1
|
Hahn L, Zorn T, Kehrein J, Kielholz T, Ziegler AL, Forster S, Sochor B, Lisitsyna ES, Durandin NA, Laaksonen T, Aseyev V, Sotriffer C, Saalwächter K, Windbergs M, Pöppler AC, Luxenhofer R. Unraveling an Alternative Mechanism in Polymer Self-Assemblies: An Order-Order Transition with Unusual Molecular Interactions between Hydrophilic and Hydrophobic Polymer Blocks. ACS NANO 2023; 17:6932-6942. [PMID: 36972400 PMCID: PMC10100562 DOI: 10.1021/acsnano.3c00722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Polymer self-assembly leading to cooling-induced hydrogel formation is relatively rare for synthetic polymers and typically relies on H-bonding between repeat units. Here, we describe a non-H-bonding mechanism for a cooling-induced reversible order-order (sphere-to-worm) transition and related thermogelation of solutions of polymer self-assemblies. A multitude of complementary analytical tools allowed us to reveal that a significant fraction of the hydrophobic and hydrophilic repeat units of the underlying block copolymer is in close proximity in the gel state. This unusual interaction between hydrophilic and hydrophobic blocks reduces the mobility of the hydrophilic block significantly by condensing the hydrophilic block onto the hydrophobic micelle core, thereby affecting the micelle packing parameter. This triggers the order-order transition from well-defined spherical micelles to long worm-like micelles, which ultimately results in the inverse thermogelation. Molecular dynamics modeling indicates that this unexpected condensation of the hydrophilic corona onto the hydrophobic core is due to particular interactions between amide groups in the hydrophilic repeat units and phenyl rings in the hydrophobic ones. Consequently, changes in the structure of the hydrophilic blocks affecting the strength of the interaction could be used to control macromolecular self-assembly, thus allowing for the tuning of gel characteristics such as strength, persistence, and gelation kinetics. We believe that this mechanism might be a relevant interaction pattern for other polymeric materials as well as their interaction in and with biological environments. For example, controlling the gel characteristics could be considered important for applications in drug delivery or biofabrication.
Collapse
Affiliation(s)
- Lukas Hahn
- Institute
for Functional Materials and Biofabrication, Department of Chemistry
and Pharmacy, Julius-Maximilians-University
Würzburg, Röntgenring 11, 97070 Würzburg, Germany
- Institute
of Pharmacy and Food Chemistry, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Theresa Zorn
- Center
for Nanosystems Chemistry & Institute of Organic Chemistry, Department
of Chemistry and Pharmacy, Julius-Maximilians-University
Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Josef Kehrein
- Institute
of Pharmacy and Food Chemistry, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Tobias Kielholz
- Institute
of Pharmaceutical Technology and Buchmann Institute for Molecular
Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Anna-Lena Ziegler
- Institute
for Functional Materials and Biofabrication, Department of Chemistry
and Pharmacy, Julius-Maximilians-University
Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Stefan Forster
- Institute
for Functional Materials and Biofabrication, Department of Chemistry
and Pharmacy, Julius-Maximilians-University
Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Benedikt Sochor
- Chair for
X-Ray Microscopy, Julius-Maximilians-University
Würzburg, Josef-Martin-Weg
63, 97074 Würzburg, Germany
| | - Ekaterina S. Lisitsyna
- Faculty
of Engineering and Natural Science, Tampere
University, Korkeakoulunkatu 8, 33720 Tampere, Finland
| | - Nikita A. Durandin
- Faculty
of Engineering and Natural Science, Tampere
University, Korkeakoulunkatu 8, 33720 Tampere, Finland
| | - Timo Laaksonen
- Faculty
of Engineering and Natural Science, Tampere
University, Korkeakoulunkatu 8, 33720 Tampere, Finland
- Division
of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00014 Helsinki, Finland
| | - Vladimir Aseyev
- Soft
Matter Chemistry, Department of Chemistry, Helsinki Institute of Sustainability
Science, Faculty of Science, University
of Helsinki, 00014 Helsinki, Finland
| | - Christoph Sotriffer
- Institute
of Pharmacy and Food Chemistry, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Kay Saalwächter
- Institute
of Physics-NMR, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 7, 06120 Halle, Germany
| | - Maike Windbergs
- Institute
of Pharmaceutical Technology and Buchmann Institute for Molecular
Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Ann-Christin Pöppler
- Center
for Nanosystems Chemistry & Institute of Organic Chemistry, Department
of Chemistry and Pharmacy, Julius-Maximilians-University
Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Robert Luxenhofer
- Institute
for Functional Materials and Biofabrication, Department of Chemistry
and Pharmacy, Julius-Maximilians-University
Würzburg, Röntgenring 11, 97070 Würzburg, Germany
- Soft
Matter Chemistry, Department of Chemistry, Helsinki Institute of Sustainability
Science, Faculty of Science, University
