1
|
Sivokhin A, Orekhov D, Kazantsev O, Otopkova K, Sivokhina O, Chuzhaykin I, Spitsina E, Barinov D. Anionic Oligo(ethylene glycol)-Based Molecular Brushes: Thermo- and pH-Responsive Properties. Polymers (Basel) 2024; 16:3493. [PMID: 39771345 PMCID: PMC11728562 DOI: 10.3390/polym16243493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Anionic thermo- and pH-responsive copolymers were synthesized by photoiniferter reversible addition-fragmentation chain transfer polymerization (PI-RAFT). The thermo-responsive properties were provided by oligo(ethylene glycol)-based macromonomer units containing hydrophilic and hydrophobic moieties. The pH-responsive properties were enabled by the addition of 5-20 mol% of strong (2-acrylamido-2-methylpropanesulfonic) and weak (methacrylic) acids. Upon initiation by visible light at 470 nm and in the absence of radical initiators, yields from the ternary copolymers reached 94% in 2.5 h when the process was carried out in continuous flow mode using 4-cyano-4-[(dodecylsulfanylthiocarbonyl)sulfanyl]pentanoic acid as a light-sensitive RAFT agent. The polymers were characterized using size exclusion chromatography, IR and NMR spectroscopy, and differential scanning calorimetry. The copolymers featured a sufficiently high molecular weight (93-146 kDa) consistent with theoretical values and satisfactory dispersities in the range of 1.18-1.45. The pH-responsive properties were studied in deionized water, saline, and buffer solutions. Dramatic differences in LCST behavior were observed in strong and weak acid-based polyelectrolytes. The introduction of sulfonic acid units, even in very small amounts, completely suppressed the LCST transition in deionized water while maintaining it in the saline and buffer solutions, with a negligible LCST dependence on the pH. In contrast, the incorporation of weak methacrylic acid demonstrated a pronounced pH dependence. The peculiarities of micelle formation in aqueous solutions were investigated and critical micelle concentrations and their ability to retain pyrene, a hydrophobic drug model, were determined. It was observed that anionic molecular brushes formed small micelles with aggregation numbers of 1-2 at concentrations in the order of 10-4 mg/mL. These micelles have a high ability to entrap pyrene, which makes them a promising tool for targeted drug delivery.
Collapse
Affiliation(s)
- Alexey Sivokhin
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Nizhegorodskaya Oblast, Russia
| | - Dmitry Orekhov
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Nizhegorodskaya Oblast, Russia
| | - Oleg Kazantsev
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Nizhegorodskaya Oblast, Russia
| | - Ksenia Otopkova
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Nizhegorodskaya Oblast, Russia
| | - Olga Sivokhina
- V.A. Kargin Research Institute of Chemistry and Technology of Polymers with Pilot Plant, 606000 Dzerzhinsk, Nizhegorodskaya Oblast, Russia
| | - Ilya Chuzhaykin
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Nizhegorodskaya Oblast, Russia
| | - Ekaterina Spitsina
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Nizhegorodskaya Oblast, Russia
| | - Dmitry Barinov
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Nizhegorodskaya Oblast, Russia
| |
Collapse
|
2
|
Peng J, Tang W, Jiang Z, Wang B, Xiao D, He Y, Mou Z. Synthesis of Oil-Soluble Polymer-Grafted Carbon Dots with Outstanding Colloidal Stability and Tribological Properties in Polyalphaolefin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24653-24661. [PMID: 39497243 DOI: 10.1021/acs.langmuir.4c03537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Herein, a series of polylauryl methacrylate-grafted CDs (CDs-PLMA-m, m denotes the reaction time in hours) with core-shell structure were synthesized via surface-initiated atom-transfer radical polymerization (SI-ATRP). Due to the good solubility of PLMA in hydrocarbons, all of the CDs-PLMA-m can be facilely dispersed in polyalphaolefin (PAO) to form pellucid colloidal dispersions. The reciprocating ball-on-plate sliding friction tests proved that the addition of 3.0 wt % CDs-PLMA-1 markedly lessened the wear and friction of PAO by 53.0 and 40.0%, respectively. The tribological performances of the CDs-PLMA-1 (3.0 wt %)/PAO dispersion did not attenuate sharply when the friction duration extended from 20 to 200 min or the applied load increased from 20 to 100 N, revealing the long lifetime and desirable load-carrying effect of CDs-PLMA-1. Based on the friction tests, the antifriction behavior of CDs-PLMA-1 was related to the synergies between the molecular lubrication of PLMA-1 brushes and the nanolubrication of CDs. Furthermore, the wear analyses disclosed the deposition of tribofilm composed of a lot of CDs-PLMA-1 and a spot of iron oxides, which provided oxidation resistance and an antiwear function. This study established a reliable route to the synthesis of oil-soluble polymer-grafted CDs, enabling high-efficiency lubrication of CDs in PAO.
