1
|
Xiao Z, Yu P, Sun P, Kang Y, Niu Y, She Y, Zhao D. Inclusion complexes of β-cyclodextrin with isomeric ester aroma compounds: Preparation, characterization, mechanism study, and controlled release. Carbohydr Polym 2024; 333:121977. [PMID: 38494230 DOI: 10.1016/j.carbpol.2024.121977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/19/2024]
Abstract
Cyclodextrins (CDs) have been discovered to provide an efficient solution to the limited application of ester aroma molecules used in food, tobacco, and medication due to their strong smell and unstable storage. This work combined molecular modeling and experimental to analyze the conformation and controlled release of isomeric ester aroma compounds/β-CD inclusion complexes (ICs). The investigation revealed that ester aroma compounds could be effectively encapsulated within the β-CD cavity, forming ICs with low binding affinity. Furthermore, the key driving forces in ICs were identified as hydrogen bonds and van der Waals interactions through theoretical simulation. Results from the Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR) and Isothermal titration calorimetry (ITC) experiments confirmed the intermolecular interaction predicted by the molecular model. Notably, the release rate of aroma compounds from L-menthyl acetate/β-CD (LMA/β-CD) IC exceeded that of terpinyl acetate/β-CD (TA/β-CD) IC. This difference is attributed to the length of the chain of aroma molecules and the variation in the position of functional groups, influencing the stable formation of ICs with β-CD. These findings hold potential implications for refining the application of ICs across diverse industries.
Collapse
Affiliation(s)
- Zuobing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China; School of Agriculture and Biology, Shanghai Jiaotong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Peiran Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Pingli Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yanxiang Kang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yuanbin She
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Di Zhao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China.
| |
Collapse
|
2
|
Sarraute S, Biesse-Martin AS, Devemy J, Dequidt A, Bonal C, Malfreyt P. Investigation of the Complexation between 4-Aminoazobenzene and Cucurbit[7]uril through a Combined Spectroscopic, Nuclear Magnetic Resonance, and Molecular Simulation Studies. ACS OMEGA 2022; 7:25013-25021. [PMID: 35910107 PMCID: PMC9330255 DOI: 10.1021/acsomega.2c00499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/30/2022] [Indexed: 06/02/2023]
Abstract
Cucurbiturils are well known for their ability to form supramolecular systems with ultrahigh affinities binding. Inclusion complex between 4-aminoazobenzene and cucurbit[7]uril has been investigated in aqueous solution by ultraviolet (UV)-spectroscopy, 1H NMR, and molecular simulations. 4-aminoazobenzene shows high affinity in acidic solutions while no association was detected in neutral solutions. The thermodynamic properties of complex formation are investigated using both UV spectroscopy and nuclear magnetic resonance (NMR) measurements. Our results highlight that the high binding constant between CB7 and 4AA (log K = 4.9) is the result of a large negative change in Δr H° (-19 kJ/mol) and a small positive change in TΔr S° (9 kJ/mol). The analysis of the experimental data lead to hypothesis on the structure of the complex. We have used molecular dynamics simulation to interpret experiments. Interestingly, the cis-trans isomerization of aminoazobenzene is considered. All the results are discussed and compared with those previously obtained with other host molecules.
Collapse
|
3
|
Liubimtsev N, Kösterke T, Che Y, Appelhans D, Gaitzsch J, Voit B. Redox-sensitive ferrocene functionalised double cross-linked supramolecular hydrogels. Polym Chem 2022. [DOI: 10.1039/d1py01211h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Responsive double cross-linked hydrogels have proven to be a powerful approach to create smart polymer networks but unfold even greater potential if combined with supramolecular chemistry.