of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
2
|
Kaberov LI, Kaberova Z, Murmiliuk A, Trousil J, Sedláček O, Konefal R, Zhigunov A, Pavlova E, Vít M, Jirák D, Hoogenboom R, Filippov SK. Fluorine-Containing Block and Gradient Copoly(2-oxazoline)s Based on 2-(3,3,3-Trifluoropropyl)-2-oxazoline: A Quest for the Optimal Self-Assembled Structure for 19F Imaging. Biomacromolecules 2021; 22:2963-2975. [PMID: 34180669 DOI: 10.1021/acs.biomac.1c00367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of fluorinated contrast agents in magnetic resonance imaging (MRI) facilitates improved image quality due to the negligible amount of endogenous fluorine atoms in the body. In this work, we present a comprehensive study of the influence of the amphiphilic polymer structure and composition on its applicability as contrast agents in 19F MRI. Three series of novel fluorine-containing poly(2-oxazoline) copolymers and terpolymers, hydrophilic-fluorophilic, hydrophilic-lipophilic-fluorophilic, and hydrophilic-thermoresponsive-fluorophilic, with block and gradient distributions of the fluorinated units, were synthesized. It was discovered that the CF3 in the 2-(3,3,3-trifluoropropyl)-2-oxazoline (CF3EtOx) group activated the cationic chain end, leading to faster copolymerization kinetics, whereby spontaneous monomer gradients were formed with accelerated incorporation of 2-methyl-2-oxazoline or 2-n-propyl-2-oxazoline with a gradual change to the less-nucleophilic CF3EtOx monomer. The obtained amphiphilic copolymers and terpolymers form spherical or wormlike micelles in water, which was confirmed using transmission electron microscopy (TEM), while small-angle X-ray scattering (SAXS) revealed the core-shell or core-double-shell morphologies of these nanoparticles. The core and shell sizes obey the scaling laws for starlike micelles predicted by the scaling theory. Biocompatibility studies confirm that all copolymers obtained are noncytotoxic and, at the same time, exhibit high sensitivity during in vitro 19F MRI studies. The gradient copolymers provide the best 19F MRI signal-to-noise ratio in comparison with the analogue block copolymer structures, making them most promising as 19F MRI contrast agents.
Collapse
Affiliation(s)
- Leonid I Kaberov
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Zhansaya Kaberova
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Anastasiia Murmiliuk
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague, Czech Republic
| | - Jiří Trousil
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Ondřej Sedláček
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague, Czech Republic.,Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Rafal Konefal
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Alexander Zhigunov
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Ewa Pavlova
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Martin Vít
- Faculty of Mechatronics Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic
| | - Daniel Jirák
- Institute for Clinical and Experimental Medicine, Vídeňská 9, 140 21 Prague, Czech Republic.,Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University in Prague, Salmovská 1, 120 00 Prague, Czech Republic
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Sergey K Filippov
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland.,Department of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan
| |
Collapse
|
3
|
Hahn L, Karakaya E, Zorn T, Sochor B, Maier M, Stahlhut P, Forster S, Fischer K, Seiffert S, Pöppler AC, Detsch R, Luxenhofer R. An Inverse Thermogelling Bioink Based on an ABA-Type Poly(2-oxazoline) Amphiphile. Biomacromolecules 2021; 22:3017-3027. [PMID: 34100282 DOI: 10.1021/acs.biomac.1c00427] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hydrogels are key components in several biomedical research areas such as drug delivery, tissue engineering, and biofabrication. Here, a novel ABA-type triblock copolymer comprising poly(2-methyl-2-oxazoline) as the hydrophilic A blocks and poly(2-phenethyl-2-oxazoline) as the aromatic and hydrophobic B block is introduced. Above the critical micelle concentration, the polymer self-assembles into small spherical polymer micelles with a hydrodynamic radius of approx 8-8.5 nm. Interestingly, this specific combination of hydrophilic and hydrophobic aromatic moieties leads to rapid thermoresponsive inverse gelation at polymer concentrations above a critical gelation concentration (20 wt %) into a macroporous hydrogel of densely packed micelles. This hydrogel exhibited pronounced viscoelastic solid-like properties, as well as extensive shear-thinning, rapid structure recovery, and good strain resistance properties. Excellent 3D-printability of the hydrogel at lower temperature opens a wide range of different applications, for example, in the field of biofabrication. In preliminary bioprinting experiments using NIH 3T3 cells, excellent cell viabilities of more than 95% were achieved. The particularly interesting feature of this novel material is that it can be used as a printing support in hybrid bioink systems and sacrificial bioink due to rapid dissolution at physiological conditions.