Collapse
Affiliation(s)
- Jie Peng
- Institute for Advanced Study, Chengdu University, 2025 Chengluo Avenue, Chengdu 610106, P. R. China
| | - Weiwei Tang
- School of Biological and Chemical Engineering, Panzhihua University, 10 Airport Road, East District, Panzhihua 617000, P. R. China
| | - Zhiqiang Jiang
- School of Vanadium and Titanium, Panzhihua University, 10 Airport Road, East District, Panzhihua 617000, P. R. China
| | - Baogang Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Chengdu 610500, P. R. China
| | - Dan Xiao
- College of Chemical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610065, P. R. China
| | - YangDong He
- Research Institute of Natural Gas Technology, PetroChina Southwest Oil & Gasfield Company, 218 Tianyan Road, Chengdu 610213, P. R. China
| | - Zihao Mou
- Institute for Advanced Study, Chengdu University, 2025 Chengluo Avenue, Chengdu 610106, P. R. China
| |
Collapse
|
3
|
Gerardos AM, Foryś A, Trzebicka B, Pispas S. Self-Assembly of Hydrophobic Hyperbranched PLMA Homopolymer with -COOH End Groups as Effective Nanocarriers for Bioimaging Applications. Polymers (Basel) 2024; 16:2166. [PMID: 39125191 PMCID: PMC11314538 DOI: 10.3390/polym16152166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Nanomedicine is a discipline of medicine that applies all aspects of nanotechnology strategies and concepts for treatment and screening possibilities. Synthetic polymer nanostructures are among the many nanomedicine formulations frequently studied for their potential as vectors. Bioimaging is a valuable diagnostic tool, thus, there is always a demand for new excipients/nanocarriers. In this study, hydrophobic hyperbranched poly(lauryl methacrylate) (PLMA) homopolymers comprised of highly hydrophobic LMA moieties with -COOH polar end groups were synthesized by employing reversible addition-fragmentation chain transfer (RAFT) polymerization. Ethylene glycol dimethacrylate (EGDMA) was utilized as the branching agent. End groups are incorporated through the RAFT agent utilized. The resulting amphiphilic hyperbranched polymer was molecularly characterized by size exclusion chromatography (SEC), Fourier transformation infrared spectroscopy (FT-IR), and 1H-NMR spectroscopy. Pyrene, curcumin, and IR-1048 dye were hydrophobic payload molecules successfully encapsulated to show how adaptable these homopolymer nanoparticles (prepared by nanoprecipitation in water) are as dye nanocarriers. This study demonstrates a simple way of producing excipients by generating polymeric nanoparticles from an amphiphilic, hyperbranched, hydrophobic homopolymer, with a low fraction of polar end groups, for bioimaging purposes.
Collapse
Affiliation(s)
- Angelica Maria Gerardos
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece;
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Aleksander Foryś
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 ul. M. Curie-Skłodowskiej, 41-819 Zabrze, Poland; (A.F.); (B.T.)
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 ul. M. Curie-Skłodowskiej, 41-819 Zabrze, Poland; (A.F.); (B.T.)