Collapse
Affiliation(s)
- Nikolai Liubimtsev
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
- Technische Universität Dresden, Faculty of Chemistry and Food Chemistry, Organic Chemistry of Polymers, 01069 Dresden, Germany
| | - Tom Kösterke
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
- Technische Universität Dresden, Faculty of Chemistry and Food Chemistry, Organic Chemistry of Polymers, 01069 Dresden, Germany
| | - Yunjiao Che
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Jens Gaitzsch
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
- Technische Universität Dresden, Faculty of Chemistry and Food Chemistry, Organic Chemistry of Polymers, 01069 Dresden, Germany
| |
Collapse
|
4
|
Alaboalirat M, Matson JB. Poly(β-Cyclodextrin) Prepared by Ring-Opening Metathesis Polymerization Enables Creation of Supramolecular Polymeric Networks. ACS Macro Lett 2021; 10:1460-1466. [PMID: 35549146 DOI: 10.1021/acsmacrolett.1c00590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The controlled synthesis of polymers containing densely grafted cyclodextrin units has proven challenging due to the steric hindrance of these cyclic oligosaccharides. In this study, we report the controlled synthesis of poly(β-cyclodextrin) [poly(β-CD)] through ring-opening metathesis polymerization (ROMP) using Grubbs third-generation catalyst. Molecular weights of >105 g/mol were obtained with dispersity values (Đ) of ≤1.2. In aqueous solution, β-cyclodextrin forms a host-guest complex with adamantyl groups (Ad). These interactions were utilized to prepare supramolecular polymer networks (SPNs) made by adding poly(β-CD) to α,ω-adamantyl-functionalized poly(2-hydroxyethyl acrylate) (Ad-PHEA-Ad). These poly(β-CD)/Ad-PHEA-Ad SPNs were prepared in aqueous solution and then dried to make homogeneous, transparent films. Varying the ratios of the two components enabled structure-property studies via tensile measurements.
Collapse
Affiliation(s)
- Mohammed Alaboalirat
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - John B. Matson
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
5
|
Synthesis, structural and in vitro biological evaluation of diamondoid-decorated lipophilic organotin(IV) derivatives. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
Mohamadhoseini M, Mohamadnia Z. Supramolecular self-healing materials via host-guest strategy between cyclodextrin and specific types of guest molecules. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213711] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Zhang J, Liu C, Hu X, Lv Q, Zhang H, Pi B, Yang Z, Lin M. Supramolecular self-assembly of the γ-cyclodextrin and perfluorononanoic acid system in aqueous solution. SOFT MATTER 2021; 17:1428-1436. [PMID: 33325964 DOI: 10.1039/d0sm01744b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recently, inclusion complexes formed from cyclodextrins (CDs) and surfactants have been found to play complex and important roles in supramolecular self-assembly. In this work, the self-assembly of perfluorononanoic acid (PFNA)/γ-cyclodextrin (γ-CD) in aqueous solution was investigated. The sole PFNA solution assembled into spherical uni-lamellar vesicles under certain concentrations as revealed by freeze-fracture transmission electron microscopy (FF-TEM) images. Interestingly, when γ-CD was added into the PFNA solution, one novel kind of cyclodextrin-based hydrogel with a crystal-like structure was obtained. The morphology of the hydrogels was inerratic parallel hexahedron or regular hexahedron as revealed by optical microscopy and scanning electron microscopy (SEM) measurements. Furthermore, the hydrogels were transformed into crystalline precipitates, which were composed of highly uniform tetragonal sheets with excellent crystallinity and homogeneous size distribution just by changing the γ-CD concentration. More amazingly, the crystal-like hydrogels were sensitive to shear and switched to solutions in their morphology with bar-like and rod-like aggregates and smaller square sheets under different shear rates, and the hydrogel-solution transition behavior was a reversable process. 1H NMR, Fourier transform infrared (FT-IR) and wide-angle X-ray diffraction (WXRD) measurements were performed to lead us to propose the formation mechanism of the above aggregates. Hopefully, our studies will cast new light on the fundamental investigations into the self-assembly of supramolecular systems of fluorinated surfactants and CD molecules and provide a new idea for smart material design.
