1
|
Jing Y, Chi W, Zhang W, Qiu Y, Gao M, Yu L, Song L, Wang X, Liu Z, Gao J, Huang J, Li Y, Gao G, Gao Y, Wang Y, Wang N. An innovative functional compatibility strategy for poly (lactic acid) and polypropylene carbonate blends to achieve superior toughness, degradability, and optical properties. Int J Biol Macromol 2024; 280:135702. [PMID: 39304048 DOI: 10.1016/j.ijbiomac.2024.135702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
This study, for the first time, unveils the potential of dibutyl itaconate (DBI) in enhancing the compatibility between PLA (poly (lactic acid)) and PPC (polypropylene carbonate), systematically investigating the effects of DBI amount on the thermal, optical, rheological, mechanical, and degradation properties and microstructure of the PLA/PPC/DBI blends. The results showed that DBI could chemically react with PLA and PPC, forming a PLA-co-DBI-co-PPC copolymer structure, thereby improving the compatibility between PLA and PPC. When the DBI amount reached 8 wt%, only one Tg was observed in the blend system, and no distinct phase interface was visible in the fracture surface of the blend specimens. This indicated that at this DBI amount, the PLA and PPC had transitioned from a partially compatible system to a fully compatible system. With the increase in DBI amount in the system, the elongation at break and notched impact strength of the blends initially increased and then decreased, while the storage modulus, loss modulus, and complex viscosity showed a gradual downward trend. When the DBI amount increased to 10 wt%, the flexibility of the blends reached its peak, with the values rising to 494.7 % and 8494.1 J/m2, respectively, representing 13.7 times and 2.5 times those of the neat PLA/PPC blends. At this point, the impact specimens exhibited significant plastic flow in the direction of force, showing distinct ductile fracture characteristics. Meanwhile, the degradation performance of the PLA/PPC blends increased with the addition of DBI. The introduction of DBI effectively facilitated the penetration of water molecules into the PLA/PPC molecular chains, enhancing the hydrolysis of ester bonds, leading to a maximum mass loss rate of 84.1 %, which was significantly higher than the 20.3 % of the neat PLA/PPC blends. In addition, the addition of DBI significantly reduced the haze of the blends while maintaining high light transmittance, demonstrating excellent optical properties (light transmittance remained above 92.4 %, and haze decreased from 37.1 % to 11.1 %). In conclusion, this study provides a new approach for the development of high-performance PLA-based biodegradable composites. The resulting blends exhibit excellent toughness, degradation performance, and optical properties, significantly enhancing their application potential in fields such as disposable products, packaging, agriculture, and 3D printing materials.
Collapse
Affiliation(s)
- Ying Jing
- Liaoning Provincial Key Laboratory for Synthesis and Preparation of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, China; College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Weihan Chi
- Liaoning Provincial Key Laboratory for Synthesis and Preparation of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, China; College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Wei Zhang
- Shenyang Research Institute of Industrial Technology for Advanced Coating Materials, Shenyang 110300, China
| | - Ying Qiu
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Meng Gao
- Shenyang Research Institute of Industrial Technology for Advanced Coating Materials, Shenyang 110300, China
| | - Lingxiao Yu
- Liaoning Provincial Key Laboratory for Synthesis and Preparation of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, China; College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Lixin Song
- Liaoning Provincial Key Laboratory for Synthesis and Preparation of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, China; College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China.
| | - Xiangyi Wang
- Liaoning Provincial Key Laboratory for Synthesis and Preparation of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, China; College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Zhe Liu
- Liaoning Provincial Key Laboratory for Synthesis and Preparation of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, China; College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Jialu Gao
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Jiangting Huang
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yongchao Li
- Liaoning Provincial Key Laboratory for Synthesis and Preparation of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, China; College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Guangxu Gao
- Liaoning Provincial Key Laboratory for Synthesis and Preparation of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, China; College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yujuan Gao
- Liaoning Provincial Key Laboratory for Synthesis and Preparation of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, China; College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yuanxia Wang
- Liaoning Provincial Key Laboratory for Synthesis and Preparation of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, China
| | - Na Wang
- Liaoning Provincial Key Laboratory for Synthesis and Preparation of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, China
| |
Collapse
|
2
|
Milovanovic S, Markovic D, Jankovic-Castvan I, Lukic I. Cornstarch aerogels with thymol, citronellol, carvacrol, and eugenol prepared by supercritical CO 2- assisted techniques for potential biomedical applications. Carbohydr Polym 2024; 331:121874. [PMID: 38388060 DOI: 10.1016/j.carbpol.2024.121874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024]
Abstract
This study focuses on the development of bioactive materials using environmentally friendly techniques, renewable, biocompatible, and biodegradable polysaccharide, as well as natural bioactive compounds (NBCs) found in plant extracts. First, cornstarch aerogels with a porosity of 86 % and a specific surface area of 225 m2/g were produced via supercritical CO2- assisted drying. Further, thymol, citronellol, carvacrol, and eugenol were incorporated into the aerogels by supercritical CO2- assisted impregnation, which allowed variation in loadings of NBCs (12.8-17.6 %). Interaction between cornstarch aerogels and NBCs determined impregnation rate, pore wall thickness (in the range 18-95 nm), liquid absorption capacity (from 265 to 569 %), dehydration mass loss, and release in phosphate-buffered saline. Controlled release of NBCs was maintained over a 3-day period. Moreover, impregnated aerogels showed a significant antioxidant effect with the highest value for DPPH radical inhibition of 25.5 % determined for the aerogels impregnated with eugenol. Notable antimicrobial activity against tested Gram-negative bacteria, Gram-positive bacteria, and fungi was also observed, being the highest for thymol-loaded aerogel with the diameter of the inhibition zones of up to 37.5 mm. This work shows a promising green approach for the production of bioactive two-component starch-based materials for potential applications in skin infection treatment.
Collapse
Affiliation(s)
- Stoja Milovanovic
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia.
| | - Darka Markovic
- University of Belgrade, Innovation Center of the Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Ivona Jankovic-Castvan
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Ivana Lukic
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia
| |
Collapse
|
3
|
Cabrera Gonzalez AD, Flores León JR, Ramirez Mendoza CG, Rodríguez Félix DE, Castillo Ortega MM, Santacruz Ortega H, Rodríguez Félix F, Madera Santana TJ, Quiroz
Castillo JM. Preparation and Characterization of Poly(lactic acid) Membranes and Films Coated with Polyaniline for Potential Use in Environmental Remediation. ACS OMEGA 2024; 9:4439-4446. [PMID: 38313549 PMCID: PMC10831965 DOI: 10.1021/acsomega.3c06659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/06/2024]
Abstract
This research outlines the fabrication of polymeric membranes and films of poly(lactic acid) (PLA), prepared via electrospinning and extrusion, respectively. These materials were subsequently coated with polyaniline (PANi) by using the in situ chemical polymerization technique. Scanning electron microscopy micrographs revealed that the best coatings were achieved when 3 and 30 min of contact time with the monomeric solution were used for the membrane and film, respectively. Additionally, Fourier transform infrared spectra, thermogravimetric studies, and contact angle measurements demonstrated proper interaction between PLA and PANi. The findings of these studies suggest that PLA membranes and films can serve as suitable substrates for the deposition of PANi, and the composite materials hold potential for use in environmental remediation applications.
