1
|
Liao J, Wen R, Wang Y, Zhou Y, Zhang J. Film-Forming Capability and Antibacterial Activity of Surface-Deacetylated Chitin Nanocrystals: Role of Degree of Deacetylation. Biomacromolecules 2024; 25:5138-5148. [PMID: 39007299 DOI: 10.1021/acs.biomac.4c00528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Developing sustainable food-active packaging materials is a major issue in food preservation applications. Chitin nanocrystals (ChNCs) are regarded as unique bioderived nanomaterials due to their inherent nitrogen moiety. By tuning the chemical functionality of this nanomaterial, it is possible to affect its properties, such as film-forming capability and antibacterial activity. In this work, surface-deacetylated chitin nanocrystals (D-ChNCs) with different degrees of deacetylation (DDs) were prepared by partial deacetylation of native chitin and subsequent acid hydrolysis, and their film-forming capability and antibacterial activity were studied systematically. The D-ChNCs showed favorable film-forming ability and antibacterial activity, which are closely related to their DD. With the increase in DD (from 5.7% to 45.4%), the formed transparent films based on ChNCs showed gradually increased elongation at break (from 0.5% to 2.5%) and water contact angle (from 25.5° to 87.0°), but decreased break strength (from 3.13 to 0.89 MPa), Young's modulus (from 0.84 to 0.24 MPa), and water vapor permeability (from 4.7 × 10-10 to 4.1 × 10-10g/m s Pa). Moreover, the antibacterial activity of the D-ChNCs against E. coli and S. aureus also increased with the increase of DD. This study also found that the depolarization and potential dissipation of the bacterial cell membrane induced by the contact between amino-rich D-ChNCs and bacteria through electrostatic attraction are the possible mechanisms causing bacterial cell death. This study provides a basis for understanding the effects of DD on the film-forming capability and antibacterial activity of ChNCs, which is conducive to the design of novel active packaging films based on ChNCs.
Collapse
Affiliation(s)
- Jing Liao
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
| | - Ruizhi Wen
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yijin Wang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yuhang Zhou
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jiamin Zhang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
| |
Collapse
|
2
|
Greca LG, Azpiazu A, Reyes G, Rojas OJ, Tardy BL, Lizundia E. Chitin-based pulps: Structure-property relationships and environmental sustainability. Carbohydr Polym 2024; 325:121561. [PMID: 38008483 DOI: 10.1016/j.carbpol.2023.121561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/13/2023] [Accepted: 11/02/2023] [Indexed: 11/28/2023]
Abstract
The deconstruction and valorization of chitinous biomass from crustaceans is a promising route for sustainable bioproduct development alternative to petroleum-based materials. However, chitin nanocrystal and chitin nanofibril isolation from crustacean shells is often subjected to extensive processing, compromising their environmental and cost sustainability. To address the sustainability challenge that chitin valorization presents, herein we introduce a mild fibrillation route to generate "chitin pulp"; where a careful control of the macro- and micro-fibrillated chitin with protein and mineral components yields tailored properties. Films produced from protein-rich chitin pulp showed ultimate strength of up to 93 ± 7 MPa. The surface energy and wetting behavior, going from hydrophilic to nearly-hydrophobic, could be tailored as a function of pulp composition. Life cycle assessment of the protein-rich chitin pulps demonstrated that the global warming potential of chitin pulp is reduced by 2 to 3 times when compared to chitin nanocrystals. Overall, this work presents a new and potentially scalable route for the generation of chitin-based materials having a reduced environmental footprint compared to nanochitins and chitosan, thus opening a new route for the valorization of chitin beyond nanochitin for the development of environmentally and economically sustainable materials.
Collapse
Affiliation(s)
- Luiz G Greca
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland; Swiss Federal Laboratories for Materials Science and Technology (EMPA), Cellulose & Wood Materials Laboratory, Dübendorf, 8600, Switzerland.
| | - Ainara Azpiazu
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland; Life Cycle Thinking Group, Department of Graphic Design and Engineering Projects, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Biscay, Spain
| | - Guillermo Reyes
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland; Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry, and Department of Wood Science, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z4, Canada.
| | - Blaise L Tardy
- Department of Chemical Engineering, Khalifa University, United Arab Emirates; Center for Membrane and Advanced Water Technology, Khalifa University, Abu Dhabi, United Arab Emirates; Research and Innovation Center on CO(2) and Hydrogen, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Erlantz Lizundia
- Life Cycle Thinking Group, Department of Graphic Design and Engineering Projects, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Biscay, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, Edif. Martina Casiano, Pl. 3 Parque Científico UPV/EHU Barrio Sarriena, 48940 Leioa, Biscay, Spain.
| |
Collapse
|
3
|
Almeida CL, Figueiredo LRF, Ribeiro DVM, Santos AMC, Souza EL, Oliveira KAR, Oliveira JE, Medeiros ES. Antifungal edible coatings for fruits based on zein and chitosan nanowhiskers. J Food Sci 2024; 89:404-418. [PMID: 38010738 DOI: 10.1111/1750-3841.16831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/21/2023] [Accepted: 10/25/2023] [Indexed: 11/29/2023]
Abstract
Fresh produce have a more limited shelf life than processed ones. Their sensory attributes such as appearance and surface texture are important features in consumer perception and liking. The decomposition of fresh produce, which is caused by enzymes, chemical reactions, and microbial infections, often caused by Colletotrichum species, is inevitable. However, it can be slowed down. Several materials have been developed for this purpose, with an emphasis on active coatings using nanomaterials. In this study, the protective effects of a zein coating containing chitosan nanowhiskers (CSW) for the maintenance of fruit quality were investigated using guava (Psidium guajava L.) as a model fruit. CSW were previously characterized, and their antifungal effects against distinct Colletotrichum species (Colletotrichum asianum, Colletotrichum tropicale, Colletotrichum gloeosporioides, and Colletotrichum brevisporum) were proven. Coatings were characterized by thermogravimetric analysis, optical profilometry, and mechanical properties. Total soluble solids, pH, mass loss, and visual inspection of uncoated and coated guava fruits were also verified during 9 days. Results show that CSW length and aspect ratio decreased for longer extraction times. A similar behavior was found for x-ray diffraction in which peak intensity decreases under the same conditions. CSW degradation (ca. 250-400°C) also depends on extraction time in which more crystalline whiskers are the most thermally stable ones. The addition of CSW did not significantly (p < 0.05) modify the homogeneity and continuity of coating but prevented microbial growth assuring fruit quality during storage. In summary, coatings protected guava fruits from post-harvest spoilage while preserving quality and extending shelf life. PRACTICAL APPLICATION: Fresh foods such as fruits and vegetables have a more limited shelf life than processed ones.