Collapse
Affiliation(s)
- Juan Zhang
- Unconventional Petroleum Research Institute, China University of Petroleum, Beijing 102249, P. R. China.
| | - Cuiting Liu
- Unconventional Petroleum Research Institute, China University of Petroleum, Beijing 102249, P. R. China.
| | - Xinyue Hu
- Unconventional Petroleum Research Institute, China University of Petroleum, Beijing 102249, P. R. China.
| | - Qichao Lv
- Unconventional Petroleum Research Institute, China University of Petroleum, Beijing 102249, P. R. China.
| | - Hongsheng Zhang
- Unconventional Petroleum Research Institute, China University of Petroleum, Beijing 102249, P. R. China.
| | - Benxiang Pi
- Unconventional Petroleum Research Institute, China University of Petroleum, Beijing 102249, P. R. China.
| | - Zihao Yang
- Unconventional Petroleum Research Institute, China University of Petroleum, Beijing 102249, P. R. China.
| | - Meiqin Lin
- Unconventional Petroleum Research Institute, China University of Petroleum, Beijing 102249, P. R. China.
| |
Collapse
|
8
|
Zhou M, Ling F, Li J. A supramolecular diagnosis and treatment integrated agent: Synthesis and self-assembly of stimulus-responsive star-shaped copolymer. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Conformational analysis by NMR and molecular dynamics of adamantane-doxorubicin prodrugs and their assemblies with β-cyclodextrin: A focus on the design of platforms for controlled drug delivery. Bioorg Med Chem 2020; 28:115510. [DOI: 10.1016/j.bmc.2020.115510] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/06/2020] [Accepted: 04/14/2020] [Indexed: 12/16/2022]
|
10
|
Jiang B, Guo H, Zhao L, Xu B, Wang C, Liu C, Fan H. Fabrication of a β-cyclodextrin-based self-assembly containing a redox-responsive ferrocene. SOFT MATTER 2020; 16:125-131. [PMID: 31763662 DOI: 10.1039/c9sm02049g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The current research involves fabrication of a redox-responsive self-assembly system based on a ferrocene (Fc)-containing β-cyclodextrin (β-CD) derivative (βCD-EG-Fc). βCD-EG-Fc was synthesized, and its redox-sensitive self-assembly behavior was investigated using various techniques. On the basis of the intermolecular host-guest recognition between the β-CD group and the Fc moiety, βCD-EG-Fc primarily formed network-like structures and then vesicles following aging for a specified time. The formation of these structures was primarily driven by hydrogen bonding. Conversely, the oxidized molecules (βCD-EG-Fc+) self-assembled into cationic vesicles with the absence of host-guest complexation. Upon controlling the oxidation and reduction of Fc/Fc+, reversible aggregate transformation was achieved. The current study resulted in a deeper understanding of β-CD/Fc redox-responsive self-assemblies and contributed to the development of a single-component host-guest inclusion model.
Collapse
Affiliation(s)
- Bing Jiang
- School of Light Industry Science and Technology, Beijing Technology and Business University, Beijing 100048, P. R. China.
| | - Huichuang Guo
- School of Light Industry Science and Technology, Beijing Technology and Business University, Beijing 100048, P. R. China.
| | - Li Zhao
- School of Light Industry Science and Technology, Beijing Technology and Business University, Beijing 100048, P. R. China.
| | - Baocai Xu
- School of Light Industry Science and Technology, Beijing Technology and Business University, Beijing 100048, P. R. China.
| | - Ce Wang
- School of Light Industry Science and Technology, Beijing Technology and Business University, Beijing 100048, P. R. China.
| | - Changyao Liu
- School of Light Industry Science and Technology, Beijing Technology and Business University, Beijing 100048, P. R. China.
| | - Haiming Fan
- College of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266555, P. R. China.