Collapse
Affiliation(s)
- Ana Daymi Cabrera Gonzalez
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo C.P. 83000, Sonora, Mexico
| | - José Ramón Flores León
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo C.P. 83000, Sonora, Mexico
| | | | - Dora Evelia Rodríguez Félix
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo C.P. 83000, Sonora, Mexico
| | - María Mónica Castillo Ortega
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo C.P. 83000, Sonora, Mexico
| | - Hisila Santacruz Ortega
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo C.P. 83000, Sonora, Mexico
| | - Francisco Rodríguez Félix
- Departamento
de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo C.P. 83000, Sonora, Mexico
| | - Tomás Jesús Madera Santana
- Laboratorio
de Envases, CTAOV, Centro de Investigación
en Alimentos y Desarrollo A.C., Hermosillo C.P. 83304, Sonora, Mexico
| | - Jesús Manuel Quiroz
Castillo
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo C.P. 83000, Sonora, Mexico
| |
Collapse
|
4
|
Caetano ARS, Cardoso MDG, de Oliveira JE, Batista LR, Alves E, Natarelli CVL, Campolina GA, Ferreira VRF, Nelson DL. Antifungal activity of poly(lactic acid) nanofibers containing the essential oil from Corymbia citriodora Hook or the monoterpenes β-citronellol and citronellal against mycotoxigenic fungi. FEMS Microbiol Lett 2024; 371:fnae083. [PMID: 39380138 DOI: 10.1093/femsle/fnae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/27/2024] [Accepted: 10/07/2024] [Indexed: 10/10/2024] Open
Abstract
Food contamination by mycotoxigenic fungi is one of the principal factors that cause food loss and economic losses in the food industry. The objective of this work was to incorporate the essential oil from Corymbia citriodora Hook and its constituents citronellal and β-citronellol into poly(lactic acid) nanofibers; to characterize the nanofibers by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy and differential scanning calorimetry; to evaluate the antifungal activity by the fumigation method; to evaluate the antimycotoxigenic activity against Aspergillus carbonarius, Aspergillus ochraceus, Aspergillus westerdijkiae, Aspergillus flavus, and Aspergillus parasiticus; and to evaluate the morphology of these microorganisms. All the nanofibers had a regular, smooth, and continuous morphology. FTIR analyses confirmed that the active ingredients were incorporated into the polymer matrix. All samples exhibited antifungal and ochratoxigenic inhibitory activities of up to 100% and 99%, respectively, with the best results observed for (PLA + 30 wt% β-citronellol) nanofibers and (PLA + 30 wt% citronellal) nanofibers. However, 100% inhibition of the production of aflatoxin B1 and B2 was not observed. The images obtained by SEM indicated that the nanofibers caused damage to the hyphae, caused a decrease in the production of spores, and caused deformation, rupture, and non-formation of the conid head, might be an alternative for the control of mycotoxigenic fungi.
Collapse
Affiliation(s)
| | | | | | - Luiz Roberto Batista
- Food Sciences Department, Federal University of Lavras (UFLA), Lavras, 37200-900 MG, Brazil
| | - Eduardo Alves
- Department of Plant Pathology, Federal University of Lavras (UFLA), Lavras, 37200-900 MG, Brazil
| | - Caio Vinicius Lima Natarelli
- Materials Science and Engineering Department, Federal University of São Carlos (UFSCar), São Carlos, 13565-905 SP, Brazil
| | | | | | - David Lee Nelson
- Postgraduate Program in Biofuels, Federal University of The Jequitinhonha and Mucuri Valleys, Diamantina, 39100-000 MG, Brazil
| |
Collapse
|
5
|
Ke Q, Ma K, Zhang Y, Meng Q, Huang X, Kou X. Antibacterial aroma compounds as property modifiers for electrospun biopolymer nanofibers of proteins and polysaccharides: A review. Int J Biol Macromol 2023; 253:126563. [PMID: 37657584 DOI: 10.1016/j.ijbiomac.2023.126563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/27/2023] [Accepted: 08/19/2023] [Indexed: 09/03/2023]
Abstract
Electrospinning is one of the most promising techniques for producing biopolymer nanofibers for various applications. Proteins and polysaccharides, among other biopolymers, are attractive substrates for electrospinning due to their favorable biocompatibility and biodegradability. However, there are still challenges to improve the mechanical properties, water sensitivity and biological activity of biopolymer nanofibers. Therefore, these strategies such as polymer blending, application of cross-linking agents, the addition of nanoparticles and bioactive components, and modification of biopolymer have been developed to enhance the properties of biopolymer nanofibers. Among them, antibacterial aroma compounds (AACs) from essential oils are widely used as bioactive components and property modifiers in various biopolymer nanofibers to enhance the functionality, hydrophobicity, thermal properties, and mechanical properties of nanofibers, which depends on the electrospun strategy of AACs. This review summarizes the recently reported antimicrobial activities and applications of AACs, and compares the effects of four electrospinning strategies for encapsulating AACs on the properties and applications of nanofibers. The authors focus on the correlation of the main characteristics of these biopolymer electrospun nanofibers with the encapsulation strategy of AACs in the nanofibers. Moreover, this review also particularly emphasizes the impact of the characteristics of these nanofibers on their application field of antimicrobial materials.
Collapse
Affiliation(s)
- Qinfei Ke
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Kangning Ma
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yunchong Zhang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Qingran Meng
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xin Huang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Xingran Kou
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| |
Collapse
|
6
|
Bamian M, Pajohi-Alamoti M, Azizian S, Nourian A, Tahzibi H. An electrospun polylactic acid film containing silver nanoparticles and encapsulated Thymus daenensis essential oil: release behavior, physico-mechanical and antibacterial studies. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01890-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
7
|
pH-sensitive self-assembled nanofibers based on electrostatic interaction and Schiff base bonding for controlled release of curcumin. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Tahami SR, Nemati NH, Keshvari H, Khorasani MT. In vitro and in vivo evaluation of nanofibre mats containing Calendula officinalis extract as a wound dressing. J Wound Care 2022; 31:598-611. [PMID: 35797256 DOI: 10.12968/jowc.2022.31.7.598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The present study aims to create Calendula officinalis-loaded nanofibre-based wound dressing materials to enhance the wound healing process. Calendula officinalis is an annual herb native to the Mediterranean region. It is antipyretic, antifungal, antioedema, antidiabetic, anti-inflammatory (wound, oral and pharyngeal mucosa), antispasmodic, treats chronic ocular surface diseases, acts as a stimulant and a diaphoretic. It is also used in the prevention of acute dermatitis, and in the treatment of gastrointestinal ulcers, wounds and burns. METHOD Electrospinning is an effective method for creating nano- and microfibres for biomedical applications. Calendula officinalis (CA) of various concentrations 5%, 10% and 15%)-loaded polyvinyl alcohol (PVA)/sodium alginate (SAlg) nanofibre mats were successfully produced via blend electrospinning. Nanofibre mats were evaluated using: scanning electron microscopy (SEM); Fourier transform infrared spectroscopy (FTIR) analysis; gel content; water vapour transmission rate (WVTR); swelling ratio; in vitro drug release studies; viability evaluation (cell culture and MTT assay); and an in vivo study using male Wistar rats. Rats were divided into three groups (n=3). In each group, rats were inflicted with five full-thickness wounds on the back and were treated with sterile gauze (control), PVA/SAlg nanofibre dressing (CA-free control), PVA/SAlg/CA5%, PVA/SAlg/CA10%, and PVA/SAlg/CA15% nanofibre dressing. RESULTS Results showed that the obtained fibres were smooth with no surface aggregates, indicating complete incorporation of Calendula officinalis. The release of Calendula officinalis from loaded PVA/SAlg fibre mats in the first four hours was burst released and then was constant. PVA/SAlg and PVA/SAlg/CA nanofibres were not toxic to L929 mouse fibroblasts and supported cell attachment and proliferation. The results of the in vivo study showed that the PVA/SAlg/CA10% nanofibre dressing had a higher full-thickness wound healing closure rate compared with the control group on days seven, 14 and 21 after treatment. CONCLUSION The results of this evaluation showed that PVA/SAlg/CA nanofibrous mats could be a candidate as an effective wound dressing; however, the percentage of CA in this compound needs further investigation.