Collapse
Affiliation(s)
- Carolina L Almeida
- Postgraduate Program in Materials Science and Engineering, Federal University of Paraíba (UFPB), João Pessoa, Brazil
| | - Lucas R F Figueiredo
- Materials and Biosystems laboratory (LAMAB), Center of Technology (CT), Federal University of Paraíba (UFPB), João Pessoa-PB, Brazil
| | - Diego V M Ribeiro
- Postgraduate Program in Materials Science and Engineering, Federal University of Paraíba (UFPB), João Pessoa, Brazil
| | - Adillys M C Santos
- Center for Science and Technology in Energy and Sustainability, Federal University of Recôncavo da Bahia, Feira de Santana-BA, Brazil
| | - Evandro L Souza
- Laboratory of Food Microbiology, Department of Nutrition, Health Science Center (CCS), Federal University of Paraíba (UFPB), João Pessoa-PB, Brazil
| | - Kataryne A R Oliveira
- Laboratory of Food Microbiology, Department of Nutrition, Health Science Center (CCS), Federal University of Paraíba (UFPB), João Pessoa-PB, Brazil
| | - Juliano E Oliveira
- Materials and Biosystems laboratory (LAMAB), Department of Engineering, Federal University of Lavras, Lavras-MG, Brazil
| | - Eliton S Medeiros
- Materials and Biosystems laboratory (LAMAB), Center of Technology (CT), Federal University of Paraíba (UFPB), João Pessoa-PB, Brazil
| |
Collapse
|
4
|
Yang F, Wei Y, Xiao H, Zhang Q, Li J, Lin Q, Zhu D, Huang Z, Liu GQ. Acetylated rice starch nanocrystals improved the physical, mechanical, and structural properties of native rice starch based films. Int J Biol Macromol 2023; 253:127271. [PMID: 37804895 DOI: 10.1016/j.ijbiomac.2023.127271] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/12/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Rice starch nanocrystals (SNC) and acetylated rice starch nanocrystals (ASNC) with three different substitution degrees (DS) for 0.22 (ASNCa), 0.56 (ASNCb), and 0.83 (ASNCc), respectively, were synthesized. Starch nanocrystals (SNC, ASNCa, ASNCb and ASNCc) with varying concentrations (0-25 %) were used in the production of composite rice starch-based films plasticized with glycerol using the solvent casting technique. Films were compared concerning their morphology, moisture content and solubility, transmittance, tensile strength, elongation at break. The SNC and ASNC content and acetylated DS had a significant effect (p ≤ 0.05) on all the properties investigated when compared to the control film. The addition of ASNC resulted in less hydrophilic films and UV light barrier properties, and the addition of SNC and ASNC increased the rigidity of starch film. There was an increase of 156.7 % in tensile strength for 10 % ASNCc composite films and a reduction of 68.1 % in water vapor permeability for 20 % ASNCc composite films. The rice starch/ASNCb nanocomposite films with the addition of 5 % and 10 % ASNCb exhibited a compact, smooth, and flat surface structure. Therefore, these results showed that ASNC significantly improved the mechanical properties, surface morphology and thermal stability of the films.
Collapse
Affiliation(s)
- Fan Yang
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry & Technology, Changsha 410004, PR China; Shanxi Technology and Business College, Taiyuan 030006, China
| | - Yujun Wei
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry & Technology, Changsha 410004, PR China
| | - Huaxi Xiao
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Central South University of Forestry & Technology, Changsha 410004, PR China; National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry & Technology, Changsha 410004, PR China.
| | - Qian Zhang
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry & Technology, Changsha 410004, PR China
| | - Jiangtao Li
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry & Technology, Changsha 410004, PR China
| | - Qinlu Lin
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry & Technology, Changsha 410004, PR China
| | - Dekun Zhu
- College of Foreign Languages, Central South University of Forestry & Technology, Changsha 410004, PR China
| | - Zhengyu Huang
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry & Technology, Changsha 410004, PR China
| | - Gao-Qiang Liu
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry & Technology, Changsha 410004, PR China; Yuelu Mountain Laboratory & International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology, Changsha 410004, PR China.
| |
Collapse
|
5
|
Mannai F, Mechi L, Alimi F, Alsukaibi AKD, Belgacem MN, Moussaoui Y. Biodegradable composite films based on mucilage from Opuntia ficus-indica (Cactaceae): Microstructural, functional and thermal properties. Int J Biol Macromol 2023; 252:126456. [PMID: 37633555 DOI: 10.1016/j.ijbiomac.2023.126456] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/21/2023] [Accepted: 08/20/2023] [Indexed: 08/28/2023]
Abstract
This study evaluated the feasibility of using cactus mucilage (CM) to elaborate biobased composite films blended with styrene-butadiene rubber latex (SBL). The CM was extracted and precipitated with ethanol (CMET) and isopropanol (CMIS). Mucilage-based films were formulated using three levels of mucilage (4, 6, and 8 wt%). The microstructure, thickness, moisture content, density, water contact angle, water vapor permeability, film solubility, thermal stability, and toughness of mucilage films blended with SBL (SBL/CMET and SBL/CMIS) were measured. The properties of mucilage-based films varied systematically, depending on the concentration of mucilage. The addition of SBL to CM film produces compatible, hydrophobic, flexible, and stiffer films with low moisture contents and good barrier properties. The mucilage film incorporated with 6 wt% CMET and CMIS reached the highest Young's modulus of 1512 ± 21 and 1988 ± 55 MPa, respectively. The DSC of produced films reveals that the Tg of SBL/CMIS is lower than that of SBL/CMIS. The synthesized films were structurally stable at high temperatures. The biodegradability of the composite films buried in the ground shows that the produced films are 100 % biodegradable after 40 days. Thus, CM blended with SBL can benefit specific applications, especially food packaging.
