1
|
Chen C, Liu X, Wang J, Guo H, Chen Y, Wang N. Research on the Thermal Aging Mechanism of Polyvinyl Alcohol Hydrogel. Polymers (Basel) 2024; 16:2486. [PMID: 39274119 PMCID: PMC11398078 DOI: 10.3390/polym16172486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Polyvinyl alcohol (PVA) hydrogels find applications in various fields, including machinery and tissue engineering, owing to their exceptional mechanical properties. However, the mechanical properties of PVA hydrogels are subject to alteration due to environmental factors such as temperature, affecting their prolonged utilization. To enhance their lifespan, it is crucial to investigate their aging mechanisms. Using physically cross-linked PVA hydrogels, this study involved high-temperature accelerated aging tests at 60 °C for 80 d and their performance was analyzed through macroscopic mechanics, microscopic morphology, and microanalysis tests. The findings revealed three aging stages, namely, a reduction in free water, a reduction in bound water, and the depletion of bound water, corresponding to volume shrinkage, decreased elongation, and a "tough-brittle" transition. The microscopic aging mechanism was influenced by intermolecular chain spacing, intermolecular hydrogen bonds, and the plasticizing effect of water. In particular, the loss of bound water predominantly affected the lifespan of PVA hydrogel structural components. These findings provide a reference for assessing and improving the lifespan of PVA hydrogels.
Collapse
Affiliation(s)
- Chunkun Chen
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiangyang Liu
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jiangtao Wang
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Haoran Guo
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yingjun Chen
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ningfei Wang
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
2
|
Morariu S, Brunchi CE, Honciuc M, Iftime MM. Development of Hybrid Materials Based on Chitosan, Poly(Ethylene Glycol) and Laponite ® RD: Effect of Clay Concentration. Polymers (Basel) 2023; 15:polym15040841. [PMID: 36850125 PMCID: PMC9959284 DOI: 10.3390/polym15040841] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
In the context of increasing interest in biomaterials with applicability in cosmetics and medicine, this research aims to obtain and characterize some hybrid materials based on chitosan (CS) (antibacterial, biocompatible, and biodegradable), poly(ethylene glycol) (PEG) (non-toxic and prevents the adsorption of protein and cell) and Laponite® RD (Lap) (bioactive). The rheological properties of the starting dispersions were investigated and discussed related to the interactions developed between components. All samples exhibited gel-like properties, and the storage modulus of CS/PEG dispersion increased from 6.6 Pa to 657.7 Pa by adding 2.5% Lap. Structural and morphological characterization of the films, prepared by solution casting method, was performed by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and polarized light microscopy (POM). These analyses proved the incorporation of Lap into CS/PEG films and revealed the morphological changes of the films by the addition of clay. Thereby, at the highest Lap concentration (43.8%), the "house of cards" structure formed by Lap platelets, which incorporate chitosan chains, as evidenced by SEM and POM. Two stages of degradation between 200 °C and 410 °C were evidenced for the films with Lap concentration higher than 38.5%, explained by the existence of a clay-rich phase (given by the clay network) and chitosan-rich one (due to the intercalation of chitosan in the clay network). CS/PEG film with 43.8% Lap showed the highest swelling degree of 240.7%. The analysis of the obtained results led to the conclusion that the addition of clay to the CS/PEG films increases their stability in water and gives them greater thermal stability.