Collapse
Affiliation(s)
- Lukas Hahn
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Röntgenring 11, Würzburg 97070, Germany
| | - Emine Karakaya
- Institute of Biomaterials, Friedrich Alexander University of Erlangen-Nürnberg, Cauerstr. 6, Erlangen 91058, Germany
| | - Theresa Zorn
- Institute of Organic Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Benedikt Sochor
- Chair for X-Ray Microscopy, Julius-Maximilians-University Würzburg, Josef-Martin-Weg 63, Würzburg 97074, Germany
| | - Matthias Maier
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Röntgenring 11, Würzburg 97070, Germany
| | - Philipp Stahlhut
- Department for Functional Materials in Medicine and Dentistry, Julius-Maximilians-University Würzburg, Pleicherwall 2, Würzburg 97070, Germany
| | - Stefan Forster
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Röntgenring 11, Würzburg 97070, Germany
| | - Karl Fischer
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, Mainz 55128, Germany
| | - Sebastian Seiffert
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, Mainz 55128, Germany
| | - Ann-Christin Pöppler
- Institute of Organic Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Rainer Detsch
- Institute of Biomaterials, Friedrich Alexander University of Erlangen-Nürnberg, Cauerstr. 6, Erlangen 91058, Germany
| | - Robert Luxenhofer
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Röntgenring 11, Würzburg 97070, Germany.,Soft Matter Chemistry, Department of Chemistry and Helsinki Institute of Sustainability Science, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
4
|
Martinez-Moro M, Jenczyk J, Giussi JM, Jurga S, Moya SE. Kinetics of the thermal response of poly(N-isopropylacrylamide co methacrylic acid) hydrogel microparticles under different environmental stimuli: A time-lapse NMR study. J Colloid Interface Sci 2020; 580:439-448. [PMID: 32711195 DOI: 10.1016/j.jcis.2020.07.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 11/28/2022]
Abstract
HYPOTHESIS Hydrogels of N-isopropylacrylamide and methacrylic acid (P(NIPAm-co-MAA)) display pH sensitivity and complex positively charged molecules through carboxylate groups, while having a critical solution temperature at which they reduce in volume and dehydrate. We aimed to elucidate how the responsiveness of MAA to environmental changes alters PNIPAm hydrogels at the molecular level using nuclear magnetic resonance (NMR). Time-lapse NMR allows us to follow the evolution of NMR signal under a temperature stimulus, providing unique information on conformational freedom of the hydrogel polymers. EXPERIMENTS We used time-lapse NMR to follow the evolution of the NMR signal with time over a temperature change from 25 to 40°C and to study the swelling/deswelling kinetics of P(NIPAm-co-MAA) microgels at different pH values and ionic strengths, and in the presence of positively charged molecules complexing carboxylate groups. FINDINGS At acid pH, hydrogel collapse is favored over neutral pH, and at basic pH the carboxylates remain steadily hydrated during temperature increase. Increasing ionic strength results in a faster, more effective collapse than decreasing pH. Complexation of medium-sized molecules with several charges (spermine, spermidine) causes a faster collapse than complexation with large molecular weight poly(allylamine) hydrochloride, but similar to the collapse effected by large poly(diallyldimethylammonium) chloride. This work opens new perspectives to using time-lapse NMR to study thermoresponsive systems that respond to multiple stimuli, with particular relevance in designing hydrogels for drug delivery.