Collapse
Affiliation(s)
- Seyed Rasoul Tahami
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nahid Hassanzadeh Nemati
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamid Keshvari
- Department of Biomedical Engineering Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mohammad Taghi Khorasani
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.,Department of Biomaterial, Iran Polymer and Petrochemical Institute, Tehran, Iran
| |
Collapse
|
9
|
Lopresti F, Botta L, La Carrubba V, Di Pasquale L, Settanni L, Gaglio R. Combining carvacrol and nisin in biodegradable films for antibacterial packaging applications. Int J Biol Macromol 2021; 193:117-126. [PMID: 34688672 DOI: 10.1016/j.ijbiomac.2021.10.118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/06/2021] [Accepted: 10/17/2021] [Indexed: 10/20/2022]
Abstract
In this work, the feasibility of antibacterial biopolymeric films containing carvacrol (CRV) and a nisin commercial formulation (Nis) for potential food packaging applications was investigated. As polymer matrix, a commercial biodegradable polymer formulation of Mater-Bi (MB) was chosen due to its significant food packaging applications. CRV and Nis were chosen due to their well-established antibacterial properties and their potential synergistic effect. MB/CRV, MB/Nis, and MB/CRV/Nis systems were produced by melt mixing and compression molding. The mechanical properties of the films were evaluated by tensile tests. Differential scanning calorimetry was assessed aiming at investigating the effect of the two compounds and their mixture on the thermal properties of MB. The release profile of CRV and Nis from the MB-based films was evaluated in water at 4 °C by UV-Vis measurements and it was fitted with a power-law model. The antibacterial activity of MB-based films was tested in vitro against Listeria monocytogenes, Salmonella enteritidis, Escherichia coli, and Staphylococcus aureus. The combination of CRV and Nis strongly affected the properties of the MB-based films and ensured higher antibacterial activity if compared to MB/CRV and MB/Nis systems.
Collapse
Affiliation(s)
- Francesco Lopresti
- Dipartimento di Ingegneria, Università degli Studi di Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy
| | - Luigi Botta
- Dipartimento di Ingegneria, Università degli Studi di Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy.
| | - Vincenzo La Carrubba
- Dipartimento di Ingegneria, Università degli Studi di Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy
| | - Liliana Di Pasquale
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze 4, 90128 Palermo, Italy
| | - Luca Settanni
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze 4, 90128 Palermo, Italy
| | - Raimondo Gaglio
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze 4, 90128 Palermo, Italy
| |
Collapse
|
10
|
Lopresti F, Pavia FC, Ceraulo M, Capuana E, Brucato V, Ghersi G, Botta L, La Carrubba V. Physical and biological properties of electrospun poly(d,l-lactide)/nanoclay and poly(d,l-lactide)/nanosilica nanofibrous scaffold for bone tissue engineering. J Biomed Mater Res A 2021; 109:2120-2136. [PMID: 33942505 PMCID: PMC8518812 DOI: 10.1002/jbm.a.37199] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/22/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022]
Abstract
Electrospun scaffolds exhibiting high physical performances with the ability to support cell attachment and proliferation are attracting more and more scientific interest for tissue engineering applications. The inclusion of inorganic nanoparticles such as nanosilica and nanoclay into electrospun biopolymeric matrices can meet these challenging requirements. The silica and clay incorporation into polymeric nanofibers has been reported to enhance and improve the mechanical properties as well as the osteogenic properties of the scaffolds. In this work, for the first time, the physical and biological properties of polylactic acid (PLA) electrospun mats filled with different concentrations of nanosilica and nanoclay were evaluated and compared. The inclusion of the particles was evaluated through morphological investigations and Fourier transform infrared spectroscopy. The morphology of nanofibers was differently affected by the amount and kind of fillers and it was correlated to the viscosity of the polymeric suspensions. The wettability of the scaffolds, evaluated through wet contact angle measurements, slightly increased for both the nanocomposites. The crystallinity of the systems was investigated by differential scanning calorimetry highlighting the nucleating action of both nanosilica and nanoclay on PLA. Scaffolds were mechanically characterized with tensile tests to evaluate the reinforcing action of the fillers. Finally, cell culture assays with pre-osteoblastic cells were conducted on a selected composite scaffold in order to compare the cell proliferation and morphology with that of neat PLA scaffolds. Based on the results, we can convince that nanosilica and nanoclay can be both considered great potential fillers for electrospun systems engineered for bone tissue regeneration.
Collapse
Affiliation(s)
| | | | - Manuela Ceraulo
- Department of EngineeringUniversity of Palermo, RU INSTMPalermoItaly
| | - Elisa Capuana
- Department of EngineeringUniversity of Palermo, RU INSTMPalermoItaly
| | - Valerio Brucato
- Department of EngineeringUniversity of Palermo, RU INSTMPalermoItaly
| | - Giulio Ghersi
- Department of Biological, Chemical and Pharmaceutical Sciences and TechnologiesUniversity of PalermoPalermoItaly
| | - Luigi Botta
- Department of EngineeringUniversity of Palermo, RU INSTMPalermoItaly
| | - Vincenzo La Carrubba
- Department of EngineeringUniversity of Palermo, RU INSTMPalermoItaly
- ATeN CenterUniversity of PalermoPalermoItaly
| |
Collapse
|
11
|
Siddiqui MN, Redhwi HH, Tsagkalias I, Vouvoudi EC, Achilias DS. Development of Bio-Composites with Enhanced Antioxidant Activity Based on Poly(lactic acid) with Thymol, Carvacrol, Limonene, or Cinnamaldehyde for Active Food Packaging. Polymers (Basel) 2021; 13:polym13213652. [PMID: 34771206 PMCID: PMC8588526 DOI: 10.3390/polym13213652] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/10/2021] [Accepted: 10/21/2021] [Indexed: 01/05/2023] Open
Abstract
The new trend in food packaging films is to use biodegradable or bio-based polymers, such as poly(lactic acid), PLA with additives such as thymol, carvacrol, limonene or cinnamaldehyde coming from natural resources (i.e., thyme, oregano, citrus fruits and cinnamon) in order to extent foodstuff shelf-life and improve consumers’ safety. Single, triple and quadruple blends of these active compounds in PLA were prepared and studied using the solvent-casting technique. The successful incorporation of the active ingredients into the polymer matrix was verified by FTIR spectroscopy. XRD and DSC data revealed that the crystallinity of PLA was not significantly affected. However, the Tg of the polymer decreased, verifying the plasticization effect of all additives. Multicomponent mixtures resulted in more intense plasticization. Cinnamaldehyde was found to play a catalytic role in the thermal degradation of PLA shifting curves to slightly lower temperatures. Release of thymol or carvacrol from the composites takes place at low rates at temperatures below 100 °C. A combined diffusion-model was found to simulate the experimental release profiles very well. Higher antioxidant activity was noticed when carvacrol was added, followed by thymol and then cinnamaldehyde and limonene. From the triple-component composites, higher antioxidant activity measured in the materials with thymol, carvacrol and cinnamaldehyde.