Collapse
Affiliation(s)
- Faten Mannai
- University of Gafsa, Faculty of Sciences of Gafsa, Laboratory for the Application of Materials to the Environment, Water, and Energy (LR21ES15), Gafsa 2112, Tunisia; University of Gafsa, Faculty of Sciences of Gafsa, Gafsa 2112, Tunisia
| | - Lassaad Mechi
- Department of Chemistry, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| | - Fathi Alimi
- Department of Chemistry, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| | | | - Mohamed Naceur Belgacem
- University of Grenoble Alpes, CNRS, Grenoble INP, Laboratory of Process Engineering for Biorefinery, Bio-based Materials and Functional Printing, 38000 Grenoble, France
| | - Younes Moussaoui
- University of Gafsa, Faculty of Sciences of Gafsa, Gafsa 2112, Tunisia; University of Sfax, Faculty of Sciences of Sfax, Organic Chemistry Laboratory (LR17ES08), Sfax 3029, Tunisia.
| |
Collapse
|
6
|
Mathew M, Midhun Dominic CD, Neenu KV, Begum PMS, Dileep P, Kumar TGA, Sabu AA, Nagane D, Parameswaranpillai J, Badawi M. Carbon black and chitin nanofibers for green tyres: Preparation and property evaluation. Carbohydr Polym 2023; 310:120700. [PMID: 36925259 DOI: 10.1016/j.carbpol.2023.120700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/28/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
This research highlights the synergistic use of carbon black (CB) and chitin nanofibers (CHNFs) for developing green tyres for the first time. The CHNFs (12-30 nm) were prepared from chitin powder with the help of steam explosion and mild oxalic acid hydrolysis. The CHNFs were uniformly dispersed in natural rubber (NR) latex, dried, and mixed with CB in a two-roll mill to form NR/CB/CHNF composites. The NR/CB/CHNF composite at 1 phr CHNF loading exhibited tensile and tear strengths that were about 47 and 160 % greater than the NR-Neat, respectively. The dynamic mechanical analysis showed that the loss tangent (tan δ) at 60 °C was 50 % lower for the NR/CB/CHNF 1.0 composite than for the NR/CB50 composite. The study succeeded in developing a new green tyre tread formulation that would be helpful for attaining sustainability and a circular economy.
Collapse
Affiliation(s)
- Mariya Mathew
- Department of Chemistry, Sacred Heart College (Autonomous), Kochi, Kerala Pin-682013, India
| | - C D Midhun Dominic
- Department of Chemistry, Sacred Heart College (Autonomous), Kochi, Kerala Pin-682013, India.
| | - K V Neenu
- Department of Applied Chemistry, Cochin University of Science and Technology (CUSAT), Kerala Pin-682022, India
| | - P M Sabura Begum
- Department of Applied Chemistry, Cochin University of Science and Technology (CUSAT), Kerala Pin-682022, India
| | - P Dileep
- J.J. Murphy Research Centre, Rubber Park, Valayanchrirangara, Kerala Pin-686009, India
| | - T G Ajith Kumar
- Central NMR Facility and Physical/Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune Pin-411008, India
| | - Akshay Alax Sabu
- Department of Chemistry, St. Xavier's college (Autonomous), Ahmedabad, Gujarat Pin-380009, India
| | - Dhiraj Nagane
- Central NMR Facility and Physical/Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune Pin-411008, India
| | - Jyotishkumar Parameswaranpillai
- Department of Science, Faculty of Science & Technology, Alliance University, Chandapura-Anekal Main Road, Bengaluru 562106, Karnataka, India
| | - Michael Badawi
- Laboratoire de Physique et Chimie Théoriques UMR CNRS 7019, Université de Lorraine, Nancy, France.
| |
Collapse
|
7
|
Nano-chitin: Preparation strategies and food biopolymer film reinforcement and applications. Carbohydr Polym 2023; 305:120553. [PMID: 36737217 DOI: 10.1016/j.carbpol.2023.120553] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/02/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Current trends in food packaging systems are toward biodegradable polymer materials, especially the food biopolymer films made from polysaccharides and proteins, but they are limited by mechanical strength and barrier properties. Nano-chitin has great economic value as a highly efficient functional and reinforcing material. The combination of nano-chitin and food biopolymers offers good opportunities to prepare biodegradable packaging films with enhanced physicochemical and functional properties. This review aims to give the latest advances in nano-chitin preparation strategies and its uses in food biopolymer film reinforcement and applications. The first part systematically introduces various preparation methods for nano-chitin, including chitin nanofibers (ChNFs) and chitin nanocrystals (ChNCs). The nano-chitin reinforced biodegradable films based on food biopolymers, such as polysaccharides and proteins, are described in the second part. The last part provides an overview of the current applications of nano-chitin reinforced food biopolymer films in the food industry.
Collapse
|
8
|
Addition of carboxylated styrene–butadiene rubber in cellulose nanofibrils composite films: effect on film production and its performance. IRANIAN POLYMER JOURNAL 2022. [DOI: 10.1007/s13726-022-01115-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
High‐Humidity Shaker Aging to Access Chitin and Cellulose Nanocrystals**. Angew Chem Int Ed Engl 2022; 61:e202207206. [DOI: 10.1002/anie.202207206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 11/07/2022]
|
10
|
Moores A, Jin T, Liu T, Hajiali F, Santos M, Liu Y, Kurdyla D, Régnier S, Hrapovic S, Lam E. High‐Humidity Shaker Aging to Access Chitin and Cellulose Nanocrystals. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Audrey Moores
- McGill University Department of Chemistry, Department of Chemistry 801 Sherbrooke St. West H3A0B8 Montréal CANADA
| | - Tony Jin
- McGill University Chemistry CANADA
| | | | | | | | - Yali Liu
- National Research Council Canada Aquatic and Crop Resource Development Research Centre CANADA
| | - Davis Kurdyla
- National Research Council Canada Aquatic and Crop Resource Development Research Centre CANADA
| | - Sophie Régnier
- National Research Council Canada Aquatic and Crop Resource Development Research Centre CANADA
| | - Sabahudin Hrapovic
- National Research Council Canada Aquatic and Crop Resource Development Research Centre CANADA
| | - Edmond Lam
- National Research Council Canada Aquatic and Crop Resource Development Research Centre CANADA
| |
Collapse
|
11
|
A Review of Rubber Biocomposites Reinforced with Lignocellulosic Fillers. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6070183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lignocellulosic fillers have attracted considerable attention over the years as a promising alternative to conventional petroleum-based fillers (carbon black) in rubber composites due to their renewability, biodegradability, availability, high mechanical properties, low density and low cost. Based on the literature available, a comprehensive review is presented here of rubber biocomposites reinforced with plant-based fillers. The study is divided into different sections depending on the matrix (natural or synthetic rubber) and the type of lignocellulosic fillers (natural fiber, microcrystalline cellulose, lignin and nanocellulose). This review focuses on the curing characteristics, mechanical properties and dynamic mechanical properties of the resulting rubber biocomposites. In addition, the effect of hybrid filler systems, lignocellulosic filler surface modification and modification of the rubber matrix on the properties of these rubber biocomposites are presented and compared. A conclusion is finally presented with some openings for future works.