Collapse
|
3
|
Kankala RK. Nanoarchitectured two-dimensional layered double hydroxides-based nanocomposites for biomedical applications. Adv Drug Deliv Rev 2022; 186:114270. [PMID: 35421521 DOI: 10.1016/j.addr.2022.114270] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/14/2022] [Accepted: 04/04/2022] [Indexed: 12/14/2022]
Abstract
Despite the exceptional physicochemical and morphological characteristics, the pristine layered double hydroxides (LDHs), or two-dimensional (2D) hydrotalcite clays, often suffer from various shortcomings in biomedicine, such as deprived thermal and chemical stabilities, acid-prone degradation, as well as lack of targeting ability, hampering their scale-up and subsequent clinical translation. Accordingly, diverse nanocomposites of LDHs have been fabricated by surface coating of organic species, impregnation of inorganic species, and generation of core-shell architectures, resulting in the complex state-of-the-art architectures. In this article, we initially emphasize various bothering limitations and the chemistry of these pristine LDHs, followed by discussions on the engineering strategies of different LDHs-based nanocomposites. Further, we give a detailed note on diverse LDH nanocomposites and their performance efficacy in various biomedical applications, such as drug delivery, bioimaging, biosensing, tissue engineering and cell patterning, deoxyribonucleic acid (DNA) extraction, as well as photoluminescence, highlighting the influence of various properties of installed supramolecular assemblies on their performance efficacy. In summary, we conclude with interesting perspectives concerning the lessons learned to date and the strategies to be followed to further advance their scale-up processing and applicability in medicine.
Collapse
|
4
|
Bercea M. Bioinspired Hydrogels as Platforms for Life-Science Applications: Challenges and Opportunities. Polymers (Basel) 2022; 14:polym14122365. [PMID: 35745941 PMCID: PMC9229923 DOI: 10.3390/polym14122365] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 12/13/2022] Open
Abstract
Hydrogels, as interconnected networks (polymer mesh; physically, chemically, or dynamic crosslinked networks) incorporating a high amount of water, present structural characteristics similar to soft natural tissue. They enable the diffusion of different molecules (ions, drugs, and grow factors) and have the ability to take over the action of external factors. Their nature provides a wide variety of raw materials and inspiration for functional soft matter obtained by complex mechanisms and hierarchical self-assembly. Over the last decade, many studies focused on developing innovative and high-performance materials, with new or improved functions, by mimicking biological structures at different length scales. Hydrogels with natural or synthetic origin can be engineered as bulk materials, micro- or nanoparticles, patches, membranes, supramolecular pathways, bio-inks, etc. The specific features of hydrogels make them suitable for a wide variety of applications, including tissue engineering scaffolds (repair/regeneration), wound healing, drug delivery carriers, bio-inks, soft robotics, sensors, actuators, catalysis, food safety, and hygiene products. This review is focused on recent advances in the field of bioinspired hydrogels that can serve as platforms for life-science applications. A brief outlook on the actual trends and future directions is also presented.
Collapse
Affiliation(s)
- Maria Bercea
- "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| |
Collapse
|
5
|
Bercea M. Self-Healing Behavior of Polymer/Protein Hybrid Hydrogels. Polymers (Basel) 2021; 14:130. [PMID: 35012155 PMCID: PMC8747654 DOI: 10.3390/polym14010130] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022] Open
Abstract
The paper presents the viscoelastic properties of new hybrid hydrogels containing poly(vinyl alcohol) (PVA), hydroxypropylcellulose (HPC), bovine serum albumin (BSA) and reduced glutathione (GSH). After heating the mixture at 55 °C, in the presence of GSH, a weak network is formed due to partial BSA unfolding. By applying three successive freezing/thawing cycles, a stable porous network structure with elastic properties is designed, as evidenced by SEM and rheology. The hydrogels exhibit self-healing properties when the samples are cut into two pieces; the intermolecular interactions are reestablished in time and therefore the fragments repair themselves. The effects of the BSA content, loaded deformation and temperature on the self-healing ability of hydrogels are presented and discussed through rheological data. Due to their versatile viscoelastic behavior, the properties of PVA/HPC/BSA hydrogels can be tuned during their preparation in order to achieve suitable biomaterials for targeted applications.