Collapse
Affiliation(s)
- Mohammad Nahid Siddiqui
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;
| | - Halim Hamid Redhwi
- Chemical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;
| | - Ioannis Tsagkalias
- Lab of Polymer and Color Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.T.); (E.C.V.)
| | - Evangelia C. Vouvoudi
- Lab of Polymer and Color Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.T.); (E.C.V.)
| | - Dimitris S. Achilias
- Lab of Polymer and Color Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.T.); (E.C.V.)
- Correspondence: ; Tel.: +30-2310-997822
| |
Collapse
|
12
|
Scaffaro R, Maio A, D'Arrigo M, Lopresti F, Marino A, Bruno M, Nostro A. Flexible mats as promising antimicrobial systems via integration of Thymus capitatus (L.) essential oil into PLA. Future Microbiol 2021; 15:1379-1392. [PMID: 33085542 DOI: 10.2217/fmb-2019-0291] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Aim: To develop electrospun mats loaded with Thymus capitatus (L.) essential oil (ThymEO) and to study their morpho-mechanical and antimicrobial properties. Materials & methods: Poly(lactic acid) (PLA) mats containing ThymEO were prepared by electrospinning. The effect of ThymEO on the morpho-mechanical properties of fibers was assayed by scanning electron microscopy and dynamometer measurements. The antimicrobial activity of ThymEO delivered either in liquid or vapor phase was assessed through killing curves and invert Petri dishes method. The cytotoxicity was also investigated. Results: The mechanical properties were enhanced by integrating ThymEO into PLA. Both liquid and vapors of ThymEO released from mats caused reductions of microbial viable cells. Negligible cytotoxicity was demonstrated. Conclusion: PLA/ThymEO delivery systems could be suitable for treating microbial infections.
Collapse
Affiliation(s)
- Roberto Scaffaro
- Department of Engineering, University of Palermo, Viale delle Scienze Ed. 6, Palermo, 90128, Italy
| | - Andrea Maio
- Department of Engineering, University of Palermo, Viale delle Scienze Ed. 6, Palermo, 90128, Italy
| | - Manuela D'Arrigo
- Department of Chemical, Biological, Pharmaceutical & Environmental Sciences, Polo Annunziata, University of Messina, Messina, 98168, Italy
| | - Francesco Lopresti
- Department of Engineering, University of Palermo, Viale delle Scienze Ed. 6, Palermo, 90128, Italy
| | - Andreana Marino
- Department of Chemical, Biological, Pharmaceutical & Environmental Sciences, Polo Annunziata, University of Messina, Messina, 98168, Italy
| | - Maurizio Bruno
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies, University of Palermo, Viale delle Scienze Ed. 16, Palermo, 90128, Italy
| | - Antonia Nostro
- Department of Chemical, Biological, Pharmaceutical & Environmental Sciences, Polo Annunziata, University of Messina, Messina, 98168, Italy
| |
Collapse
|
13
|
Controlled Release of Chlorogenic Acid from Polyvinyl Alcohol/Poly(γ-Glutamic Acid) Blended Electrospun Nanofiber Mats with Potential Applications in Diabetic Foot Treatment. Polymers (Basel) 2021; 13:polym13172943. [PMID: 34502982 PMCID: PMC8434031 DOI: 10.3390/polym13172943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 12/30/2022] Open
Abstract
This work biosynthesized poly(γ-glutamic acid) (γ-PGA) produced by Bacillus licheniformis ATCC-9945a. This material was utilized to prepare electrospun nanofibers with solutions of 10% polyvinyl alcohol (PVA) (w/v) mixed with γ-PGA at 5 and 10% w/v, intended as a wound dressing for diabetic foot treatment. These solutions were loaded with chlorogenic acid (CGA), an active hypoglycemic agent. Morphological analysis showed a decrease in size of the fibers with the combination of PVA/γ-PGA compared to pure PVA nanofibers, which was attributed to the hydrogen bonding interactions between the glutaraldehyde vapors, γ-PGA, and PVA that permitted nanofiber cross-linking and allowed CGA release. The in vitro release analysis showed that the PVA membranes reached 28% delivery after the first 24 h. Notably, the nanofiber mat with PVA blended with 5% γ-PGA reached 57% delivery, and the PVA nanofiber with 10% γ-PGA reached 66% release after the same amount of time. The rate constant for the release kinetics showed that PVA with 5% γ-PGA had a higher value than that of the other samples, reaching saturation first.
Collapse
|
14
|
Campini PAL, Oliveira ÉRD, Camani PH, Silva CGD, Yudice EDC, Oliveira SAD, Rosa DDS. Assessing the efficiency of essential oil and active compounds/poly (lactic acid) microcapsules against common foodborne pathogens. Int J Biol Macromol 2021; 186:702-713. [PMID: 34273341 DOI: 10.1016/j.ijbiomac.2021.07.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/07/2021] [Accepted: 07/11/2021] [Indexed: 01/04/2023]
Abstract
Essential oils' active compounds present great potential as a bactericidal agent in active packaging. The encapsulation in polymeric walls promotes their protection against external agents besides allowing controlled release. This work produced PLA capsules with three different active compounds, Cinnamomum cassia essential oil (CEO), eugenol (EEO), and linalool (LEO), by emulsion solvent evaporation method. Characterizations included SEM, Zeta potential, FTIR, TGA, and bactericidal activity against E. coli, S. aureus, L. monocytogenes, and Salmonella. The active compounds showed microbiological activity against all pathogens. CEO capsules showed superior colloidal stability. The active compounds' presence in all capsules was confirmed by FTIR analysis, with possible physical interaction between CEO, EEO, and the polymeric matrix, while LEO had a possible chemical interaction with PLA. TGA analysis showed a plasticizing effect of active compounds, and the loading efficiency was 39.7%, 50.7%, and 22.3% for CEO-PLA, EEO-PLA, and LEO-PLA, respectively. The capsules presented two release stages, sustaining activity against pathogens for up to 28 days, indicating a satisfactory internal morphology. This study presented methodology for encapsulation of antimicrobial compounds that can be suitable for active food packaging. CEO-PLA capsules regarding stability and antibacterial activity achieved the best results.
