - Eugénie Romero
- Laboratoire de Chimie Physique Macromoléculaire; LCPM UMR CNRS Université de Lorraine 7375, ENSIC; 1 rue Grandville, BP 20451 54 001 Nancy Cedex France
| | - Samir Acherar
- Laboratoire de Chimie Physique Macromoléculaire; LCPM UMR CNRS Université de Lorraine 7375, ENSIC; 1 rue Grandville, BP 20451 54 001 Nancy Cedex France
| | - Brigitte Jamart-Gregoire
- Laboratoire de Chimie Physique Macromoléculaire; LCPM UMR CNRS Université de Lorraine 7375, ENSIC; 1 rue Grandville, BP 20451 54 001 Nancy Cedex France
| | - Danielle Barth
- Laboratoire Réactions et Génie des Procédés; LRGP UMR CNRS Université de Lorraine 7274, ENSIC; 1 rue Grandville, BP 20451 54 001 Nancy Cedex France
| | - Denis Roizard
- Laboratoire Réactions et Génie des Procédés; LRGP UMR CNRS Université de Lorraine 7274, ENSIC; 1 rue Grandville, BP 20451 54 001 Nancy Cedex France
| | - Anne Jonquieres
- Laboratoire de Chimie Physique Macromoléculaire; LCPM UMR CNRS Université de Lorraine 7375, ENSIC; 1 rue Grandville, BP 20451 54 001 Nancy Cedex France
| |
Collapse
|
13
|
Linhardt A, König M, Schöfberger W, Brüggemann O, Andrianov AK, Teasdale I. Biodegradable Polyphosphazene Based Peptide-Polymer Hybrids. Polymers (Basel) 2016; 8:polym8040161. [PMID: 30979252 PMCID: PMC6432119 DOI: 10.3390/polym8040161] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/13/2016] [Accepted: 04/18/2016] [Indexed: 11/16/2022] Open
Abstract
A novel series of peptide based hybrid polymers designed to undergo enzymatic degradation is presented, via macrosubstitution of a polyphosphazene backbone with the tetrapeptide Gly-Phe-Leu-Gly. Further co-substitution of the hybrid polymers with hydrophilic polyalkylene oxide Jeffamine M-1000 leads to water soluble and biodegradable hybrid polymers. Detailed degradation studies, via 31P NMR spectroscopy, dynamic light scattering and field flow fractionation show the polymers degrade via a combination of enzymatic, as well as hydrolytic pathways. The peptide sequence was chosen due to its known property to undergo lysosomal degradation; hence, these degradable, water soluble polymers could be of significant interest for the use as polymer therapeutics. In this context, we investigated conjugation of the immune response modifier imiquimod to the polymers via the tetrapeptide and report the self-assembly behavior of the conjugate, as well as its enzymatically triggered drug release behavior.
Collapse
Affiliation(s)
- Anne Linhardt
- Institute of Polymer Chemistry, Johannes Kepler University Linz (JKU), Altenberger Straße 69, A-4040 Linz, Austria.
| | - Michael König
- Institute of Polymer Chemistry, Johannes Kepler University Linz (JKU), Altenberger Straße 69, A-4040 Linz, Austria.
| | - Wolfgang Schöfberger
- Institute of Organic Chemistry, Johannes Kepler University Linz (JKU), Altenberger Straße 69, A-4040 Linz, Austria.
| | - Oliver Brüggemann
- Institute of Polymer Chemistry, Johannes Kepler University Linz (JKU), Altenberger Straße 69, A-4040 Linz, Austria.
| | - Alexander K Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD 20850, USA.
| | - Ian Teasdale
- Institute of Polymer Chemistry, Johannes Kepler University Linz (JKU), Altenberger Straße 69, A-4040 Linz, Austria.
| |
Collapse
|
14
|
Bioorthogonal Chemistry—Introduction and Overview [corrected]. Top Curr Chem (Cham) 2016; 374:9. [PMID: 27572992 DOI: 10.1007/s41061-016-0010-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/15/2016] [Indexed: 01/25/2023]
Abstract
Bioorthogonal chemistry has emerged as a new powerful tool that facilitates the study of structure and function of biomolecules in their native environment. A wide variety of bioorthogonal reactions that can proceed selectively and efficiently under physiologically relevant conditions are now available. The common features of these chemical reactions include: fast kinetics, tolerance to aqueous environment, high selectivity and compatibility with naturally occurring functional groups. The design and development of new chemical transformations in this direction is an important step to meet the growing demands of chemical biology. This chapter aims to introduce the reader to the field by providing an overview on general principles and strategies used in bioorthogonal chemistry. Special emphasis is given to cycloaddition reactions, namely to 1,3-dipolar cycloadditions and Diels-Alder reactions, as chemical transformations that play a predominant role in modern bioconjugation chemistry. The recent advances have established these reactions as an invaluable tool in modern bioorthogonal chemistry. The key aspects of the methodology as well as future outlooks in the field are discussed.