Collapse
|
12
|
Joseph B, Mavelil Sam R, Balakrishnan P, J. Maria H, Gopi S, Volova T, C. M. Fernandes S, Thomas S. Extraction of Nanochitin from Marine Resources and Fabrication of Polymer Nanocomposites: Recent Advances. Polymers (Basel) 2020; 12:E1664. [PMID: 32726958 PMCID: PMC7465063 DOI: 10.3390/polym12081664] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 12/25/2022] Open
Abstract
Industrial sea food residues, mainly crab and shrimp shells, are considered to be the most promising and abundant source of chitin. In-depth understanding of the biological properties of chitin and scientific advancements in the field of nanotechnology have enabled the development of high-performance chitin nanomaterials. Nanoscale chitin is of great economic value as an efficient functional and reinforcement material for a wide range of applications ranging from water purification to tissue engineering. The use of polymers and nanochitin to produce (bio) nanocomposites offers a good opportunity to prepare bioplastic materials with enhanced functional and structural properties. Most processes for nanochitin isolation rely on the use of chemical, physical or mechanical methods. Chitin-based nanocomposites are fabricated by various methods, involving electrospinning, freeze drying, etc. This review discusses the progress and new developments in the isolation and physico-chemical characterization of chitin; it also highlights the processing of nanochitin in various composite and functional materials.
Collapse
Affiliation(s)
- Blessy Joseph
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India; (B.J.); (P.B.); (H.J.M.)
| | - Rubie Mavelil Sam
- Research and Post Graduate Department of Chemistry, Bishop Moore College, Mavelikara, Kerala 690110, India;
| | - Preetha Balakrishnan
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India; (B.J.); (P.B.); (H.J.M.)
| | - Hanna J. Maria
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India; (B.J.); (P.B.); (H.J.M.)
| | - Sreeraj Gopi
- Plant Lipids Pvt. Ltd., Cochin, Kerala 682311, India
| | - Tatiana Volova
- Institute of Biophysics of Russian Academy of Science, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Susana C. M. Fernandes
- Institute of Interdisciplinary Research on Environment and Materials (IPREM), Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM, 64600 Anglet, France
| | - Sabu Thomas
- School of Energy Materials, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| |
Collapse
|
13
|
Hu J, Tian X, Sun J, Yuan J, Yuan Y. Chitin nanocrystals reticulated self‐assembled architecture reinforces deproteinized natural rubber latex film. J Appl Polym Sci 2020. [DOI: 10.1002/app.49173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Jiarui Hu
- Shanghai Key Laboratory of Advanced Polymeric MaterialsSchool of Materials Science and Engineering, East China University of Science and Technology Shanghai P R China
| | - Xiaohui Tian
- Shanghai Key Laboratory of Advanced Polymeric MaterialsSchool of Materials Science and Engineering, East China University of Science and Technology Shanghai P R China
| | - Jinyu Sun
- Shanghai Key Laboratory of Advanced Polymeric MaterialsSchool of Materials Science and Engineering, East China University of Science and Technology Shanghai P R China
| | - Jianyong Yuan
- Shanghai Key Laboratory of Advanced Polymeric MaterialsSchool of Materials Science and Engineering, East China University of Science and Technology Shanghai P R China
| | - Yizhong Yuan
- Shanghai Key Laboratory of Advanced Polymeric MaterialsSchool of Materials Science and Engineering, East China University of Science and Technology Shanghai P R China
| |
Collapse
|
14
|
Ding B, Huang S, Shen K, Hou J, Gao H, Duan Y, Zhang J. Natural rubber bio-nanocomposites reinforced with self-assembled chitin nanofibers from aqueous KOH/urea solution. Carbohydr Polym 2019; 225:115230. [DOI: 10.1016/j.carbpol.2019.115230] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/17/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022]
|
15
|
Wei W, Zhu M, Wu S, Shen X, Li S. Stimuli-Responsive Biopolymers: An Inspiration for Synthetic Smart Materials and Their Applications in Self-Controlled Catalysis. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01382-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Huang B, He H, Liu H, Wu W, Ma Y, Zhao Z. Mechanically Strong, Heat-Resistant, Water-Induced Shape Memory Poly(vinyl alcohol)/Regenerated Cellulose Biocomposites via a Facile Co-precipitation Method. Biomacromolecules 2019; 20:3969-3979. [PMID: 31536333 DOI: 10.1021/acs.biomac.9b01021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, poly(vinyl alcohol) (PVA) biocomposites with regenerated cellulose-softwood pulp (RC-SP) as a green reinforcement were prepared via co-precipitation method. Simultaneous precipitation of the two components promotes uniform dispersion of the RC-SP and constructs strong molecular chain entanglements and hydrogen bonding network inside the composites. This physical cross-linking network reduces the water absorption and improves the water resistance of the composites. The incorporation of RC-SP not only improves the thermal decomposition properties of the composites, but also enhances the mechanical properties and dynamic mechanical properties, attributed to the strong interaction between the filler and the matrix. Moreover, the fabricated PVA/RC-SP composites exhibit good water-induced shape memory effect, and shape recovery rate of 10% RC-SP reinforced composite reaches 95.3% after immersing for 35 min. This work provides useful information for the implementation of co-precipitation method and the application of renewable cellulose resources.