Collapse
Affiliation(s)
- Maria Bercea
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
6
|
Mandal S, Dasmahapatra AK. Effect of aging on the microstructure and physical properties of Poly(vinyl alcohol) hydrogel. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02624-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Elucidating the pH influence on pulsed electric fields-induced self-assembly of chitosan-zein-poly(vinyl alcohol)-polyethylene glycol nanostructured composites. J Colloid Interface Sci 2021; 588:531-546. [PMID: 33429349 DOI: 10.1016/j.jcis.2020.12.075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 11/20/2022]
Abstract
HYPOTHESIS The high incompatibility of bio-based materials such as protein and polysaccharides require a series of modifications to develop stable microstructures effectively. By modifying the density and charge of surface residues, pulsed electric fields processing can improve inter/intramolecular interactions, compatibility, and microstructure of bio-based nanostructured composites. EXPERIMENT In this work, the impact of pulsed electric fields at a specific energy of 60-700 kJ/kg (electric field strength = 1.6 kV/cm) on self-assembly of zein-chitosan-poly(vinyl alcohol)-polyethylene glycol composite dispersion was investigated at pH 4.0, 5.7, and 6.8. FINDINGS Superior complex coacervated matrices were assembled at pH 4.0 and 5.7 before and after pulsed electric fields treatment at a specific energy of 390-410 kJ/kg. The compact and homogenous behaviour was attributable to pulsed electric fields-induced alteration of functional group interactions in a pH-dependent manner. Irrespective of the pH, very high electric field intensity caused excessive system perturbation leading to severe fragmentation and poor development of coacervates. The crucial insights from this study reveal that the self-assembly behaviour and integration of biopolymer-based systems possessing different local charges can be enhanced by optimising pulsed electric fields processing parameters and the properties of the colloidal systems such as the pH.
Collapse
|
8
|
Ianchis R, Ninciuleanu CM, Gifu IC, Alexandrescu E, Nistor CL, Nitu S, Petcu C. Hydrogel-clay Nanocomposites as Carriers for Controlled Release. Curr Med Chem 2020; 27:919-954. [PMID: 30182847 DOI: 10.2174/0929867325666180831151055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/12/2018] [Accepted: 07/24/2018] [Indexed: 12/15/2022]
Abstract
The present review aims to summarize the research efforts undertaken in the last few years in the development and testing of hydrogel-clay nanocomposites proposed as carriers for controlled release of diverse drugs. Their advantages, disadvantages and different compositions of polymers/biopolymers with diverse types of clays, as well as their interactions are discussed. Illustrative examples of studies regarding hydrogel-clay nanocomposites are detailed in order to underline the progressive researches on hydrogel-clay-drug pharmaceutical formulations able to respond to a series of demands for the most diverse applications. Brief descriptions of the different techniques used for the characterization of the obtained complex hybrid materials such as: swelling, TGA, DSC, FTIR, XRD, mechanical, SEM, TEM and biology tests, are also included. Enlightened by the presented data, we can suppose that hydrogel-clay nanocomposites will still be a challenging subject of global assiduous researches. We can dare to dream to an efficient drug delivery platform for the treatment of multiple affection concomitantly, these being undoubtedly like "a tree of life" bearing different kinds of fruits and leaves proper for human healing.
Collapse
Affiliation(s)
- Raluca Ianchis
- National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM Bucharest, Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| | - Claudia Mihaela Ninciuleanu
- National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM Bucharest, Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| | - Ioana Catalina Gifu
- National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM Bucharest, Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| | - Elvira Alexandrescu
- National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM Bucharest, Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| | - Cristina Lavinia Nistor
- National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM Bucharest, Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| | - Sabina Nitu
- National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM Bucharest, Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| | - Cristian Petcu
- National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM Bucharest, Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| |