Collapse
Affiliation(s)
| | - Éder Ramin de Oliveira
- Engineering, Modeling, and Applied Social Sciences Center (CECS), Federal University of ABC, Santo André, SP, Brazil
| | - Paulo Henrique Camani
- Engineering, Modeling, and Applied Social Sciences Center (CECS), Federal University of ABC, Santo André, SP, Brazil
| | | | | | - Sueli Aparecida de Oliveira
- Engineering, Modeling, and Applied Social Sciences Center (CECS), Federal University of ABC, Santo André, SP, Brazil
| | - Derval Dos Santos Rosa
- Engineering, Modeling, and Applied Social Sciences Center (CECS), Federal University of ABC, Santo André, SP, Brazil.
| |
Collapse
|
15
|
Mendes LG, Ferreira FV, Sielski MS, Livi S, Rocco SA, Sforça ML, Burga-Sánchez J, Vicente CP, Mei LHI. Electrospun Nanofibrous Architectures of Thrombin-Loaded Poly(ethylene oxide) for Faster in Vivo Wound Clotting. ACS APPLIED BIO MATERIALS 2021; 4:5240-5250. [DOI: 10.1021/acsabm.1c00402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Larissa G. Mendes
- School of Chemical Engineering, University of Campinas (UNICAMP), Campinas 13083-852, São Paulo, Brazil
| | - Filipe V. Ferreira
- School of Chemical Engineering, University of Campinas (UNICAMP), Campinas 13083-852, São Paulo, Brazil
| | - Micheli S. Sielski
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas 13083-862, São Paulo, Brazil
| | - Sebastien Livi
- Université de Lyon, Ingénierie des Matériaux Polymères CNRS, UMR 5223, INSA Lyon, Villeurbanne F-69621, France
| | - Silvana A. Rocco
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, São Paulo, Brazil
| | - Maurício L. Sforça
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, São Paulo, Brazil
| | - Jonny Burga-Sánchez
- Physiological Science Department, Piracicaba Dental School, University of Campinas, Campinas 13414-903, São Paulo, Brazil
| | - Cristina P. Vicente
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas 13083-862, São Paulo, Brazil
| | - Lucia H. I. Mei
- School of Chemical Engineering, University of Campinas (UNICAMP), Campinas 13083-852, São Paulo, Brazil
| |
Collapse
|
16
|
Chagas PA, Schneider R, dos Santos DM, Otuka AJ, Mendonça CR, Correa DS. Bilayered electrospun membranes composed of poly(lactic-acid)/natural rubber: A strategy against curcumin photodegradation for wound dressing application. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104889] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Carvacrol activated biopolymeric foam: An effective packaging system to control the development of spoilage and pathogenic bacteria on sliced pumpkin and melon. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100633] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
18
|
Ferreira FV, Otoni CG, Lopes JH, de Souza LP, Mei LHI, Lona LMF, Lozano K, Lobo AO, Mattoso LHC. Ultrathin polymer fibers hybridized with bioactive ceramics: A review on fundamental pathways of electrospinning towards bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111853. [PMID: 33812570 DOI: 10.1016/j.msec.2020.111853] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/21/2020] [Accepted: 12/26/2020] [Indexed: 10/22/2022]
Affiliation(s)
- Filipe V Ferreira
- School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Caio G Otoni
- Department of Materials Engineering (DEMa), Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - João H Lopes
- Department of Chemistry, Division of Fundamental Sciences (IEF), Technological Institute of Aeronautics (ITA), São Jose dos Campos, SP, Brazil
| | - Lucas P de Souza
- College of Engineering and Physical Sciences, Aston Institute of Materials Research, Aston University, Birmingham, UK
| | - Lucia H I Mei
- School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Liliane M F Lona
- School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Karen Lozano
- Department of Mechanical Engineering, The University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Anderson O Lobo
- Interdisciplinary Laboratory for Advanced Materials, BioMatLab, Materials Science and Engineering Graduate Program, Federal University of Piaui, Teresina, PI, Brazil.
| | - Luiz H C Mattoso
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentation, São Carlos, SP, Brazil.
| |
Collapse
|
19
|
Llanes LC, Clasen SH, Pires AT, Gross IP. Mechanical and thermal properties of poly(lactic acid) plasticized with dibutyl maleate and fumarate isomers: Promising alternatives as biodegradable plasticizers. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110112] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Lukic I, Vulic J, Ivanovic J. Antioxidant activity of PLA/PCL films loaded with thymol and/or carvacrol using scCO2 for active food packaging. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100578] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Gazzotti S, Ortenzi MA, Farina H, Disimino M, Silvani A. Carvacrol- and Cardanol-Containing 1,3-Dioxolan-4-ones as Comonomers for the Synthesis of Functional Polylactide-Based Materials. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stefano Gazzotti
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
- CRC Materiali Polimerici “LaMPo”, Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Marco Aldo Ortenzi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
- CRC Materiali Polimerici “LaMPo”, Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Hermes Farina
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
- CRC Materiali Polimerici “LaMPo”, Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Mariapina Disimino
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
- CRC Materiali Polimerici “LaMPo”, Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Alessandra Silvani
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
- CRC Materiali Polimerici “LaMPo”, Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| |
Collapse
|
22
|
Avci H, Akkulak E, Gergeroglu H, Ghorbanpoor H, Uysal O, Eker Sariboyaci A, Demir B, Soykan MN, Pat S, Mohammadigharehbagh R, Özel C, Cabuk A, Doğan Güzel F. Flexible poly(styrene‐ethylene‐butadiene‐styrene) hybrid nanofibers for bioengineering and water filtration applications. J Appl Polym Sci 2020. [DOI: 10.1002/app.49184] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Huseyin Avci
- Metallurgical and Materials Engineering DepartmentEskisehir Osmangazi University Eskisehir Turkey
- Cellular Therapy and Stem Cell Research Center (ESTEM)Eskisehir Osmangazi University Eskisehir Turkey
- AvciBio Research GroupEskisehir Osmangazi University Eskisehir Turkey
| | - Esra Akkulak
- Metallurgical and Materials Engineering DepartmentEskisehir Osmangazi University Eskisehir Turkey
- AvciBio Research GroupEskisehir Osmangazi University Eskisehir Turkey
| | - Hazal Gergeroglu
- AvciBio Research GroupEskisehir Osmangazi University Eskisehir Turkey
- Department of Nanotechnology and Nanoscience, Graduate School of Natural and Applied SciencesEskisehir Osmangazi University Eskisehir Turkey
| | - Hamed Ghorbanpoor
- AvciBio Research GroupEskisehir Osmangazi University Eskisehir Turkey
- Department of Polymer Science and TechnologyEskisehir Osmangazi University Eskisehir Turkey