Collapse
Affiliation(s)
- Marta Martinez-Moro
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182 C, 20014 Donostia-San Sebastian, Spain
| | - Jacek Jenczyk
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland.
| | - Juan M Giussi
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, La Plata 1900, Argentina
| | - Stefan Jurga
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland
| | - Sergio E Moya
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182 C, 20014 Donostia-San Sebastian, Spain.
| |
Collapse
|
5
|
Konefał R, Černoch P, Konefał M, Spěváček J. Temperature Behavior of Aqueous Solutions of Poly(2-oxazoline) Homopolymer and Block Copolymers Investigated by NMR Spectroscopy and Dynamic Light Scattering. Polymers (Basel) 2020; 12:E1879. [PMID: 32825475 PMCID: PMC7565327 DOI: 10.3390/polym12091879] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 11/16/2022] Open
Abstract
1H NMR methods in combination with dynamic light scattering were applied to study temperature behavior of poly(2-isopropyl-2-oxazoline) (PIPOx) homopolymer as well as PIPOx-b-poly(2-methyl-2-oxazoline) (PMeOx) and poly(2-ethyl-2-oxazoline) (PEtOx)-b-PMeOx diblock copolymers in aqueous solutions. 1H NMR spectra showed a different way of phase transition for the main and side chains in PIPOx-based solutions. Additionally, the phase transition is irreversible for PIPOx homopolymer and partially reversible for PIPOx-b-PMeOx copolymer. As revealed by NMR, the phase transition in PEtOx-based copolymers solutions exists despite the absence of solution turbidity. It is very broad, virtually independent of the copolymer composition and reversible with some hysteresis. Two types of water molecules were detected in solutions of the diblock copolymers above the phase transition-"free" with long and "bound" with short spin-spin relaxation times T2. NOESY spectra revealed information about conformational changes observed already in the pre-transition region of PIPOx-b-PMeOx copolymer solution.
Collapse
Affiliation(s)
- Rafał Konefał
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic; (P.Č.); (M.K.)
| | | | | | | |
Collapse
|
6
|
Wang K, Liu Q, Liu G, Zeng Y. Novel thermoresponsive homopolymers of poly[oligo(ethylene glycol) (acyloxy) methacrylate]s: LCST-type transition in water and UCST-type transition in alcohols. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122746] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
7
|
Jana S, Uchman M. Poly(2-oxazoline)-based stimulus-responsive (Co)polymers: An overview of their design, solution properties, surface-chemistries and applications. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101252] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
8
|
Konefał R, Spěváček J, Mužíková G, Laga R. Thermoresponsive behavior of poly(DEGMA)-based copolymers. NMR and dynamic light scattering study of aqueous solutions. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Bozorg M, Hankiewicz B, Abetz V. Solubility behaviour of random and gradient copolymers of di- and oligo(ethylene oxide) methacrylate in water: effect of various additives. SOFT MATTER 2020; 16:1066-1081. [PMID: 31859702 DOI: 10.1039/c9sm02032b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Poly[oligo(ethylene oxide)] based gradient and random copolymers with different compositions are synthesized via Cu-based atom transfer radical polymerization. The solubility behavior of these copolymers in pure water and in the presence of different salts, surfactants and ethanol is investigated. According to dynamic light scattering results, the lower critical solution temperature (LCST) depends on the structure of the copolymer and changes slightly in the presence of additives. Good cosolvents like ethanol can increase the LCST through dissolving the collapsed copolymer chains to some extent. The same effect is observed for surfactants that make the copolymer solution more stable by preventing aggregation. Above a certain concentration of surfactant, depending on the copolymer structure, the solution is stable at all temperatures (no LCST). The effect of salts on the solubility of the copolymers follows the Hofmeister series and it is related linearly to the salt concentration. Based on their affinity to the copolymer, the salts can increase or decrease the LCST. There is a considerable difference in phase transition changes for gradient or random copolymers after salt addition. While both copolymers show a two-step phase transition in the presence of different salts, the changes in the hydrodynamic radius and normalized scattering intensity are rather broad for random compared to gradient copolymers. Contrary to what was expected, varying the cations has no distinguishable effect on the LCST for both copolymers. All chlorides decrease the LCST. This decrease is almost the same for gradient copolymers and fluctuates for random copolymers.
Collapse
Affiliation(s)
- Maryam Bozorg
- Institute of Physical Chemistry, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Birgit Hankiewicz
- Institute of Physical Chemistry, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Volker Abetz
- Institute of Physical Chemistry, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany and Institute of Polymer Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, 21502 Geesthacht, Germany.
| |
Collapse
|
10
|
Oleszko-Torbus N, Utrata-Wesołek A, Bochenek M, Lipowska-Kur D, Dworak A, Wałach W. Thermal and crystalline properties of poly(2-oxazoline)s. Polym Chem 2020. [DOI: 10.1039/c9py01316d] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The review gathers together data concerning the influence of poly(2-substituted-2-oxazoline)s structure on their thermal and crystalline properties, and how this relationship can be adjusted in controlled manner.