Collapse
|
9
|
Pooresmaeil M, Behzadi Nia S, Namazi H. Green encapsulation of LDH(Zn/Al)-5-Fu with carboxymethyl cellulose biopolymer; new nanovehicle for oral colorectal cancer treatment. Int J Biol Macromol 2019; 139:994-1001. [DOI: 10.1016/j.ijbiomac.2019.08.060] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 12/15/2022]
|
10
|
Wang S, Zhang Z, Dong L, Waterhouse GI, Zhang Q, Li L. A remarkable thermosensitive hydrogel cross-linked by two inorganic nanoparticles with opposite charges. J Colloid Interface Sci 2019; 538:530-540. [DOI: 10.1016/j.jcis.2018.12.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/26/2018] [Accepted: 12/03/2018] [Indexed: 11/27/2022]
|
11
|
Bercea M, Biliuta G, Avadanei M, Baron RI, Butnaru M, Coseri S. Self-healing hydrogels of oxidized pullulan and poly(vinyl alcohol). Carbohydr Polym 2019; 206:210-219. [DOI: 10.1016/j.carbpol.2018.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/13/2018] [Accepted: 11/01/2018] [Indexed: 12/28/2022]
|
12
|
Baron RI, Bercea M, Avadanei M, Lisa G, Biliuta G, Coseri S. Green route for the fabrication of self-healable hydrogels based on tricarboxy cellulose and poly(vinyl alcohol). Int J Biol Macromol 2019; 123:744-751. [DOI: 10.1016/j.ijbiomac.2018.11.107] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/25/2018] [Accepted: 11/12/2018] [Indexed: 12/31/2022]
|
13
|
Amri N, Radji S, Ghemati D, Djamel A. Studies on equilibrium swelling, dye adsorption, and dynamic shear rheology of polymer systems based on chitosan-poly(vinyl alcohol) and montmorillonite. CHEM ENG COMMUN 2018. [DOI: 10.1080/00986445.2018.1521391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Nedjla Amri
- Laboratory of Polymers Treatment & Forming, Faculty of Science Engineering, M’Hamed Bougara University of Boumerdes, Boumerdes, Algeria
| | - Sadia Radji
- IPREM UMR 5254, Université de Pau et des pays de l'Adour, Pau, France
| | - Djamila Ghemati
- Laboratory of Polymers Treatment & Forming, Faculty of Science Engineering, M’Hamed Bougara University of Boumerdes, Boumerdes, Algeria
| | - Aliouche Djamel
- Laboratory of Polymers Treatment & Forming, Faculty of Science Engineering, M’Hamed Bougara University of Boumerdes, Boumerdes, Algeria
| |
Collapse
|
14
|
Morariu S, Bercea M, Brunchi CE. Influence of Laponite RD on the properties of poly(vinyl alcohol) hydrogels. J Appl Polym Sci 2018. [DOI: 10.1002/app.46661] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Simona Morariu
- ″Petru Poni″ Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley; Iasi 700487 Romania
| | - Maria Bercea
- ″Petru Poni″ Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley; Iasi 700487 Romania
| | - Cristina-Eliza Brunchi
- ″Petru Poni″ Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley; Iasi 700487 Romania
| |
Collapse
|
15
|
Affiliation(s)
- Mirela Teodorescu
- Laboratory of Electroactive Polymers and Plasmochemistry, “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, Iasi, Romania
| | - Maria Bercea
- Laboratory of Electroactive Polymers and Plasmochemistry, “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, Iasi, Romania
| | - Simona Morariu
- Laboratory of Electroactive Polymers and Plasmochemistry, “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, Iasi, Romania
| |
Collapse
|
16
|
Olaru AM, Marin L, Morariu S, Pricope G, Pinteala M, Tartau-Mititelu L. Biocompatible chitosan based hydrogels for potential application in local tumour therapy. Carbohydr Polym 2018; 179:59-70. [DOI: 10.1016/j.carbpol.2017.09.066] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/04/2017] [Accepted: 09/21/2017] [Indexed: 01/02/2023]
|
17
|
Iftime MM, Morariu S, Marin L. Salicyl-imine-chitosan hydrogels: Supramolecular architecturing as a crosslinking method toward multifunctional hydrogels. Carbohydr Polym 2017; 165:39-50. [DOI: 10.1016/j.carbpol.2017.02.027] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/23/2017] [Accepted: 02/08/2017] [Indexed: 12/01/2022]
|
18
|
Rheological investigation of poly(vinyl alcohol)/poly(N-vinyl pyrrolidone) mixtures in aqueous solution and hydrogel state. JOURNAL OF POLYMER RESEARCH 2016. [DOI: 10.1007/s10965-016-1040-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
19
|
Morariu S, Bercea M, Brunchi CE. Effect of Cryogenic Treatment on the Rheological Properties of Chitosan/Poly(vinyl alcohol) Hydrogels. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b03088] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Simona Morariu
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487, Iasi, Romania
| | - Maria Bercea
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487, Iasi, Romania
| | - Cristina-Eliza Brunchi
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487, Iasi, Romania
| |
Collapse
|