- Department of Biomedical EngineeringAnkara Yildirim Beyazit University Ankara Turkey
| | - Onur Uysal
- Cellular Therapy and Stem Cell Research Center (ESTEM)Eskisehir Osmangazi University Eskisehir Turkey
- AvciBio Research GroupEskisehir Osmangazi University Eskisehir Turkey
| | - Ayla Eker Sariboyaci
- Cellular Therapy and Stem Cell Research Center (ESTEM)Eskisehir Osmangazi University Eskisehir Turkey
- AvciBio Research GroupEskisehir Osmangazi University Eskisehir Turkey
| | - Bahar Demir
- Cellular Therapy and Stem Cell Research Center (ESTEM)Eskisehir Osmangazi University Eskisehir Turkey
| | - Merve Nur Soykan
- Cellular Therapy and Stem Cell Research Center (ESTEM)Eskisehir Osmangazi University Eskisehir Turkey
| | - Suat Pat
- Department of PhysicsEskisehir Osmangazi University Eskisehir Turkey
| | - Reza Mohammadigharehbagh
- Department of PhysicsEskisehir Osmangazi University Eskisehir Turkey
- Department of PhysicsIslamic Azad University, Urmia Branch Urmia Iran
| | - Ceren Özel
- Cellular Therapy and Stem Cell Research Center (ESTEM)Eskisehir Osmangazi University Eskisehir Turkey
- AvciBio Research GroupEskisehir Osmangazi University Eskisehir Turkey
| | - Ahmet Cabuk
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied SciencesEskisehir Osmangazi University Eskisehir Turkey
- Department of Biology, Faculty of Arts and ScienceEskisehir Osmangazi University Eskisehir Turkey
| | - Fatma Doğan Güzel
- AvciBio Research GroupEskisehir Osmangazi University Eskisehir Turkey
- Department of Biomedical EngineeringAnkara Yildirim Beyazit University Ankara Turkey
| |
Collapse
|
23
|
Catania V, Lopresti F, Cappello S, Scaffaro R, Quatrini P. Innovative, ecofriendly biosorbent-biodegrading biofilms for bioremediation of oil- contaminated water. N Biotechnol 2020; 58:25-31. [PMID: 32485241 DOI: 10.1016/j.nbt.2020.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 01/24/2023]
Abstract
Immobilization of microorganisms capable of degrading specific contaminants significantly promotes bioremediation processes. In this study, innovative and ecofriendly biosorbent-biodegrading biofilms have been developed in order to remediate oil-contaminated water. This was achieved by immobilizing hydrocarbon-degrading gammaproteobacteria and actinobacteria on biodegradable oil-adsorbing carriers, based on polylactic acid and polycaprolactone electrospun membranes. High capacities for adhesion and proliferation of bacterial cells were observed by scanning electron microscopy. The bioremediation efficiency of the systems, tested on crude oil and quantified by gas chromatography, showed that immobilization increased hydrocarbon biodegradation by up to 23 % compared with free living bacteria. The resulting biosorbent biodegrading biofilms simultaneously adsorbed 100 % of spilled oil and biodegraded more than 66 % over 10 days, with limited environmental dispersion of cells. Biofilm-mediated bioremediation, using eco-friendly supports, is a low-cost, low-impact, versatile tool for bioremediation of aquatic systems.
Collapse
Affiliation(s)
- Valentina Catania
- Dept. of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, blg. 16, 90128, Palermo, Italy
| | - Francesco Lopresti
- Dept. of Engineering, University of Palermo, Viale delle Scienze, blg. 6, 90128, Palermo, Italy
| | - Simone Cappello
- Institute for Biological Resources and Marine Biotechnology, National Research Council (CNR) of Messina, Spianata San Raineri, 86, 98121, Messina, Italy
| | - Roberto Scaffaro
- Dept. of Engineering, University of Palermo, Viale delle Scienze, blg. 6, 90128, Palermo, Italy
| | - Paola Quatrini
- Dept. of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, blg. 16, 90128, Palermo, Italy.
| |
Collapse
|
24
|
García-Salinas S, Gámez E, Asín J, de Miguel R, Andreu V, Sancho-Albero M, Mendoza G, Irusta S, Arruebo M. Efficiency of Antimicrobial Electrospun Thymol-Loaded Polycaprolactone Mats In Vivo. ACS APPLIED BIO MATERIALS 2020; 3:3430-3439. [DOI: 10.1021/acsabm.0c00419] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sara García-Salinas
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor
S/N, 50018 Zaragoza, Spain
| | - Enrique Gámez
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor
S/N, 50018 Zaragoza, Spain
| | - Javier Asín
- Department of Animal Pathology, Veterinary Faculty, University of Zaragoza, C/ Miguel Servet, 177, 50013 Zaragoza, Spain
| | - Ricardo de Miguel
- Department of Animal Pathology, Veterinary Faculty, University of Zaragoza, C/ Miguel Servet, 177, 50013 Zaragoza, Spain
| | - Vanesa Andreu
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor
S/N, 50018 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - María Sancho-Albero
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor
S/N, 50018 Zaragoza, Spain
| | - Gracia Mendoza
- Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
| | - Silvia Irusta
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor
S/N, 50018 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Manuel Arruebo
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor
S/N, 50018 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| |
Collapse
|
25
|
Scaffaro R, Maio A, Gulino EF, Morreale M, La Mantia FP. The Effects of Nanoclay on the Mechanical Properties, Carvacrol Release and Degradation of a PLA/PBAT Blend. MATERIALS 2020; 13:ma13040983. [PMID: 32098312 PMCID: PMC7078646 DOI: 10.3390/ma13040983] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/11/2022]
Abstract
The formulation of polymeric films endowed with the abilities of controlled release of antimicrobials and biodegradability is the latest trend of food packaging. Biodegradable polymer (Bio-Flex®)-based nanocomposites containing carvacrol as an antimicrobial agent, and a nanoclay as a filler, were processed into blown films. The presence of such hybrid loading, while not affecting the overall filmability of the neat matrix, led to enhanced mechanical properties, with relative increments up to +70% and +200% in terms of elastic modulus and elongation at break. FTIR/ATR analysis and release tests pointed out that the presence of nanoclay allowed higher carvacrol loading efficiency, reasonably hindering its volatilization during processing. Furthermore, it also mitigated the burst delivery, thereby enabling a more controlled release of the antimicrobial agent. The results of mass loss tests indicated that all the formulations showed a rather fast degradation with mass losses ranging from 37.5% to 57.5% after 876 h. The presence of clay and carvacrol accelerated the mass loss rate of Bio-Flex®, especially when added simultaneously, thus indicating an increased biodegradability. Such ternary systems could be, therefore, particularly suitable as green materials for food packaging applications, and for antimicrobial wrapping applications.
Collapse
Affiliation(s)
- Roberto Scaffaro
- Department of Engineering, University of Palermo, Viale delle Scienze Ed. 6, 90128 Palermo, Italy; (E.F.G.); (F.P.L.M.)
- Correspondence: (R.S.); (A.M.); (M.M.)
| | - Andrea Maio
- Department of Engineering, University of Palermo, Viale delle Scienze Ed. 6, 90128 Palermo, Italy; (E.F.G.); (F.P.L.M.)