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece;
| |
Collapse
|
4
|
Jheng LC, Chang TY, Fan CT, Hsieh TH, Hsieh FM, Huang WJ. Toughening of epoxy thermosets by self-assembled nanostructures of amphiphilic comb-like random copolymers. RSC Adv 2023; 13:33484-33494. [PMID: 38025865 PMCID: PMC10646570 DOI: 10.1039/d3ra06349f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023] Open
Abstract
Amphiphilic comb-like random copolymers synthesized from poly(ethylene glycol) methyl ether methacrylate (PEGMMA) and stearyl methacrylate (SMA) with PEGMMA contents ranging between 30 wt% and 25 wt% were demonstrated to self-assemble into various well-defined nanostructures, including spherical micelles, wormlike micelles, and vesicle-like nanodomains, in anhydride-cured epoxy thermosets. In addition, the polymer blends of the comb-like random copolymer and poly(stearyl methacrylate) were prepared and incorporated into epoxy thermosets to form irregularly shaped nanodomains. Our research findings indicate that both the comb-like random copolymers and polymer blends are suitable as toughening modifiers for epoxy. When added at a concentration of 5 wt%, both types of modifiers lead to substantial improvements in the tensile toughness (>289%) and fracture toughness of epoxy thermosets, with minor reductions in their elastic modulus (<16%) and glass transition temperature (<6.1 °C). The fracture toughness evaluated in terms of the critical stress intensity factor (KIC) and the strain energy release rate (GIC) increased by more than 67% and 131% for the modified epoxy thermosets containing comb-like random copolymers.
Collapse
Affiliation(s)
- Li-Cheng Jheng
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology Kaohsiung Taiwan ROC +886 7 3830674 +886 7 3814526 ext.15148
| | - Ting-Yu Chang
- Department of Mold and Die Engineering, National Kaohsiung University of Science and Technology Kaohsiung Taiwan ROC
| | - Chin-Ting Fan
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology Kaohsiung Taiwan ROC +886 7 3830674 +886 7 3814526 ext.15148
| | - Tsung-Han Hsieh
- Department of Mold and Die Engineering, National Kaohsiung University of Science and Technology Kaohsiung Taiwan ROC
| | - Feng-Ming Hsieh
- Material and Chemical Research Laboratories, Industrial Technology Research Institute Hsinchu Taiwan ROC
| | - Wan-Ju Huang
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology Kaohsiung Taiwan ROC +886 7 3830674 +886 7 3814526 ext.15148
| |
Collapse
|
5
|
Guo M, Hsieh YL. Tunable poly(lauryl methacrylate) surface grafting via SI-ATRP on a one-pot synthesized cellulose nanofibril macroinitiator core as a shear-thinning rheology modifier and drag reducer. RSC Adv 2023; 13:26089-26101. [PMID: 37664202 PMCID: PMC10472512 DOI: 10.1039/d3ra04610a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023] Open
Abstract
The optimally one-pot synthesized 2-bromoproponyl esterified cellulose nanofibril (Br-CNF) has been validated as a robust macroinitiator for self-surface-initiated atom transfer radical polymerization (SI-ATRP) of lauryl methacrylate (LMA) in tunable graft lengths and high conversions of up to 92.7%. SI-ATRP of LMA surface brushes on Br-CNF followed first order kinetics in lengths at up to 46 degree of polymerization (DP) based on mass balance or 31 DP by solution-state 1H NMR in DMSO-d6. With increasing PLMA graft lengths, Br-CNF-g-PLMA cast films exhibited increasing hydrophobicity with water contact angles from 80.9° to 110.6°. The novel Br-CNF-g-PLMA exhibited dual shear thinning behavior of the Br-CNF core as evident by n < 1 flow behavior index and drag reducing properties of PLMA grafts with increased viscosity at up to 21 071×. Br-CNF-g-PLMA with 46 DP could be fully dispersed in silicon pump oil to function as a drag reducer to enhance viscosity up to 5× at 25, 40, and 55 °C. The novel macroinitiator capability of Br-CNF in SI-ATRP of vinyl monomers and the bottlebrush-like LMA surface grafted Br-CNF as highly effective viscosity modifier and drag reducer further demonstrate the versatile functionality of Br-CNF beyond hydrophobic coatings and reactive polyols previously reported.