Collapse
Affiliation(s)
| | | | - Marcelina Bochenek
- Centre of Polymer and Carbon Materials
- Polish Academy of Sciences
- 41-819 Zabrze
- Poland
| | - Daria Lipowska-Kur
- Centre of Polymer and Carbon Materials
- Polish Academy of Sciences
- 41-819 Zabrze
- Poland
| | - Andrzej Dworak
- Centre of Polymer and Carbon Materials
- Polish Academy of Sciences
- 41-819 Zabrze
- Poland
| | - Wojciech Wałach
- Centre of Polymer and Carbon Materials
- Polish Academy of Sciences
- 41-819 Zabrze
- Poland
| |
Collapse
|
11
|
Loukotová L, Bogomolova A, Konefal R, Špírková M, Štěpánek P, Hrubý M. Hybrid κ-carrageenan-based polymers showing "schizophrenic" lower and upper critical solution temperatures and potassium responsiveness. Carbohydr Polym 2019; 210:26-37. [PMID: 30732762 DOI: 10.1016/j.carbpol.2019.01.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 11/29/2022]
Abstract
Novel multiresponsive hybrid biocompatible systems of κ-carrageenan-graft-poly(2-isopropyl-2-oxazoline-co-2-butyl-2-oxazoline)s with unique combination of responsiveness to external stimuli were synthesized and studied. The polymer thermoresponsive behavior proved the existence of both lower and upper critical solution temperatures in aqueous milieu, forming gel at lower temperature, a solution at room temperature and cloudy nanophase-separated dispersion at elevated temperature. The limit temperatures can easily be adjusted by the polyoxazoline graft length and grafting density. Moreover, the polymer behavior is additionally dependent on the concentration of potassium ions. The polymers behave similarly as the original κ-carrageenan, and thus, the poly(2-alkyl-2-oxazoline) grafts do not decrease the ability of the κ-carrageenan to form the self-assembled structures. Molecular principles beyond this multistimuli-responsive behavior were elucidated with the use of dynamic light scattering, magnetic resonance and fluorescence measurements as well as atomic force microscopy. These polymers could be used in a wide range of biological applications demanding thermo- and potassium-responsiveness.
Collapse
Affiliation(s)
- L Loukotová
- Institute of Macromolecular Chemistry AS CR, v. v. i., Heyrovsky Sq. 2, Prague, 162 06, Czech Republic
| | - A Bogomolova
- Institute of Macromolecular Chemistry AS CR, v. v. i., Heyrovsky Sq. 2, Prague, 162 06, Czech Republic
| | - R Konefal
- Institute of Macromolecular Chemistry AS CR, v. v. i., Heyrovsky Sq. 2, Prague, 162 06, Czech Republic
| | - M Špírková
- Institute of Macromolecular Chemistry AS CR, v. v. i., Heyrovsky Sq. 2, Prague, 162 06, Czech Republic
| | - P Štěpánek
- Institute of Macromolecular Chemistry AS CR, v. v. i., Heyrovsky Sq. 2, Prague, 162 06, Czech Republic
| | - M Hrubý
- Institute of Macromolecular Chemistry AS CR, v. v. i., Heyrovsky Sq. 2, Prague, 162 06, Czech Republic.
| |
Collapse
|
12
|
Sedlacek O, Monnery BD, Hoogenboom R. Synthesis of defined high molar mass poly(2-methyl-2-oxazoline). Polym Chem 2019. [DOI: 10.1039/c9py00013e] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this communication, we report for the first time the synthesis of defined high molar mass poly(2-methyl-2-oxazoline) (PMeOx), a water-soluble polymer with excellent anti-fouling properties.
Collapse
Affiliation(s)
- Ondrej Sedlacek
- Supramolecular Chemistry Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University
- B-9000 Ghent
| | - Bryn D. Monnery
- Supramolecular Chemistry Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University
- B-9000 Ghent
| | - Richard Hoogenboom
- Supramolecular Chemistry Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University
- B-9000 Ghent
| |
Collapse
|
13
|
Zhang C, Sanchez RJP, Fu C, Clayden-Zabik R, Peng H, Kempe K, Whittaker AK. Importance of Thermally Induced Aggregation on 19F Magnetic Resonance Imaging of Perfluoropolyether-Based Comb-Shaped Poly(2-oxazoline)s. Biomacromolecules 2018; 20:365-374. [DOI: 10.1021/acs.biomac.8b01549] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|