- Correspondence: (R.S.); (A.M.); (M.M.)
| | - Emmanuel Fortunato Gulino
- Department of Engineering, University of Palermo, Viale delle Scienze Ed. 6, 90128 Palermo, Italy; (E.F.G.); (F.P.L.M.)
| | - Marco Morreale
- Faculty of Engineering and Architecture, Kore University of Enna, Cittadella Universitaria, 94100 Enna, Italy
- Correspondence: (R.S.); (A.M.); (M.M.)
| | - Francesco Paolo La Mantia
- Department of Engineering, University of Palermo, Viale delle Scienze Ed. 6, 90128 Palermo, Italy; (E.F.G.); (F.P.L.M.)
| |
Collapse
|
26
|
Poly(lactic acid)/carvacrol-based materials: preparation, physicochemical properties, and antimicrobial activity. Appl Microbiol Biotechnol 2020; 104:1823-1835. [DOI: 10.1007/s00253-019-10337-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/16/2019] [Accepted: 12/27/2019] [Indexed: 12/30/2022]
|
27
|
Lopresti F, Botta L, Scaffaro R, Bilello V, Settanni L, Gaglio R. Antibacterial biopolymeric foams: Structure–property relationship and carvacrol release kinetics. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109298] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Rebia RA, binti Sadon NS, Tanaka T. Natural Antibacterial Reagents ( Centella, Propolis, and Hinokitiol) Loaded into Poly[( R)-3-hydroxybutyrate- co-( R)-3-hydroxyhexanoate] Composite Nanofibers for Biomedical Applications. NANOMATERIALS 2019; 9:nano9121665. [PMID: 31766678 PMCID: PMC6956080 DOI: 10.3390/nano9121665] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022]
Abstract
Centella asiatica, propolis, and hinokitiol, as natural antibacterial reagents, were integrated into the poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] (PHBH) polymer to produce antibacterial wound dressings, using electrospinning process. The results showed that the fiber diameters and surface morphology of PHBH composite nanofibers were influenced by the addition of ethanol–centella (EC), methanol–centella (MC), ethanol–propolis (EP), and ethanol–hinokitiol (EH) at various ratios compared to pristine PHBH nanofibers. From FT-IR, the nanofibrous samples with higher contents of natural antibacterial substances showed the peaks of carboxylic acid, aromatic ring, and tropolone carbon ring from centella, propolis, and hinokitiol, respectively. Furthermore, the tensile strength of neat PHBH nanofibers was increased from 8.00 ± 0.71 MPa up to 16.35 ± 1.78 MPa by loading of propolis (EP) 7% into PHBH. X-ray analysis explained that the loading of propolis (EP) was also able to increase the crystallinity in PHBH composite nanofibers from 47.0% to 54.5%. The antibacterial results demonstrated that PHBH composite nanofibers containing natural antibacterial products were potent inhibitors against the growth of Escherichia coli and Staphylococcus aureus, amongst them hinokitiol and propolis proved to be the most effective. Additionally, the release studies displayed that centella and hinokitiol had faster release from PHBH composite nanofibers in comparison to propolis.
Collapse
Affiliation(s)
- Rina Afiani Rebia
- Interdisciplinary Graduate School of Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan;
| | - Nurul Shaheera binti Sadon
- Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Toshihisa Tanaka
- Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
- Correspondence: ; Tel.: +81-268-21-5531
| |
Collapse
|
29
|
Fonseca LM, Cruxen CEDS, Bruni GP, Fiorentini ÂM, Zavareze EDR, Lim LT, Dias ARG. Development of antimicrobial and antioxidant electrospun soluble potato starch nanofibers loaded with carvacrol. Int J Biol Macromol 2019; 139:1182-1190. [DOI: 10.1016/j.ijbiomac.2019.08.096] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/21/2019] [Accepted: 08/10/2019] [Indexed: 01/08/2023]
|
30
|
Effect of hydroxyapatite concentration and size on morpho-mechanical properties of PLA-based randomly oriented and aligned electrospun nanofibrous mats. J Mech Behav Biomed Mater 2019; 101:103449. [PMID: 31563845 DOI: 10.1016/j.jmbbm.2019.103449] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/11/2019] [Accepted: 09/23/2019] [Indexed: 12/19/2022]
Abstract
The growing demand for nanofibrous biocomposites able to provide peculiar properties requires systematic investigations of processing-structure-property relationships. Understanding the morpho-mechanical properties of an electrospun scaffold as a function of the filler features and mat microstructure can aid in designing these systems. In this work, the reinforcing effect of micrometric and nanometric hydroxyapatite particles in polylactic acid-based electrospun scaffold presenting random and aligned fibers orientation, was evaluated. The particles incorporation was investigated trough Fourier transform infrared spectroscopy in attenuated total reflectance. The morphology of the nanofibers was analyzed through scanning electron microscopy and it was correlated with the viscosity of polymeric solutions studied by rheological measurements. Scaffolds were mechanical characterized with tensile tests in order to find a correlation between the preparation method and the strength of the mats. The influence of hydroxyapatite particles on the crystallinity of the composites was investigated by differential scanning calorimetry. Finally, cell culture assays with pre-osteoblatic cells were conducted on a selected composite scaffold in order to compare the cell proliferation and morphology with that of polylactic acid scaffolds. Based on the results, we can prove that polylactic acid/hydroxyapatite composites can be one of the biomaterials with the greatest potential for bone tissue regeneration.
Collapse
|
31
|
Iordanskii A, Karpova S, Olkhov A, Borovikov P, Kildeeva N, Liu Y. Structure-morphology impact upon segmental dynamics and diffusion in the biodegradable ultrafine fibers of polyhydroxybutyrate-polylactide blends. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
32
|
Encapsulation of Fatty Oils into Electrospun Nanofibers for Cosmetic Products with Antioxidant Activity. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9152955] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Active compounds derived from pomegranate and sea-buckthorn were encapsulated into polylactide (PLA-based fibers) and poly(vinyl-pirrolidone) (PVP-based fibers) nanofibers using electrospinning technique. The focus was on the antioxidant activity of prepared nonwovens. Morphology, thermal, and mechanical properties were also examined. Due to the different physical and chemical properties of the basic polymers, the obtained results indicate that PLA-based fibers have better antioxidant activity than PVP-based ones. All prepared samples were formed from bead-less continuous fibers networks, but in the case of PLA-based samples some small irregularities in the structure occurred. Mechanical properties were improved with the addition of active compounds in most of the cases, while thermal properties were slightly affected. Preserved antioxidant activity of active compounds by encapsulation and good material properties significant for manipulation, make these functional materials promising candidates for application in cosmetics.
Collapse
|
33
|
Iglesias Montes ML, Luzi F, Dominici F, Torre L, Cyras VP, Manfredi LB, Puglia D. Design and Characterization of PLA Bilayer Films Containing Lignin and Cellulose Nanostructures in Combination With Umbelliferone as Active Ingredient. Front Chem 2019; 7:157. [PMID: 30972324 PMCID: PMC6443720 DOI: 10.3389/fchem.2019.00157] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/04/2019] [Indexed: 12/11/2022] Open
Abstract
Poly (lactic acid) (PLA) bilayer films, containing cellulose nanocrystals (CNC) or lignin nanoparticles (LNP) and Umbelliferone (UMB) were extruded and successfully layered by thermo-compression starting from monolayer films. Lignocellulosic nanostructures were used in PLA based film as nanofillers at 3 wt.%, while UMB was used as active ingredient (AI) at 15 wt.%. The effects of processing techniques, presence, typology and content of lignocellulosic nanoparticles have been analyzed and thermal, morphological, mechanical and optical characterization of PLA nanocomposites have been made. Furthermore, X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR) studies evaluated the presence of nanofillers and AI at chemical level. Bilayer formulations showed a good interfacial adhesion and improved stress at break with respect of PLA monolayers, although they were less stretchable and transparent. Data obtained from thermal, colorimetric and transparency investigations underlined that the presence of lignocellulosic nanofillers and AI in PLA monolayer and bilayer films induced relevant alterations in terms of overall color properties and thermal stability, while antioxidant activity of umbelliferone was enhanced by the addition of lignin in produced materials.