Collapse
Affiliation(s)
- Mengzhe Guo
- Chemical Engineering, University of California at Davis Davis California 95616-8722 USA +1 530 752 084
| | - You-Lo Hsieh
- Chemical Engineering, University of California at Davis Davis California 95616-8722 USA +1 530 752 084
- Biological and Agricultural Engineering, University of California at Davis Davis California 95616-8722 USA
| |
Collapse
|
6
|
Balafouti A, Pispas S. Hyperbranched Copolymers of Methacrylic Acid and Lauryl Methacrylate H-P(MAA-co-LMA): Synthetic Aspects and Interactions with Biorelevant Compounds. Pharmaceutics 2023; 15:pharmaceutics15041198. [PMID: 37111683 PMCID: PMC10140914 DOI: 10.3390/pharmaceutics15041198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The synthesis of novel copolymers using one-step reversible addition-fragmentation chain transfer (RAFT) copolymerization of biocompatible methacrylic acid (MAA), lauryl methacrylate (LMA), and difunctional ethylene glycol dimethacrylate (EGDMA) as a branching agent is reported. The obtained amphiphilic hyperbranched H-P(MAA-co-LMA) copolymers are molecularly characterized by size exclusion chromatography (SEC), FTIR, and 1H-NMR spectroscopy, and subsequently investigated in terms of their self-assembly behavior in aqueous media. The formation of nanoaggregates of varying size, mass, and homogeneity, depending on the copolymer composition and solution conditions such as concentration or pH variation, is demonstrated by light scattering and spectroscopic techniques. Furthermore, drug encapsulation properties are studied by incorporating the low bioavailability drug, curcumin, in the nano-aggregate hydrophobic domains, which can also act as a bioimaging agent. The interaction of polyelectrolyte MAA units with model proteins is described to examine protein complexation capacity relevant to enzyme immobilization strategies, as well as explore copolymer self-assembly in simulated physiological media. The results confirm that these copolymer nanosystems could provide competent biocarriers for imaging and drug or protein delivery/enzyme immobilization applications.
Collapse
Affiliation(s)
- Anastasia Balafouti
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| |
Collapse
|
7
|
Chen J, Wang Y, Li L, Miao YE, Zhao X, Yan XP, Zhang C, Feng W, Liu T. Visible-Light Transparent, Ultrastretchable, and Self-Healable Semicrystalline Fluorinated Ionogels for Underwater Strain Sensing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16109-16117. [PMID: 36939056 DOI: 10.1021/acsami.3c02243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The development of ultrastretchable ionogels with a combination of high transparency and unique waterproofness is central to the development of emerging skin-inspired sensors. In this study, an ultrastretchable semicrystalline fluorinated ionogel (SFIG) with visible-light transparency and underwater stability is prepared through one-pot copolymerization of acrylic acid and fluorinated acrylate monomers in a mixed solution of poly(ethylene oxide) (PEO) and fluorinated ionic liquids. Benefiting from the formation of the PEO-chain semicrystalline microstructures and the abundant noncovalent interactions (reversible hydrogen bonds and ion-dipole interactions) in an ionogel, SFIG is rendered with room-temperature stable cross-linking structures, providing high mechanical elasticity as well as high chain segment dynamics for self-healing and efficient energy absorption during the deformation. The resultant SFIG exhibits excellent stretchability (>2500%), improved mechanical toughness (7.4 MJ m-3), and room-temperature self-healability. Due to the high compatibility and abundance of hydrophobic fluorinated moieties in the ionogel, the SFIG demonstrates high visible-light transparency (>97%) and excellent waterproofness. Due to these unique advantages, the as-prepared SFIG is capable of working as an ultrastretchable ionic conductor in capacitive-type strain sensors, demonstrating excellent underwater strain-sensing performances with high sensitivity, large detecting range, and exceptional durability. This work might provide a straightforward and efficient method for obtaining waterproof ionogel elastomers for application in next-generation underwater sensors and communications.