| |
Collapse
|
11
|
BRIÑEZ-ORTEGA EDWIN, ALMEIDA VERALDE, LOPES JULIOC, BURGOS ANAE. Partial inclusion of bis(1,10-phenanthroline)silver(I) salicylate in β-cyclodextrin: Spectroscopic characterization, in vitro and in silico antimicrobial evaluation. AN ACAD BRAS CIENC 2020; 92:e20181323. [DOI: 10.1590/0001-3765202020181323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/03/2019] [Indexed: 01/13/2023] Open
|
12
|
Recent advances in mass spectrometry studies of non-covalent complexes of macrocycles - A review. Anal Chim Acta 2019; 1081:32-50. [DOI: 10.1016/j.aca.2019.06.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/29/2022]
|
13
|
Lee J, Park JM, Jang WD. Cyclodextrin-bearing telechelic poly(2-isopropyl-2-oxazoline): Extremely large shifts of phase transition temperature by photo-responsive guest inclusion. Carbohydr Polym 2019; 221:48-54. [DOI: 10.1016/j.carbpol.2019.05.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/23/2019] [Accepted: 05/23/2019] [Indexed: 01/29/2023]
|
14
|
Pour SR, Dinari M, Abdolmaleki A. Monochlorotriazinyl‐β‐cyclodextrin Grafted on Graphene Oxide as an Attractive Green Heterogeneous Nanoreactor for Selective Oxidation Reaction with NBS in Water. ChemistrySelect 2019. [DOI: 10.1002/slct.201900962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shadi Rasoul Pour
- Chemistry groupPardis CollegeIsfahan University of Technology Isfahan 84156–83111 I.R. Iran
| | - Mohammad Dinari
- Chemistry groupPardis CollegeIsfahan University of Technology Isfahan 84156–83111 I.R. Iran
| | - Amir Abdolmaleki
- Chemistry groupPardis CollegeIsfahan University of Technology Isfahan 84156–83111 I.R. Iran
- Department of chemistryCollege of scienceShiraz University Shiraz 71467–13565 I.R. Iran
| |
Collapse
|
15
|
Haloalkanes and aromatic hydrocarbons sensing using Langmuir–Blodgett thin film of pillar[5]arene-biphenylcarboxylic acid. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.12.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Zhao C, Ma Z, Zhu X. Rational design of thermoresponsive polymers in aqueous solutions: A thermodynamics map. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.01.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Light-responsive nanocomposites combining graphene oxide with POSS based on host-guest chemistry. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.08.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Xie M, Wu C, Chen C, Liu Y, Zhao C. Photo-adaptable shape memory hydrogels based on orthogonal supramolecular interactions. Polym Chem 2019. [DOI: 10.1039/c9py00851a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel shape memory hydrogel with photo-adaptable permanent shape has been developed on the basis of alginate–Ca2+ coordination and the host–guest interaction between α-cyclodextrin and azobenzene.
Collapse
Affiliation(s)
- Manqing Xie
- Ningbo Key Laboratory of Specialty Polymers
- School of Material Science and Chemical Engineering
- Ningbo University
- Ningbo
- China
| | - Chen Wu
- Ningbo Key Laboratory of Specialty Polymers
- School of Material Science and Chemical Engineering
- Ningbo University
- Ningbo
- China
| | - Chongyi Chen
- Ningbo Key Laboratory of Specialty Polymers
- School of Material Science and Chemical Engineering
- Ningbo University
- Ningbo
- China
| | - Ying Liu
- Ningbo Key Laboratory of Specialty Polymers
- School of Material Science and Chemical Engineering
- Ningbo University
- Ningbo
- China
| | - Chuanzhuang Zhao
- Ningbo Key Laboratory of Specialty Polymers
- School of Material Science and Chemical Engineering
- Ningbo University
- Ningbo
- China
| |
Collapse
|
19
|
Garnier L, Sarraute S, Israëli Y, Bonal C, Malfreyt P. Associations of Water-Soluble Macrocyclic Hosts with 4-Aminoazobenzene: Impact of pH. J Phys Chem B 2018; 122:11953-11961. [PMID: 30466260 DOI: 10.1021/acs.jpcb.8b09127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An investigation of the pH effect on the inclusion complexes of β-cyclodextrins and calixarenesulfonates with 4-aminoazobenzene was conducted both by experiments and molecular simulations. The whole thermodynamic characterizations of the association between hosts and 4-aminoazobenzene ( K, Δr G0, Δr H0, and TΔr S0) were determined by UV-visible spectroscopy. β-Cyclodextrin inclusion complexes are not affected by pH change unlike those obtained with calixarenes. All the studied systems were enthalpically favored. Nevertheless, the entropic behavior is different depending on the host. In order to interpret these experimental results, molecular simulations were used to calculate the number of atoms inserted into the cage-like host compounds and the number of water molecules expelled from the cavity.