Collapse
|
15
|
Haldón E, Nicasio MC, Pérez PJ. Copper-catalysed azide-alkyne cycloadditions (CuAAC): an update. Org Biomol Chem 2015; 13:9528-50. [PMID: 26284434 DOI: 10.1039/c5ob01457c] [Citation(s) in RCA: 378] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The reactions of organic azides and alkynes catalysed by copper species represent the prototypical examples of click chemistry. The so-called CuAAC reaction (copper-catalysed azide-alkyne cycloaddition), discovered in 2002, has been expanded since then to become an excellent tool in organic synthesis. In this contribution the recent results described in the literature since 2010 are reviewed, classified according to the nature of the catalyst precursor: copper(I) or copper(II) salts or complexes, metallic or nano-particulated copper and several solid-supported copper systems.
Collapse
Affiliation(s)
- Estela Haldón
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química y Ciencias de los Materiales, Campus de El Carmen s/n, Universidad de Huelva, 21007-Huelva, Spain.
| | | | | |
Collapse
|
16
|
Boyer C, Corrigan NA, Jung K, Nguyen D, Nguyen TK, Adnan NNM, Oliver S, Shanmugam S, Yeow J. Copper-Mediated Living Radical Polymerization (Atom Transfer Radical Polymerization and Copper(0) Mediated Polymerization): From Fundamentals to Bioapplications. Chem Rev 2015; 116:1803-949. [DOI: 10.1021/acs.chemrev.5b00396] [Citation(s) in RCA: 356] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Cyrille Boyer
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Nathaniel Alan Corrigan
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Kenward Jung
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Diep Nguyen
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Thuy-Khanh Nguyen
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Nik Nik M. Adnan
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Susan Oliver
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Sivaprakash Shanmugam
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Jonathan Yeow
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
17
|
Moatsou D, Li J, Ranji A, Pitto-Barry A, Ntai I, Jewett MC, O’Reilly RK. Self-Assembly of Temperature-Responsive Protein-Polymer Bioconjugates. Bioconjug Chem 2015; 26:1890-9. [PMID: 26083370 PMCID: PMC4577958 DOI: 10.1021/acs.bioconjchem.5b00264] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 06/12/2015] [Indexed: 12/13/2022]
Abstract
We report a simple temperature-responsive bioconjugate system comprising superfolder green fluorescent protein (sfGFP) decorated with poly[(oligo ethylene glycol) methyl ether methacrylate] (PEGMA) polymers. We used amber suppression to site-specifically incorporate the non-canonical azide-functional amino acid p-azidophenylalanine (pAzF) into sfGFP at different positions. The azide moiety on modified sfGFP was then coupled using copper-catalyzed "click" chemistry with the alkyne terminus of a PEGMA synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. The protein in the resulting bioconjugate was found to remain functionally active (i.e., fluorescent) after conjugation. Turbidity measurements revealed that the point of attachment of the polymer onto the protein scaffold has an impact on the thermoresponsive behavior of the resultant bioconjugate. Furthermore, small-angle X-ray scattering analysis showed the wrapping of the polymer around the protein in a temperature-dependent fashion. Our work demonstrates that standard genetic manipulation combined with an expanded genetic code provides an easy way to construct functional hybrid biomaterials where the location of the conjugation site on the protein plays an important role in determining material properties. We anticipate that our approach could be generalized for the synthesis of complex functional materials with precisely defined domain orientation, connectivity, and composition.
Collapse
Affiliation(s)
- Dafni Moatsou
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Jian Li
- Department
of Chemical and Biological Engineering, Chemistry of Life Processes
Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Arnaz Ranji
- Department
of Chemical and Biological Engineering, Chemistry of Life Processes
Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Anaïs Pitto-Barry
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Ioanna Ntai
- Department
of Chemical and Biological Engineering, Chemistry of Life Processes
Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Chemistry of Life Processes
Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Rachel K. O’Reilly
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
18
|
|
19
|
Wu L, Glebe U, Böker A. Surface-initiated controlled radical polymerizations from silica nanoparticles, gold nanocrystals, and bionanoparticles. Polym Chem 2015. [DOI: 10.1039/c5py00525f] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review summarizes recent progress in surface-initiated controlled radical polymerizations from silica nanoparticles, gold nanocrystals, and bionanoparticles.