Collapse
Affiliation(s)
- Bai Huang
- School of Materials Science and Engineering , South China University of Technology , Wushan Road , Tianhe District, Guangzhou , Guangdong 510640 , China
| | - Hui He
- School of Materials Science and Engineering , South China University of Technology , Wushan Road , Tianhe District, Guangzhou , Guangdong 510640 , China
| | - Hao Liu
- School of Materials Science and Engineering , South China University of Technology , Wushan Road , Tianhe District, Guangzhou , Guangdong 510640 , China
| | - Weijian Wu
- School of Materials Science and Engineering , South China University of Technology , Wushan Road , Tianhe District, Guangzhou , Guangdong 510640 , China
| | - Yuanbin Ma
- School of Materials Science and Engineering , South China University of Technology , Wushan Road , Tianhe District, Guangzhou , Guangdong 510640 , China
| | - Zijin Zhao
- School of Materials Science and Engineering , South China University of Technology , Wushan Road , Tianhe District, Guangzhou , Guangdong 510640 , China
| |
Collapse
|
17
|
Preparation and properties of nanocomposites composed of a water-soluble nylon and chitin nanofibers. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1834-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Lin J, Hu D, Luo Y, Zhong B, Chen Y, Jia Z, Jia D. Functionalized Halloysite Nanotubes⁻Silica Hybrid for Enhanced Curing and Mechanical Properties of Elastomers. Polymers (Basel) 2019; 11:polym11050883. [PMID: 31091841 PMCID: PMC6572056 DOI: 10.3390/polym11050883] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/04/2019] [Accepted: 05/08/2019] [Indexed: 11/29/2022] Open
Abstract
Vulcanization and reinforcement are critical factors in governing the ultimate practical applications of elastomer composites. Here we achieved a simultaneous improvement of curing and mechanical properties of elastomer composites by the incorporation of a functionalized halloysite nanotubes–silica hybrid (HS-s-M). Typically, HS-s-M was synthesized by 2-mercapto benzothiazole (M) immobilized on the surface of halloysite nanotubes–silica hybrid (HS). It was found that the HS-s-M uniformly dispersed in the styrene-butadiene rubber (SBR) matrix, offering more opportunity for M molecules to communicate with rubber. In addition, the physical loss of accelerator M from migration and volatilization was efficiently suspended. Therefore, SBR/HS-s-M composites showed a lower curing activation energy and a higher crosslinking density than SBR/HS composites. Moreover, a stronger interfacial interaction between HS-s-M and SBR was formed by the cross-linking reaction, giving a positive contribution to the eventual mechanical properties. The possible vulcanization and reinforcement mechanisms of SBR/HS-s-M composites were also analyzed in detail.
Collapse
Affiliation(s)
- Jing Lin
- Key Lab of Guangdong High Property and Functional Macromolecular Materials, School of Materials Science and Technology, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| | - Dechao Hu
- Key Lab of Guangdong High Property and Functional Macromolecular Materials, School of Materials Science and Technology, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| | - Yuanfang Luo
- Key Lab of Guangdong High Property and Functional Macromolecular Materials, School of Materials Science and Technology, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| | - Bangchao Zhong
- Key Lab of Guangdong High Property and Functional Macromolecular Materials, School of Materials Science and Technology, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| | - Yongjun Chen
- Key Lab of Guangdong High Property and Functional Macromolecular Materials, School of Materials Science and Technology, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| | - Zhixin Jia
- Key Lab of Guangdong High Property and Functional Macromolecular Materials, School of Materials Science and Technology, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| | - Demin Jia
- Key Lab of Guangdong High Property and Functional Macromolecular Materials, School of Materials Science and Technology, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| |
Collapse
|
19
|
Yin J, Hou J, Huang S, Li N, Zhong M, Zhang Z, Geng Y, Ding B, Chen Y, Duan Y, Zhang J. Effect of surface chemistry on the dispersion and pH-responsiveness of chitin nanofibers/ natural rubber latex nanocomposites. Carbohydr Polym 2019; 207:555-562. [DOI: 10.1016/j.carbpol.2018.12.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/31/2018] [Accepted: 12/10/2018] [Indexed: 10/27/2022]
|
20
|
Meesorn W, Zoppe JO, Weder C. Stiffness-Changing of Polymer Nanocomposites with Cellulose Nanocrystals and Polymeric Dispersant. Macromol Rapid Commun 2019; 40:e1800910. [PMID: 30786085 DOI: 10.1002/marc.201800910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/11/2019] [Indexed: 11/05/2022]
Abstract
Bio-inspired, water-responsive, mechanically adaptive nanocomposites are reported based on cellulose nanocrystals (CNCs), poly(ethylene oxide-co-epichlorohydrin) (EO-EPI), and a small amount of poly(vinyl alcohol) (PVA), which is added to aid the dispersion of the CNCs. In the dry state, the CNCs form a reinforcing network within the polymer matrix, and the substantial stiffness increase relative to the neat polymer is thought to be the result of hydrogen-bonding interactions between the nanocrystals. Exposure to water, however, causes a large stiffness reduction, due to competitive hydrogen bonding of water molecules and the CNCs. It is shown here that the addition of PVA to the EO-EPI/CNC nanocomposite increases the modulus difference between the dry and the wet state by a factor of up to four compared to the nanocomposites without the PVA. The main reason is that the PVA leads to a substantial increase of the stiffness in the dry state; for example, the storage modulus E ' increased from 2.7 MPa (neat EO-EPI) to 50 MPa upon introduction of 10% CNCs, and to 200 MPa when additionally 5% of PVA was added. By contrast, the incorporation of PVA only led to moderate increases of the equilibrium water swelling and the E ' in the wet state.
Collapse
Affiliation(s)
- Worarin Meesorn
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| | - Justin O Zoppe
- Omya International AG, Baslerstrasse 42, CH-4665, Oftringen, Switzerland
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| |
Collapse
|
21
|
Zubillaga V, Salaberria AM, Palomares T, Alonso-Varona A, Kootala S, Labidi J, Fernandes SCM. Chitin Nanoforms Provide Mechanical and Topological Cues to Support Growth of Human Adipose Stem Cells in Chitosan Matrices. Biomacromolecules 2018; 19:3000-3012. [PMID: 29889507 DOI: 10.1021/acs.biomac.8b00570] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The precise role and value of incorporating nanoforms in biologically active matrices for medical applications is not known. In our current work, we incorporate two chitin nanoforms (i.e., nanocrystals or nanofibers) into Genipin-chitosan crosslinked matrices. These materials were studied as 2D films and 3D porous scaffolds to assess their potential as primary support and guidance for stem cells in tissue engineering and regenerative medicine applications. The incorporation of either nanoforms in these 2D and 3D materials reveals significantly better swelling properties and robust mechanical performance in contrast to nanoform-free chitosan matrices. Furthermore, our data shows that these materials, in particular, incorporation of low concentration chitin nanoforms provide specific topological cues to guide the survival, adhesion, and proliferation of human adipose-derived stem cells. These findings demonstrate the potential of Genipin-chitosan crosslinked matrices impregnated with chitin nanoforms as value added materials for stem cell-based biomedical applications.