Collapse
Affiliation(s)
- Ludovic Garnier
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand , F-63000 Clermont-Ferrand , France
| | - Sabine Sarraute
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand , F-63000 Clermont-Ferrand , France
| | - Yael Israëli
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand , F-63000 Clermont-Ferrand , France
| | - Christine Bonal
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand , F-63000 Clermont-Ferrand , France
| | - Patrice Malfreyt
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand , F-63000 Clermont-Ferrand , France
| |
Collapse
|
20
|
Wang W, Guo H, Zeng L, Zhou J, Zhao L, Zhang G, Wang C, Xu B. Self-assembly of two ferrocence- and α-cyclodextrin-derived unconventional amphiphiles with redox responsiveness. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.08.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
21
|
Zhang L, Qiu G, Liu F, Liu X, Mu S, Long Y, Zhao Q, Liu Y, Gu H. Controlled ROMP synthesis of side-chain ferrocene and adamantane-containing diblock copolymer for the construction of redox-responsive micellar carriers. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
22
|
Dong Q, Luo C, Li N, Chi J, Zhang Q. Temperature and Recognition Dual Responsive Poly(N-Isopropylacrylamide) and Poly(N,N-Dimethylacrylamide) with Adamantyl Side Group. MATERIALS 2018; 11:ma11040473. [PMID: 29565307 PMCID: PMC5951319 DOI: 10.3390/ma11040473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 11/23/2022]
Abstract
A series of copolymers with an adamantyl side group (poly(NIPAM-co-AdMA) and poly(DMAM-co-AdMA)) were prepared by radical copolymerization of N-isopropylacrylamide (NIPAM) and N,N-dimethylacrylamide (DMAM) with a 2-methyl-2-adamantylmethacrylate (AdMA) monomer. The structure and composition of the as-synthesized copolymers were characterized by Fourier transform infrared (FT-IR) spectroscopy, proton nuclear magnetic resonance (1H NMR) spectroscopy, gel permeation chromatography (GPC), thermogravimetric analysis (TGA), and elemental analysis. Temperature and recognition dual responsivity of the copolymers was investigated by cloud point (Tcp) and dynamic light scattering (DLS), respectively. The results show that the as-synthesized copolymers are a kind of temperature-responsive polymer with a lower critical solution temperature (LCST). Tcp was approximately consistent with the critical temperature of intermolecular copolymer association (Tass) from DLS. For these copolymers, Tcp decreases with increasing content of AdMA unit in the copolymers. After the addition of β-cyclodextrins (β-CD), Tcp increases, and the increment of Tcp values gradually became large with increasing content of AdMA in the copolymers. It is host-guest molecular recognition of β-CD and adamantyl groups that endows the as-synthesized copolymers with recognition-tunable thermosensitivity.
Collapse
Affiliation(s)
- Qiujing Dong
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, China.
- Anhui Provincial Key Laboratory for Degradation and Monitoring of the Pollution of the Environment, Fuyang 236037, China.
| | - Chunhua Luo
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, China.