Collapse
Affiliation(s)
- Lei Wu
- Fraunhofer Institute for Applied Polymer Research IAP
- 14476 Potsdam-Golm
- Germany
- DWI – Leibniz Institute for Interactive Materials e.V
- Lehrstuhl für Makromolekulare Materialien und Oberflächen
| | - Ulrich Glebe
- Fraunhofer Institute for Applied Polymer Research IAP
- 14476 Potsdam-Golm
- Germany
| | - Alexander Böker
- Fraunhofer Institute for Applied Polymer Research IAP
- 14476 Potsdam-Golm
- Germany
- Lehrstuhl für Polymermaterialien und Polymertechnologie
- Universität Potsdam
| |
Collapse
|
20
|
Vanparijs N, Maji S, Louage B, Voorhaar L, Laplace D, Zhang Q, Shi Y, Hennink WE, Hoogenboom R, De Geest BG. Polymer-protein conjugation via a ‘grafting to’ approach – a comparative study of the performance of protein-reactive RAFT chain transfer agents. Polym Chem 2015. [DOI: 10.1039/c4py01224k] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The performances of various protein-reactive RAFT CTAs to afford polymer-protein conjugation via a grafting-to approach were compared.
Collapse
Affiliation(s)
- N. Vanparijs
- Department of Pharmaceutics
- Ghent University
- 9000 Ghent
- Belgium
| | - S. Maji
- Supramolecular Chemistry Group
- Department of Organic and Macromolecular Chemistry
- 9000 Ghent
- Belgium
| | - B. Louage
- Department of Pharmaceutics
- Ghent University
- 9000 Ghent
- Belgium
| | - L. Voorhaar
- Supramolecular Chemistry Group
- Department of Organic and Macromolecular Chemistry
- 9000 Ghent
- Belgium
| | - D. Laplace
- Laboratory for Organic Synthesis
- Department of Organic Chemistry
- 9000 Ghent
- Belgium
| | - Q. Zhang
- Supramolecular Chemistry Group
- Department of Organic and Macromolecular Chemistry
- 9000 Ghent
- Belgium
| | - Y. Shi
- Department of Pharmaceutics
- Utrecht Institute for Pharmaceutical Sciences
- Utrecht University
- 3584 Utrecht
- The Netherlands
| | - W. E. Hennink
- Department of Pharmaceutics
- Utrecht Institute for Pharmaceutical Sciences
- Utrecht University
- 3584 Utrecht
- The Netherlands
| | - R. Hoogenboom
- Supramolecular Chemistry Group
- Department of Organic and Macromolecular Chemistry
- 9000 Ghent
- Belgium
| | - B. G. De Geest
- Department of Pharmaceutics
- Ghent University
- 9000 Ghent
- Belgium
| |
Collapse
|
21
|
Glassner M, Maji S, de la Rosa VR, Vanparijs N, Ryskulova K, De Geest BG, Hoogenboom R. Solvent-free mechanochemical synthesis of a bicyclononyne tosylate: a fast route towards bioorthogonal clickable poly(2-oxazoline)s. Polym Chem 2015. [DOI: 10.1039/c5py01280e] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mechanochemical synthesis of a bicyclononyne tosylate (BCN-OTs) and its subsequent use for the CROP of 2-ethyl-2-oxazoline yielding bioorthogonal clickable poly(2-ethyl-2-oxazoline) is presented.
Collapse
Affiliation(s)
- Mathias Glassner
- Supramolecular Chemistry Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- 9000 Ghent
- Belgium
| | - Samarendra Maji
- Supramolecular Chemistry Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- 9000 Ghent
- Belgium
| | - Victor R. de la Rosa
- Supramolecular Chemistry Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- 9000 Ghent
- Belgium
| | - Nane Vanparijs
- Department of Pharmaceutics
- Ghent University
- B-9000 Ghent
- Belgium
| | - Kanykei Ryskulova
- Supramolecular Chemistry Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- 9000 Ghent
- Belgium
| | | | - Richard Hoogenboom
- Supramolecular Chemistry Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- 9000 Ghent
- Belgium
| |
Collapse
|
22
|
Espeel P, Du Prez FE. “Click”-Inspired Chemistry in Macromolecular Science: Matching Recent Progress and User Expectations. Macromolecules 2014. [DOI: 10.1021/ma501386v] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Pieter Espeel
- Department
of Organic and
Macromolecular Chemistry, Polymer Chemistry Research Group, Ghent University, Krijgslaan 281 S4-bis, B-9000 Ghent, Belgium
| | - Filip E. Du Prez
- Department
of Organic and
Macromolecular Chemistry, Polymer Chemistry Research Group, Ghent University, Krijgslaan 281 S4-bis, B-9000 Ghent, Belgium
| |
Collapse
|
23
|
|