Collapse
Affiliation(s)
- Jingxiao Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Yufeng Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Le Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi 214122, P. R. China
| | - Yue-E Miao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Xu Zhao
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Xiu-Ping Yan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Chao Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Wei Feng
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
8
|
Velasco MI, Iborra A, Giussi JM, Azzaroni O, Acosta RH. Species Distribution in Bicontinuous Phase Systems for Enhanced Oil Recovery Probed by Single-Sided NMR. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15226-15233. [PMID: 36454626 DOI: 10.1021/acs.langmuir.2c02302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Multiphase aqueous-organic systems where a bicontinuous phase is in equilibrium with an excess organic and aqueous phase find various applications in industry. These systems─also known as Winsor III─are complex not only for the different phases that develop therein but also because they are multicomponent systems. In this work, we explore for the first time the use of a benchtop low-field single-sided NMR to determine the species distribution in Winsor III systems. The proposed methodology provides information at macroscopic and microscopic levels. In particular, we show the use of single-sided NMR to determine the phases' dimensions and the species distribution in a polymer-based bicontinuous system. The phases' dimensions and limits can be resolved with micrometric precision and are indicative of the bicontinuous phase stability. The species distribution is determined by means of spatially resolved NMR relaxation and diffusion experiments. It was observed that the salinity of the aqueous phase also impacts the species distribution in the bicontinuous system. Experiments show that the additive and the polymer are mainly located in the bicontinuous phase. As the salinity of the aqueous phase increases, the amount of organic components in the bicontinuous phase decreases as a consequence of the species distribution in the system. This influences the total amount of recovered organic liquid from the organic phase. The information is obtained in a relatively fast experiment and is relevant to the system's possible applications, such as enhanced oil recovery (EOR). This methodology is not only circumscribed to its application in EOR but can also be applied to the study of any emulsion or microemulsion systems without sample size or geometry constraints.
Collapse
Affiliation(s)
- Manuel I Velasco
- Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, CórdobaX5000HUA, Argentina
- CONICET, Instituto de Física Enrique Gaviola (IFEG), CórdobaX5000HUA, Argentina
| | - Agustín Iborra
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, 1900La Plata, Argentina
- YPF Tecnología S.A., Avenida del Petróleo s/n-(Entre 129 y 143) Berisso, Buenos Aires1925, Argentina
| | - Juan M Giussi
- YPF Tecnología S.A., Avenida del Petróleo s/n-(Entre 129 y 143) Berisso, Buenos Aires1925, Argentina
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, 1900La Plata, Argentina
| | - Rodolfo H Acosta
- Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, CórdobaX5000HUA, Argentina
- CONICET, Instituto de Física Enrique Gaviola (IFEG), CórdobaX5000HUA, Argentina
| |
Collapse
|
9
|
Ohtake T, Ito H, Toyoda N. Amphiphilic block copolymer surfactant-containing quaternized pyridinium salt segments for color dispersion. Polym J 2022. [DOI: 10.1038/s41428-022-00673-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Shi P, Wang Y, Tjiu WW, Zhang C, Liu T. Highly Stretchable, Fast Self-Healing, and Waterproof Fluorinated Copolymer Ionogels with Selectively Enriched Ionic Liquids for Human-Motion Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49358-49368. [PMID: 34632775 DOI: 10.1021/acsami.1c16081] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of waterproof ionogels with high stretchability and fast self-healing performance is essential for stretchable ionic conductors in sophisticated skin-inspired wearable sensors but can be rarely met in one material. Herein, a semicrystalline fluorinated copolymer ionogel (SFCI) with extremely high stretchability, underwater stability, and fast self-healability was fabricated, among which hydrophobic ionic liquids ([BMIM][TFSI]) were selectively enriched in fluoroacrylate segment domains of the fluorinated copolymer matrix through unique ion-dipole interactions. Benefiting from the reversible ion-dipole interactions between the [BMIM][TFSI] and fluoroacrylate segment domains as well as the physical cross-linking effects of semicrystalline oligoethylene glycol domains, the SFCI exhibited ultrastretchability (>6000%), fast room-temperature self-healability (>96% healing efficiency after cutting and self-healing for 30 min), and outstanding elasticity. In addition, the representative SFCI also exhibited high-temperature tolerance up to 300 °C, antifreezing performance as low as -35 °C, and high transparency (>93% visible-light transmittance). As a result, the as-obtained SFCI can readily be used as a highly stretchable ionic conductor in skin-inspired wearable sensors with waterproof performance for real-time detecting physiological human activities. These attractive features illustrate that the developed ultrastretchable and rapidly self-healable ionogels with unique waterproofness are promising candidates especially for sophisticated wearable strain sensing applications in complex and extreme environments.