- Anhui Provincial Key Laboratory for Degradation and Monitoring of the Pollution of the Environment, Fuyang 236037, China.
| | - Na Li
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, China.
| | - Jiaxiang Chi
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, China.
| | - Qingqing Zhang
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, China.
| |
Collapse
|
23
|
Abstract
This review focuses on metal complexes of cyclodextrin (CyD) derivatives designed for application as therapeutics or diagnostics. We discuss examples of metalloprotein models (hemoglobin, superoxide dismutase and catalase) based on cyclodextrins. The hydrophobic microenvironment of CyDs stabilizes the Fe(II) porphyrin system that can reversibly bind O2 or CO in water. Superoxide dismutase/catalase mimetics exploit functionalization with CyDs, which increase their solubility and biological activity. Furthermore, CyDs have been used as scaffolds to obtain multicenter metal complexes: paramagnetic systems act as high-performance contrast agents for magnetic resonance imaging applications. Finally, we review CyD ligands, whose use appears promising in metal chelation therapy, as CyD moiety confers additional properties to the ligands.
Collapse
|
24
|
Hu C, Wu J, Wei T, Zhan W, Qu Y, Pan Y, Yu Q, Chen H. A supramolecular approach for versatile biofunctionalization of magnetic nanoparticles. J Mater Chem B 2018; 6:2198-2203. [DOI: 10.1039/c8tb00490k] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A convenient and versatile approach for biofunctionalization of magnetic nanoparticles was developed based on supramolecular host–guest interaction.
Collapse
Affiliation(s)
- Changming Hu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University
- Suzhou
- P. R. China
| | - Jingxian Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University
- Suzhou
- P. R. China
| | - Ting Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University
- Suzhou
- P. R. China
| | - Wenjun Zhan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University
- Suzhou
- P. R. China
| | - Yangcui Qu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University
- Suzhou
- P. R. China
| | - Yue Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University
- Suzhou
- P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University
- Guangzhou
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University
- Suzhou
- P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University
- Suzhou
- P. R. China
| |
Collapse
|
25
|
Zhang B, Guan W, Yin F, Wang J, Li B, Wu L. Induced chirality and reversal of phosphomolybdate cluster via modulating its interaction with cyclodextrins. Dalton Trans 2018; 47:1388-1392. [DOI: 10.1039/c7dt03669h] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Direct-induced chirality of a metal–oxide cluster by cyclodextrins was realized and the reversals of the induced Cotton signals were modulated by introducing a competitive guest and/or substituting by different cyclodextrins.
Collapse
Affiliation(s)
- Bin Zhang
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130012
- China
| | - Weiming Guan
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130012
- China
| | - Fangfang Yin
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130012
- China
| | - Jiaxu Wang
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130012
- China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130012
- China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
26
|
Markthaler D, Gebhardt J, Jakobtorweihen S, Hansen N. Molecular Simulations of Thermodynamic Properties for the System α
-Cyclodextrin/Alcohol in Aqueous Solution. CHEM-ING-TECH 2017. [DOI: 10.1002/cite.201700057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Daniel Markthaler
- University of Stuttgart; Institute of Thermodynamics and Thermal Process Engineering; Pfaffenwaldring 9 70569 Stuttgart Germany
| | - Julia Gebhardt
- University of Stuttgart; Institute of Thermodynamics and Thermal Process Engineering; Pfaffenwaldring 9 70569 Stuttgart Germany
| | - Sven Jakobtorweihen
- Hamburg University of Technology; Institute of Thermal Separation Processes; Eißendorfer Straße 38 21073 Hamburg Germany
| | - Niels Hansen
- University of Stuttgart; Institute of Thermodynamics and Thermal Process Engineering; Pfaffenwaldring 9 70569 Stuttgart Germany
| |
Collapse
|
27
|
Štimac A, Šekutor M, Mlinarić-Majerski K, Frkanec L, Frkanec R. Adamantane in Drug Delivery Systems and Surface Recognition. Molecules 2017; 22:molecules22020297. [PMID: 28212339 PMCID: PMC6155684 DOI: 10.3390/molecules22020297] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 01/19/2017] [Accepted: 02/11/2017] [Indexed: 11/30/2022] Open
Abstract
The adamantane moiety is widely applied in design and synthesis of new drug delivery systems and in surface recognition studies. This review focuses on liposomes, cyclodextrins, and dendrimers based on or incorporating adamantane derivatives. Our recent concept of adamantane as an anchor in the lipid bilayer of liposomes has promising applications in the field of targeted drug delivery and surface recognition. The results reported here encourage the development of novel adamantane-based structures and self-assembled supramolecular systems for basic chemical investigations as well as for biomedical application.