Collapse
Affiliation(s)
- Verónica Zubillaga
- Department of Cellular Biology and Histology, Faculty of Medicine and Odontology , University of the Basque Country (UPV/EHU) , B Sarriena, s/n , 48940 , Leioa , Spain
| | - Asier M Salaberria
- Biorefinery Processes Research Group, Department of Chemical and Environmental Engineering, Polytechnic School , University of the Basque Country (UPV/EHU) , Pza. Europa 1 , 20018 Donostia-San Sebastian , Spain
| | - Teodoro Palomares
- Department of Cellular Biology and Histology, Faculty of Medicine and Odontology , University of the Basque Country (UPV/EHU) , B Sarriena, s/n , 48940 , Leioa , Spain
| | - Ana Alonso-Varona
- Department of Cellular Biology and Histology, Faculty of Medicine and Odontology , University of the Basque Country (UPV/EHU) , B Sarriena, s/n , 48940 , Leioa , Spain
| | - Sujit Kootala
- CNRS/Université de Pau et des Pays de l'Adour , Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Materiaux, UMR 5254 , 2 Av. Pdt Angot , 64053 Pau , France
| | - Jalel Labidi
- Biorefinery Processes Research Group, Department of Chemical and Environmental Engineering, Polytechnic School , University of the Basque Country (UPV/EHU) , Pza. Europa 1 , 20018 Donostia-San Sebastian , Spain
| | - Susana C M Fernandes
- CNRS/Université de Pau et des Pays de l'Adour , Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Materiaux, UMR 5254 , 2 Av. Pdt Angot , 64053 Pau , France
| |
Collapse
|
22
|
Chen Y, Wang L, Yin Q, Jia H, Wang D, Li G, Yin B, Ji Q, Xu Z. Water-induced mechanically adaptive behavior of carboxylated acrylonitrile-butadiene rubber reinforced by bacterial cellulose whiskers. POLYM ENG SCI 2018. [DOI: 10.1002/pen.24867] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yang Chen
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education; Nanjing University of Science and Technology; Nanjing 210094 China
| | - Liping Wang
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education; Nanjing University of Science and Technology; Nanjing 210094 China
| | - Qing Yin
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education; Nanjing University of Science and Technology; Nanjing 210094 China
| | - Hongbing Jia
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education; Nanjing University of Science and Technology; Nanjing 210094 China
| | - Dongni Wang
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education; Nanjing University of Science and Technology; Nanjing 210094 China
| | - Geng Li
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education; Nanjing University of Science and Technology; Nanjing 210094 China
| | - Biao Yin
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education; Nanjing University of Science and Technology; Nanjing 210094 China
| | - Qingmin Ji
- Herbert Gleiter Institute of Nanoscience; Nanjing University of Science and Technology; Nanjing 210094 China
| | - Zhaodong Xu
- Key Laboratory of C and PC Structures of Ministry of Education; Southeast University; Nanjing 210096 China
| |
Collapse
|
23
|
Lin J, Hu D, Luo Y, Zhong B, Jia Z, Xu T, Jia D. Enhanced Mechanical Performance and Antioxidative Efficiency of Styrene–Butadiene Rubber via 4-Aminodiphenylamine Functionalized Mesoporous Silica. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b00035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jing Lin
- Key lab of Guangdong for high property and functional polymer materials, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Dechao Hu
- Key lab of Guangdong for high property and functional polymer materials, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Yuanfang Luo
- Key lab of Guangdong for high property and functional polymer materials, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Bangchao Zhong
- Key lab of Guangdong for high property and functional polymer materials, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Zhixin Jia
- Key lab of Guangdong for high property and functional polymer materials, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Tiwen Xu
- Key lab of Guangdong for high property and functional polymer materials, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Demin Jia
- Key lab of Guangdong for high property and functional polymer materials, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| |
Collapse
|
24
|
Chen Y, Li G, Yin Q, Jia H, Ji Q, Wang L, Wang D, Yin B. Stimuli-responsive polymer nanocomposites based on styrene-butadiene rubber and bacterial cellulose whiskers. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yang Chen
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education; Nanjing University of Science and Technology; Nanjing 210094 China
| | - Geng Li
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education; Nanjing University of Science and Technology; Nanjing 210094 China
| | - Qing Yin
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education; Nanjing University of Science and Technology; Nanjing 210094 China
| | - Hongbing Jia
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education; Nanjing University of Science and Technology; Nanjing 210094 China
| | - Qingmin Ji
- Herbert Gleiter Institute of Nanoscience; Nanjing University of Science and Technology; Nanjing 210094 China
| | - Liping Wang
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education; Nanjing University of Science and Technology; Nanjing 210094 China
| | - Dongni Wang
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education; Nanjing University of Science and Technology; Nanjing 210094 China
| | - Biao Yin
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education; Nanjing University of Science and Technology; Nanjing 210094 China
| |
Collapse
|
25
|
Polgar LM, Fallani F, Cuijpers J, Raffa P, Broekhuis AA, van Duin M, Picchioni F. Water-swellable elastomers: synthesis, properties and applications. REV CHEM ENG 2017. [DOI: 10.1515/revce-2017-0052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Water-swellable elastomers (WSE) constitute a class of rubbery materials that have been widely studied both in academia and industry during the last 25 years. Market pull is the major driver for the exploration of these materials. The need of WSE in several sealing applications has driven the attention of many academic researchers toward the possibility to provide a rubber with water-swelling characteristics. As commercial rubbers are hydrophobic materials, making them swell in water presents an interesting and difficult challenge. This paper reviews the scientific and patent literature on the fundamental aspects of WSE: the various synthetic approaches, the properties of the corresponding polymers (not only the swelling performance but also the mechanical behavior), and some of their applications. Particular attention is paid to the chemical structure/performance relationships of WSE. Finally, the authors speculate on a great future for WSE that can be rationally designed for improved and/or new applications.