Collapse
Affiliation(s)
- Peiru Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Yufeng Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Weng Weei Tjiu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Chao Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Tianxi Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
11
|
Orekhov DV, Kazantsev OA, Orekhov SV, Sivokhin AP, Kamorin DM, Simagin AS, Savinova MV, Bolshakova EA, Korotaev MS. Synthesis of amphiphilic (meth)acrylates with oligo(ethylene glycol) and (or) oligo(propylene glycol) blocks by the esterification of (meth)acrylic acid. J Appl Polym Sci 2021. [DOI: 10.1002/app.50982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Dmitry V. Orekhov
- Nizhny Novgorod State Technical University n.a. R.E. Alekseev Nizhny Novgorod Russian Federation
| | - Oleg A. Kazantsev
- Nizhny Novgorod State Technical University n.a. R.E. Alekseev Nizhny Novgorod Russian Federation
| | - Sergey V. Orekhov
- Nizhny Novgorod State Technical University n.a. R.E. Alekseev Nizhny Novgorod Russian Federation
| | - Alexey P. Sivokhin
- Nizhny Novgorod State Technical University n.a. R.E. Alekseev Nizhny Novgorod Russian Federation
| | - Denis M. Kamorin
- Nizhny Novgorod State Technical University n.a. R.E. Alekseev Nizhny Novgorod Russian Federation
- Lobachevsky State University of Nizhni Novgorod Nizhny Novgorod Russian Federation
| | - Alexander S. Simagin
- Nizhny Novgorod State Technical University n.a. R.E. Alekseev Nizhny Novgorod Russian Federation
- Lobachevsky State University of Nizhni Novgorod Nizhny Novgorod Russian Federation
| | - Maria V. Savinova
- Nizhny Novgorod State Technical University n.a. R.E. Alekseev Nizhny Novgorod Russian Federation
| | - Evgeniya A. Bolshakova
- Nizhny Novgorod State Technical University n.a. R.E. Alekseev Nizhny Novgorod Russian Federation
| | - Michail S. Korotaev
- Nizhny Novgorod State Technical University n.a. R.E. Alekseev Nizhny Novgorod Russian Federation
| |
Collapse
|
12
|
Molecular brushes based on copolymers of alkoxy oligo(ethylene glycol) methacrylates and dodecyl(meth)acrylate: features of synthesis by conventional free radical polymerization. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-020-03390-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Zaborniak I, Macior A, Chmielarz P, Caceres Najarro M, Iruthayaraj J. Lignin-based thermoresponsive macromolecules via vitamin-induced metal-free ATRP. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
14
|
Lemaalem M, Hadrioui N, Derouiche A, Ridouane H. Structure and dynamics of liposomes designed for drug delivery: coarse-grained molecular dynamics simulations to reveal the role of lipopolymer incorporation. RSC Adv 2020; 10:3745-3755. [PMID: 35492626 PMCID: PMC9048902 DOI: 10.1039/c9ra08632c] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/06/2020] [Indexed: 12/22/2022] Open
Abstract
In this work, coarse-grained molecular dynamics simulations are carried out in NPTH and NVTE statistical ensembles in order to study the structure and dynamics properties of liposomes coated with polyethylene glycol (PEG).