Collapse
Affiliation(s)
- Adela Štimac
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, 10000 Zagreb, Croatia.
| | - Marina Šekutor
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Kata Mlinarić-Majerski
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Leo Frkanec
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Ruža Frkanec
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, 10000 Zagreb, Croatia.
| |
Collapse
|
28
|
Hao S, Zhai Q, Zhao L, Xu B. Construction and reversible assembly of a redox-responsive supramolecular cyclodextrin amphiphile. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Bian Q, Wang W, Wang S, Wang G. Light-Triggered Specific Cancer Cell Release from Cyclodextrin/Azobenzene and Aptamer-Modified Substrate. ACS APPLIED MATERIALS & INTERFACES 2016; 8:27360-27367. [PMID: 27648728 DOI: 10.1021/acsami.6b09734] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cell adhesion behaviors of stimuli-responsive surfaces have attracted significant attention for their potential biomedical applications. Distinct from temperature and pH stimuli, photoswitching avoids the extra input of thermal energy or chemicals. Herein, we designed a novel reusable cyclodextrin (CD)-modified surface to realize photoswitched specific cell release utilizing host-guest interactions between CD and azobenzene. The azobenzene-grafted specific cell capture agent was assembled onto the CD-modified surface to form a smart surface controlling cell adhesion by light radiation. After UV light irradiation, the azobenzene switched from trans- to cis-isomers, and the cis-azobenzene was not recognized by CD due to the unmatched host-guest pairs; thus, the captured MCF-7 cells could be released. Light-triggered specific cancer cell release with high efficiency may afford a smart surface with significant potential applications for the isolation and analysis of circulating tumor cells.
Collapse
Affiliation(s)
- Qing Bian
- School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, China
| | - Wenshuo Wang
- Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Shutao Wang
- Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Guojie Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, China
| |
Collapse
|
30
|
Chen L, Yuan X, Wang Z, Luo Y, Huang W, Zhang S, Yuan W, Qin S, Tao G, Yuan L. A Redox-Responsive Complex System Based on 2 D Shape-Persistent Cyclo[6]aramide and Ferrocenium. ASIAN J ORG CHEM 2016. [DOI: 10.1002/ajoc.201600161] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Long Chen
- College of Chemistry; Key Laboratory for Radiation Physics and Technology of Ministry of Education; Institute of Nuclear Science and Technology; College of Polymer Science and Engineering; Sichuan University; Chengdu 610064 China
| | - Xiangyang Yuan
- College of Chemistry; Key Laboratory for Radiation Physics and Technology of Ministry of Education; Institute of Nuclear Science and Technology; College of Polymer Science and Engineering; Sichuan University; Chengdu 610064 China
| | - Zixiao Wang
- College of Chemistry; Key Laboratory for Radiation Physics and Technology of Ministry of Education; Institute of Nuclear Science and Technology; College of Polymer Science and Engineering; Sichuan University; Chengdu 610064 China
| | - Youran Luo
- College of Chemistry; Key Laboratory for Radiation Physics and Technology of Ministry of Education; Institute of Nuclear Science and Technology; College of Polymer Science and Engineering; Sichuan University; Chengdu 610064 China
| | - Wei Huang
- College of Chemistry; Key Laboratory for Radiation Physics and Technology of Ministry of Education; Institute of Nuclear Science and Technology; College of Polymer Science and Engineering; Sichuan University; Chengdu 610064 China
| | - Shuai Zhang
- College of Chemistry; Key Laboratory for Radiation Physics and Technology of Ministry of Education; Institute of Nuclear Science and Technology; College of Polymer Science and Engineering; Sichuan University; Chengdu 610064 China