Collapse
Affiliation(s)
- Lorenzo M. Polgar
- University of Groningen , Department of Chemical Engineering , Nijenborgh 4 , 9747 AG Groningen , the Netherlands
| | - Francesca Fallani
- Allnex Netherlands B.V. , Synthesebaan 1 , 4600 AB Bergen op Zoom , the Netherlands
| | - Juul Cuijpers
- DSM Resins B.V. , Ceintuurbaan 5 , 8022 AW, Zwolle , the Netherlands
| | - Patrizio Raffa
- University of Groningen , Department of Chemical Engineering , Nijenborgh 4 , 9747 AG Groningen , the Netherlands
| | - Antonius A. Broekhuis
- University of Groningen , Department of Chemical Engineering , Nijenborgh 4 , 9747 AG Groningen , the Netherlands
| | - Martin van Duin
- University of Groningen , Department of Chemical Engineering , Nijenborgh 4 , 9747 AG Groningen , the Netherlands
- ARLANXEO Performance Elastomers, Keltan R&D , P.O. Box 1130 , 6160 BC Geleen , the Netherlands
| | - Francesco Picchioni
- University of Groningen , Department of Chemical Engineering , Nijenborgh 4 , 9747 AG Groningen , the Netherlands
| |
Collapse
|
26
|
Yu P, He H, Luo Y, Jia D, Dufresne A. Elastomer Reinforced with Regenerated Chitin from Alkaline/Urea Aqueous System. ACS APPLIED MATERIALS & INTERFACES 2017; 9:26460-26467. [PMID: 28719186 DOI: 10.1021/acsami.7b08294] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Novel hybrid elastomer/regenerated chitin (R-chitin) composites were developed, for the first time, by introducing chitin solution (dissolved in alkaline/urea aqueous solution at low temperature) into rubber latex, and then cocoagulating using ethanol as the cocoagulant. During the rapid coprecipitation process, the chitin solution showed rapid coagulant-induced gelation and a porous chitin phase was generated, and the rubber latex particles were synchronously demulsificated to form the rubbery phase. The two phases interlaced and interpenetrated simultaneously to form an interpenetrating polymer network (IPN) structure, which was evidenced by SEM observation. The ensuing compound was also characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), and swelling experiments. The unique porous structure of R-chitin could result in strong physical entanglements and interlocks between filler and matrix, thus a highly efficient load transfer between the filler and the matrix was achieved. Accordingly, R-chitin endows the elastomer with a remarkable reinforcement. We envisage that this work may contribute new insights on novel design of chitin-based elastomer hybrids with IPN structure.
Collapse
Affiliation(s)
- Peng Yu
- Department of Polymer Materials and Engineering, South China University of Technology , Guangzhou 510640, People's Republic of China
- Université Grenoble Alpes , CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France
| | - Hui He
- Department of Polymer Materials and Engineering, South China University of Technology , Guangzhou 510640, People's Republic of China
| | - Yuanfang Luo
- Department of Polymer Materials and Engineering, South China University of Technology , Guangzhou 510640, People's Republic of China
| | - Demin Jia
- Department of Polymer Materials and Engineering, South China University of Technology , Guangzhou 510640, People's Republic of China
| | - Alain Dufresne
- Université Grenoble Alpes , CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France
| |
Collapse
|
27
|
Montero de Espinosa L, Meesorn W, Moatsou D, Weder C. Bioinspired Polymer Systems with Stimuli-Responsive Mechanical Properties. Chem Rev 2017; 117:12851-12892. [DOI: 10.1021/acs.chemrev.7b00168] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | - Worarin Meesorn
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Dafni Moatsou
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| |
Collapse
|
28
|
Yin B, Li G, Wang D, Wang L, Wang J, Jia H, Ding L, Sun D. Enhanced mechanical properties of styrene-butadiene rubber with low content of bacterial cellulose nanowhiskers. ADVANCES IN POLYMER TECHNOLOGY 2016. [DOI: 10.1002/adv.21791] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Biao Yin
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education; Nanjing University of Science and Technology; Nanjing China
| | - Geng Li
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education; Nanjing University of Science and Technology; Nanjing China
| | - Dongni Wang
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education; Nanjing University of Science and Technology; Nanjing China
| | - Liping Wang
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education; Nanjing University of Science and Technology; Nanjing China
| | - Jingyi Wang
- Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology; Nanjing Institute of Technology; Nanjing China
- College of Material Engineering; Nanjing Institute of Technology; Nanjing China
| | - Hongbing Jia
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education; Nanjing University of Science and Technology; Nanjing China
| | - Lifeng Ding
- Department of Chemistry; Xi'an Jiaotong-Liverpool University; Nanjing Jiangsu Province China
| | - Dongping Sun
- Chemicobiology and Functional Materials Institute of Nanjing University of Science and Technology; Nanjing China
| |
Collapse
|
29
|
The Synergy of Double Cross-linking Agents on the Properties of Styrene Butadiene Rubber Foams. Sci Rep 2016; 6:36931. [PMID: 27841307 PMCID: PMC5107997 DOI: 10.1038/srep36931] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/21/2016] [Indexed: 11/28/2022] Open
Abstract
Sulfur (S) cross-linking styrene butadiene rubber (SBR) foams show high shrinkage due to the cure reversion, leading to reduced yield and increased processing cost. In this paper, double cross-linking system by S and dicumyl peroxide (DCP) was used to decrease the shrinkage of SBR foams. Most importantly, the synergy of double cross-linking agents was reported for the first time to our knowledge. The cell size and its distribution of SBR foams were investigated by FESEM images, which show the effect of DCP content on the cell structure of the SBR foams. The relationships between shrinkage and crystalline of SBR foams were analyzed by the synergy of double cross-linking agents, which were demonstrated by FTIR, Raman spectra, XRD, DSC and TGA. When the DCP content was 0.6 phr, the SBR foams exhibit excellent physical and mechanical properties such as low density (0.223 g/cm3), reduced shrinkage (2.25%) and compression set (10.96%), as well as elevated elongation at break (1.78 × 103%) and tear strength (54.63 N/mm). The results show that these properties are related to the double cross-linking system of SBR foams. Moreover, the double cross-linking SBR foams present high electromagnetic interference (EMI) shielding properties compared with the S cross-linking SBR foams.