Collapse
Affiliation(s)
- Mohammed Lemaalem
- Laboratoire de Physique des Polymères et Phénomènes Critiques Sciences Faculty Ben M'Sik
- Hassan II University
- Casablanca
- Morocco
| | - Nourddine Hadrioui
- Laboratoire de Physique des Polymères et Phénomènes Critiques Sciences Faculty Ben M'Sik
- Hassan II University
- Casablanca
- Morocco
| | - Abdelali Derouiche
- Laboratoire de Physique des Polymères et Phénomènes Critiques Sciences Faculty Ben M'Sik
- Hassan II University
- Casablanca
- Morocco
| | - Hamid Ridouane
- Laboratoire de Physique des Polymères et Phénomènes Critiques Sciences Faculty Ben M'Sik
- Hassan II University
- Casablanca
- Morocco
| |
Collapse
|
15
|
Synthesis of lauryl methacrylate and poly(ethylene glycol) methyl ether methacrylate copolymers with tunable microstructure and emulsifying properties. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Koda Y, Takahashi D, Sasaki Y, Akiyoshi K. Amphiphilic Poly[poly(ethylene glycol) methacrylate]s with OH Groups in the PEG Side Chains for Controlling Solution/Rheological Properties and toward Bioapplication. ACS APPLIED BIO MATERIALS 2019; 2:1920-1930. [DOI: 10.1021/acsabm.8b00836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuta Koda
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO Akiyoshi Bio-Nanotransporter Project, Japan Science and Technology Agency (JST), Katsura Int’tech center, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| | - Daiki Takahashi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO Akiyoshi Bio-Nanotransporter Project, Japan Science and Technology Agency (JST), Katsura Int’tech center, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| |
Collapse
|
17
|
Li Z, Tang M, Bai W, Bai R. Preparation of Hydrophilic Encapsulated Carbon Nanotubes with Polymer Brushes and Its Application in Composite Hydrogels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:6092-6101. [PMID: 28551997 DOI: 10.1021/acs.langmuir.7b00972] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Carbon nanotubes can be used as promising reinforcement materials to improve the mechanical properties of hydrogels, but their poor dispersibility in aqueous solution severely limits their application in preparation of composite hydrogels. Therefore, to develop method for modification of carbon nanotubes is still highly desired. In this paper, a facile approach for preparation of the hydrophilic carbon nanotube was reported. The encapsulated multiwalled carbon nanotubes (E-CNT-PAA) with cross-linked shell structure were obatined through the self-assembly of the amphipathic azide diblock copolymers poly(acrylic acid)-b-poly(4-vinylbenzyl azide-co-styrene) (PAA-b-(PVBA-co-PS)), and the cross-linking of inside azide groups under UV irradiation. The encapsulated MWCNT was characterized by FT-IR, Raman and TEM. It was demonstrated that the dispersibility of the hydrophilic encapsulated MWCNTs was related to the length of the poly(acrylic acid) brushes. Subsequently, thermal-responsive composite hydrogels (PNIPAM/E-CNT-PAA) were prepared by in situ polymerization of N-isopropylacrylamide (NIPAM) in the solution of dispersed E-CNT-PAA. The results showed that the composite hydrogels possessed high mechanical properties compared to the pure PNIPAM hydrogel. The tensile strength and elongation of the composite hydrogels were highly dependent on the content of the modified MWCNTs. The composite hydrogels with 0.46 wt % MWCNTs exhibited tensile strength of 97.7 kPa and elongation of 465%, which were at least 3.5× higher than those of the PNIPAM hydrogel. Moreover, the composite hydrogels displayed significant and reversible stimuli-responsiveness.
Collapse
Affiliation(s)
- Zili Li
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei, 230026, People's Republic of China
| | - Miao Tang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei, 230026, People's Republic of China
| | - Wei Bai
- Department of Chemistry, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Ruke Bai
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei, 230026, People's Republic of China
| |
Collapse
|