| | - Wenli Yuan
- College of Chemistry; Key Laboratory for Radiation Physics and Technology of Ministry of Education; Institute of Nuclear Science and Technology; College of Polymer Science and Engineering; Sichuan University; Chengdu 610064 China
| | - Song Qin
- College of Chemistry; Key Laboratory for Radiation Physics and Technology of Ministry of Education; Institute of Nuclear Science and Technology; College of Polymer Science and Engineering; Sichuan University; Chengdu 610064 China
| | - Guohong Tao
- College of Chemistry; Key Laboratory for Radiation Physics and Technology of Ministry of Education; Institute of Nuclear Science and Technology; College of Polymer Science and Engineering; Sichuan University; Chengdu 610064 China
| | - Lihua Yuan
- College of Chemistry; Key Laboratory for Radiation Physics and Technology of Ministry of Education; Institute of Nuclear Science and Technology; College of Polymer Science and Engineering; Sichuan University; Chengdu 610064 China
| |
Collapse
|
31
|
Li S, Yin G, Wu X, Liu C, Luo J. Supramolecular imprinted sensor for carbofuran detection based on a functionalized multiwalled carbon nanotube-supported Pd-Ir composite and methylene blue as catalyst. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2015.12.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
Li H, Meng B, Chai SH, Liu H, Dai S. Hyper-crosslinked β-cyclodextrin porous polymer: an adsorption-facilitated molecular catalyst support for transformation of water-soluble aromatic molecules. Chem Sci 2015; 7:905-909. [PMID: 28791121 PMCID: PMC5530358 DOI: 10.1039/c5sc04034e] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 11/13/2015] [Indexed: 12/23/2022] Open
Abstract
A hyper-crosslinked β-cyclodextrin porous polymer (BnCD-HCPP) was designed and synthesized facilely by β-cyclodextrin benzylation and subsequent crosslinking for efficient adsorption and catalysis.
A hyper-crosslinked β-cyclodextrin porous polymer (BnCD-HCPP) was designed and synthesized facilely by β-cyclodextrin benzylation and subsequent crosslinking via a Friedel–Crafts alkylation route. The BnCD-HCPP shows an extremely high BET surface area, large pore volume, and high thermal stability, making it a highly efficient adsorbent for removal of aromatic pollutants from water. The adsorption efficiency in terms of distribution coefficient, defined as the ratio of adsorption capacity to equilibrium adsorbate concentration, ranged from 103 to 106 mL g–1 within a concentration of 0–100 ppm, one order of magnitude higher than that of other β-cyclodextrin-based adsorbents reported previously. The molar percentage of adsorbate to β-cyclodextrin exceeded 300%, suggesting that the adsorption occurred not only in the cyclodextrin cavities via a 1 : 1 complexation, but also in the nanopores of the BnCD-HCPP created during the hyper-crosslinking. The BnCD-HCPP can be further functionalized by incorporation of gold nanoparticles for catalytic transformation of adsorbed phenolic compounds such as 4-nitrophenol to 4-aminophenol.
Collapse
Affiliation(s)
- Haiying Li
- State Key Laboratory of Chemical Engineering and Department of Chemistry , East China University of Science and Technology , Shanghai , 200237 , China . .,Chemical Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , USA .
| | - Bo Meng
- Department of Chemistry , University of Tennessee , Knoxville , Tennessee 37996 , USA .
| | - Song-Hai Chai
- Department of Chemistry , University of Tennessee , Knoxville , Tennessee 37996 , USA .
| | - Honglai Liu
- State Key Laboratory of Chemical Engineering and Department of Chemistry , East China University of Science and Technology , Shanghai , 200237 , China .
| | - Sheng Dai
- Chemical Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , USA . .,Department of Chemistry , University of Tennessee , Knoxville , Tennessee 37996 , USA .
| |
Collapse
|