Collapse
|
30
|
Moatsou D, Weder C. Mechanically Adaptive Nanocomposites Inspired by Sea Cucumbers. BIO-INSPIRED POLYMERS 2016. [DOI: 10.1039/9781782626664-00402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Sea cucumbers own the fascinating capability to rapidly and reversibly change the stiffness of their dermis. This mechanical morphing is achieved through a distinctive architecture of the tissue, which is composed of a viscoelastic matrix that is reinforced with rigid collagen microfibrils. Neurosecretory proteins regulate the interactions among the latter, and thereby control the overall mechanical properties of the material. This architecture and functionality have been mimicked by researchers in artificial nanocomposites that feature similar, albeit significantly simplified, structure and mechanical morphing ability. The general design of such stimulus–responsive, mechanically adaptive materials involves a low-modulus polymer matrix and rigid, high-aspect ratio filler particles, which are arranged to form percolating networks within the polymer matrix. Stress transfer is controlled by switching the interactions among the nanofibers and/or between the nanofibers and the matrix polymer via an external stimulus. In first embodiments, water was employed to moderate hydrogen-bonding interactions in such nanocomposites, while more recent examples have been designed to respond to more specific stimuli, such as a change of the pH, or irradiation with ultraviolet light. This chapter provides an overview of the general design principles and materials embodiments of such sea-cucumber inspired materials.
Collapse
Affiliation(s)
- Dafni Moatsou
- Adolphe Merkle Institute, University of Fribourg Chemin des Verdiers 4 1700 Fribourg Switzerland
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg Chemin des Verdiers 4 1700 Fribourg Switzerland
| |
Collapse
|
31
|
A facile and green emulsion casting method to prepare chitin nanocrystal reinforced citrate-based bioelastomer. Carbohydr Polym 2016; 157:620-628. [PMID: 27987970 DOI: 10.1016/j.carbpol.2016.10.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/08/2016] [Accepted: 10/12/2016] [Indexed: 12/22/2022]
Abstract
Chitin nanocrystal (ChiNC) is a promising reinforcing nanofiller for biomedical polymers. However, its self-aggregation characteristics caused processing difficulty in developing ChiNC-based nanocomposites. Herein, a new degradable crosslinked bioelastomer, designated as poly(1,8-octanediol-co-Pluronic F127 citrate) (POFC) was synthesized by melt polycondensation of citric acid, 1,8-octanediol, and Pluronic F127. In comparison to poly(1,8-octanediol citrate) (POC), POFC pre-polymer exhibited self-emulsifying property. Once ChiNC was introduced into the emulsion, a ChiNC stabilized Pickering emulsion was formed. Coupled with a facile green emulsion casting/evaporation method, the ChiNC ultimately reinforced ChiNC/POFC nanocomposite elastomer was fabricated. The presence of F127 segments endowed POFC with better hydrophilicity and shorter degradation time relative to POC. The incorporation of ChiNC into POFC network led to highly increased tensile modulus and strength. In vitro cytotoxicity tests indicated that the ChiNC/POFC elastomer nanocomposite had a good cytocompatibility and it appeared as a potential biomaterial for tissue engineering application.
Collapse
|
32
|
Nanocomposites of poly( l -lactide) and surface-modified chitin whiskers with improved mechanical properties and cytocompatibility. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.06.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
33
|
Liu H, Liu W, Luo B, Wen W, Liu M, Wang X, Zhou C. Electrospun composite nanofiber membrane of poly( l -lactide) and surface grafted chitin whiskers: Fabrication, mechanical properties and cytocompatibility. Carbohydr Polym 2016; 147:216-225. [DOI: 10.1016/j.carbpol.2016.03.096] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 11/16/2022]
|
34
|
Liu M, Zheng H, Chen J, Li S, Huang J, Zhou C. Chitosan-chitin nanocrystal composite scaffolds for tissue engineering. Carbohydr Polym 2016; 152:832-840. [PMID: 27516335 DOI: 10.1016/j.carbpol.2016.07.042] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 07/02/2016] [Accepted: 07/12/2016] [Indexed: 10/21/2022]
Abstract
Chitin nanocrystals (CNCs) with length and width of 300 and 20nm were uniformly dispersed in chitosan (CS) solution. The CS/CNCs composite scaffolds prepared utilizing a dispersion-based freeze dry approach exhibit significant enhancement in compressive strength and modulus compared with pure CS scaffold both in dry and wet state. A well-interconnected porous structure with size in the range of 100-200μm and over 80% porosity are found in the composite scaffolds. The crystal structure of CNCs is retained in the composite scaffolds. The incorporation of CNCs leads to increase in the scaffold density and decrease in the water swelling ratio. Moreover, the composite scaffolds are successfully applied as scaffolds for MC3T3-E1 osteoblast cells, showing their excellent biocompatibility and low cytotoxicity. The results of fluorescent micrographs images reveal that CNCs can markedly promote the cell adhesion and proliferation of the osteoblast on CS. The biocompatible composite scaffolds with enhanced mechanical properties have potential application in bone tissue engineering.
Collapse
Affiliation(s)
- Mingxian Liu
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China.
| | - Huanjun Zheng
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Juan Chen
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Shuangli Li
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Jianfang Huang
- Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, China
| | - Changren Zhou
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
35
|
Crosslinked carboxylated SBR composites reinforced with chitin nanocrystals. JOURNAL OF POLYMER RESEARCH 2016. [DOI: 10.1007/s10965-016-1025-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Taheri S, Hassani Y, Sadeghi GMM, Moztarzadeh F, Li MC. Graft copolymerization of acrylic acid on to styrene butadiene rubber (SBR) to improve morphology and mechanical properties of SBR/polyurethane blend. J Appl Polym Sci 2016. [DOI: 10.1002/app.43699] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shahed Taheri
- Department of Biomedical Engineering; Amirkabir University of Technology; Tehran Iran
| | - Yones Hassani
- Mahshahr Capmus; Amirkabir University of Technology; Mahshahr Iran
| | - Gity Mir Mohamad Sadeghi
- Department of Polymer Engineering & Color Technology; Amirkabir University of Technology; P.O. Box 15875/4413 Tehran Iran
| | - Fathollah Moztarzadeh
- Biomaterials Group; Department of Biomedical Engineering (Center of Excellence); Amirkabir University of Technology; P.O. Box 15875/4413 Tehran Iran
| | - Mei-Chun Li
- School of Renewable Natural Resources; Louisiana State University Ag Center; Baton Rouge Louisiana 70803
| |
Collapse
|