Collapse
Affiliation(s)
- Magdalena L. Iglesias Montes
- Facultad de Ingeniería, Instituto de Investigaciones en Ciencia y Tecnología de Materiales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Francesca Luzi
- Civil and Environmental Engineering Department, UdR INSTM, University of Perugia, Terni, Italy
| | - Franco Dominici
- Civil and Environmental Engineering Department, UdR INSTM, University of Perugia, Terni, Italy
| | - Luigi Torre
- Civil and Environmental Engineering Department, UdR INSTM, University of Perugia, Terni, Italy
| | - Viviana P. Cyras
- Facultad de Ingeniería, Instituto de Investigaciones en Ciencia y Tecnología de Materiales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Liliana B. Manfredi
- Facultad de Ingeniería, Instituto de Investigaciones en Ciencia y Tecnología de Materiales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Debora Puglia
- Civil and Environmental Engineering Department, UdR INSTM, University of Perugia, Terni, Italy
| |
Collapse
|
34
|
López-Peña IY, Castillo-Ortega MM, Plascencia-Martínez DF, Félix-Núñez A, Rodríguez-Félix DE, Del Castillo-Castro T, Encinas-Encinas JC, Santacruz-Ortega H, Rodríguez-Félix F, Cauich-Rodríguez JV, Burruel-Ibarra S, Hernandez-Martínez D, Quiroz-Castillo JM. Study of the release kinetics of (−) epicatechin: Effect of its location within the fiber or sphere. J Appl Polym Sci 2019. [DOI: 10.1002/app.47166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- I. Y. López-Peña
- Departamento de Investigación en Polímeros y Materiales; Universidad de Sonora; Rosales y Blvrd. Luis Encinas, C.P., 83000, Hermosillo, Sonora Mexico
| | - M. M. Castillo-Ortega
- Departamento de Investigación en Polímeros y Materiales; Universidad de Sonora; Rosales y Blvrd. Luis Encinas, C.P., 83000, Hermosillo, Sonora Mexico
| | - D. F. Plascencia-Martínez
- Departamento de Investigación en Polímeros y Materiales; Universidad de Sonora; Rosales y Blvrd. Luis Encinas, C.P., 83000, Hermosillo, Sonora Mexico
| | - A. Félix-Núñez
- Departamento de Investigación en Polímeros y Materiales; Universidad de Sonora; Rosales y Blvrd. Luis Encinas, C.P., 83000, Hermosillo, Sonora Mexico
| | - D. E. Rodríguez-Félix
- Departamento de Investigación en Polímeros y Materiales; Universidad de Sonora; Rosales y Blvrd. Luis Encinas, C.P., 83000, Hermosillo, Sonora Mexico
| | - T. Del Castillo-Castro
- Departamento de Investigación en Polímeros y Materiales; Universidad de Sonora; Rosales y Blvrd. Luis Encinas, C.P., 83000, Hermosillo, Sonora Mexico
| | - J. C. Encinas-Encinas
- Departamento de Investigación en Polímeros y Materiales; Universidad de Sonora; Rosales y Blvrd. Luis Encinas, C.P., 83000, Hermosillo, Sonora Mexico
| | - H. Santacruz-Ortega
- Departamento de Investigación en Polímeros y Materiales; Universidad de Sonora; Rosales y Blvrd. Luis Encinas, C.P., 83000, Hermosillo, Sonora Mexico
| | - F. Rodríguez-Félix
- Departamento de Investigación y Posgrado en Alimentos; Universidad de Sonora; Rosales y Blvrd. Luis Encinas, C.P., 83000, Hermosillo, Sonora Mexico
| | - J. V. Cauich-Rodríguez
- Centro de Investigación Científica de Yucatán; Calle 43 No. 130, Chuburná de Hidalgo, C.P., 97205, Mérida, Yucatán Mexico
| | - S. Burruel-Ibarra
- Departamento de Investigación en Polímeros y Materiales; Universidad de Sonora; Rosales y Blvrd. Luis Encinas, C.P., 83000, Hermosillo, Sonora Mexico
| | - D. Hernandez-Martínez
- Departamento de Investigación en Polímeros y Materiales; Universidad de Sonora; Rosales y Blvrd. Luis Encinas, C.P., 83000, Hermosillo, Sonora Mexico
| | - J. M. Quiroz-Castillo
- Programa Educativo de Ingeniería Ambiental; Universidad Estatal de Sonora; Ley Federal del Trabajo, Col. Apolo C.P., 83100, Hermosillo, Sonora Mexico
| |
Collapse
|
35
|
Zhang G, Wang P, Zhang X, Xiang C, Li L. Preparation of hierarchically structured PCL superhydrophobic membrane via alternate electrospinning/electrospraying techniques. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/polb.24795] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Guohui Zhang
- Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering; Jilin University; Changchun, 130022 China
| | - Panpan Wang
- Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering; Jilin University; Changchun, 130022 China
| | - Xiaoxiao Zhang
- Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering; Jilin University; Changchun, 130022 China
| | - Chunhui Xiang
- Department of Apparel, Events and Hospitality Management; Iowa State University; 31 MacKay Hall Ames Iowa, 50011
| | - Lili Li
- Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering; Jilin University; Changchun, 130022 China
| |
Collapse
|
36
|
Galiano F, Briceño K, Marino T, Molino A, Christensen KV, Figoli A. Advances in biopolymer-based membrane preparation and applications. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.07.059] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Scaffaro R, Lopresti F, Marino A, Nostro A. Antimicrobial additives for poly(lactic acid) materials and their applications: current state and perspectives. Appl Microbiol Biotechnol 2018; 102:7739-7756. [PMID: 30009322 DOI: 10.1007/s00253-018-9220-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 12/20/2022]
Abstract
Poly(lactic acid)-based antimicrobial materials received considerable attention as promising systems to control microbial growth. The remarkable physicochemical properties of PLA such as renewability, biodegradability, and US Food and Drug Administration (FDA) approval for clinical use open up interesting perspectives for application in food packaging and biomedical materials. Nowadays, there is an increasing consumer demands for fresh, high-quality, and natural foods packaged with environmentally friendly materials that prolong the shelf life. The incorporation of antimicrobial agents into PLA-based polymers is likely to lead to the next generation of packaging materials. The development of antimicrobial PLA materials as a delivery system or coating for biomedical devices is also advantageous in order to reduce possible dose-dependent side effects and limit the phenomena of antibiotic resistance. This mini-review summarizes the most recent advances made in antimicrobial PLA-based polymers including their preparation, biocidal action, and applications. It also highlights the potential of PLA systems as efficient stabilizers-carriers of various kinds of antimicrobial additives including essential oils and other natural compounds, active particles and nanoparticles, and conventional and synthetic molecules.
Collapse
Affiliation(s)
- Roberto Scaffaro
- Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, RU INSTM, Università di Palermo, Viale delle Scienze Ed. 6, 90128, Palermo, Italy
| | - Francesco Lopresti
- Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, RU INSTM, Università di Palermo, Viale delle Scienze Ed. 6, 90128, Palermo, Italy
| | - Andreana Marino
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Polo Annunziata, Università degli Studi di Messina, 98168, Messina, Italy
| | - Antonia Nostro
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Polo Annunziata, Università degli Studi di Messina, 98168, Messina, Italy.
| |
Collapse
|