1
|
Nguyen MT, Hu Z, Mohammad M, Schöttler H, Niemann S, Schultz M, Barczyk-Kahlert K, Jin T, Hayen H, Herrmann M. Bacterial Lipoproteins Shift Cellular Metabolism to Glycolysis in Macrophages Causing Bone Erosion. Microbiol Spectr 2023; 11:e0429322. [PMID: 37191536 PMCID: PMC10269925 DOI: 10.1128/spectrum.04293-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/25/2023] [Indexed: 05/17/2023] Open
Abstract
Belonging to a group of membrane proteins, bacterial lipoproteins (LPPs) are defined by a unique lipid structure at their N-terminus providing the anchor in the bacterial cell membrane. In Gram-positive bacteria, LPPs play a key role in host immune activation triggered through a Toll-like receptor 2 (TLR2)-mediated action resulting in macrophage stimulation and subsequent tissue damage demonstrated in in vivo experimental models. Yet the physiologic links between LPP activation, cytokine release, and any underlying switches in cellular metabolism remain unclear. In this study, we demonstrate that Staphylococcus aureus Lpl1 not only triggers cytokine production but also confers a shift toward fermentative metabolism in bone marrow-derived macrophages (BMDMs). Lpl1 consists of di- and tri-acylated LPP variants; hence, the synthetic P2C and P3C, mimicking di-and tri-acylated LPPs, were employed to reveal their effect on BMDMs. Compared to P3C, P2C was found to shift the metabolism of BMDMs and the human mature monocytic MonoMac 6 (MM6) cells more profoundly toward the fermentative pathway, as indicated by lactate accumulation, glucose consumption, pH reduction, and oxygen consumption. In vivo, P2C caused more severe joint inflammation, bone erosion, and lactate and malate accumulation than P3C. These observed P2C effects were completely abrogated in monocyte/macrophage-depleted mice. Taken together, these findings now solidly confirm the hypothesized link between LPP exposure, a macrophage metabolic shift toward fermentation, and ensuing bone destruction. IMPORTANCE Osteomyelitis caused by S. aureus is a severe infection of the bone, typically associated with severe bone function impairment, therapeutic failure, high morbidity, invalidity, and occasionally even death. The hallmark of staphylococcal osteomyelitis is the destruction of the cortical bone structures, yet the mechanisms contributing to this pathology are hitherto poorly understood. One bacterial membrane constituent found in all bacteria is bacterial lipoproteins (LPPs). Previously, we have shown that injection of purified S. aureus LPPs into wild-type mouse knee joints caused a TLR2-dependent chronic destructive arthritis but failed to elicit such effect in monocyte/macrophage-depleted mice. This observation stirred our interest in investigating the interaction of LPPs and macrophages and analyzing the underlying physiological mechanisms. This ascertainment of LPP-induced changes in the physiology of macrophages provides an important clue in the understanding of the mechanisms of bone disintegration, opening novel avenues to manage the course of S. aureus disease.
Collapse
Affiliation(s)
- Minh-Thu Nguyen
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Zhicheng Hu
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Majd Mohammad
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hannah Schöttler
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Silke Niemann
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Michelle Schultz
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Tao Jin
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Heiko Hayen
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Mathias Herrmann
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| |
Collapse
|
2
|
Gurgul SJ, Moreira A, Xiao Y, Varma SN, Liu C, Costa PF, Williams GR. Electrosprayed Particles Loaded with Kartogenin as a Potential Osteochondral Repair Implant. Polymers (Basel) 2023; 15:polym15051275. [PMID: 36904516 PMCID: PMC10007262 DOI: 10.3390/polym15051275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
The restoration of cartilage damage is a slow and not always successful process. Kartogenin (KGN) has significant potential in this space-it is able to induce the chondrogenic differentiation of stem cells and protect articular chondrocytes. In this work, a series of poly(lactic-co-glycolic acid) (PLGA)-based particles loaded with KGN were successfully electrosprayed. In this family of materials, PLGA was blended with a hydrophilic polymer (either polyethyleneglycol (PEG) or polyvinylpyrrolidone (PVP)) to control the release rate. Spherical particles with sizes in the range of 2.4-4.1 µm were fabricated. They were found to comprise amorphous solid dispersions, with high entrapment efficiencies of >93%. The various blends of polymers had a range of release profiles. The PLGA-KGN particles displayed the slowest release rate, and blending with PVP or PEG led to faster release profiles, with most systems giving a high burst release in the first 24 h. The range of release profiles observed offers the potential to provide a precisely tailored profile via preparing physical mixtures of the materials. The formulations are highly cytocompatible with primary human osteoblasts.
Collapse
Affiliation(s)
| | | | - Yi Xiao
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Swastina Nath Varma
- Institute of Orthopaedic and Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4AP, UK
| | - Chaozong Liu
- Institute of Orthopaedic and Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4AP, UK
| | | | - Gareth R. Williams
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK
- Correspondence: ; Tel.: +44-0203-987-2817
| |
Collapse
|
3
|
Quantification of a promising JNK inhibitor and nitrovasodilator IQ-1 and its major metabolite in rat plasma by LC-MS/MS. Bioanalysis 2022; 14:1423-1441. [PMID: 36705017 DOI: 10.4155/bio-2022-0193] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Background: IQ-1 is a promising c-Jun-N-terminal kinase inhibitor and nitrovasodilator. An LC-MS/MS method was validated to determine IQ-1 isomers and major metabolite IQ-18 in rat plasma. Materials & methods: The analytes were extracted using ethyl acetate. The chromatographic separation was performed on a C8 column (150 × 4.6 mm, 5 μm) under acetonitrile-water (5 mM ammonium formate buffer, pH 2.93) gradient elution. Multiple reaction monitoring was used for MS/MS detection in the positive ion mode. Results: The method was fully validated over the range of 0.1-400 ng/ml (Z-isomer), 0.9-3600 ng/ml (E-isomer), 5.0-4000 (IQ-18). Conclusion: This method has been successfully applied to pharmacokinetic studies of IQ-1 and IQ-18 in rats after a single oral dose of IQ-1 (50 mg/kg).
Collapse
|
4
|
Synthesis, Biological Activities and Molecular Docking analysis of a Novel Series of 11H-Indeno[1,2-b]quinoxalin-11-one Derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Matveevskaya VV, Pavlov DI, Samsonenko DG, Bonfili L, Cuccioloni M, Benassi E, Pettinari R, Potapov AS. Arene-ruthenium(II) complexes with tetracyclic oxime derivatives: synthesis, structure and antiproliferative activity against human breast cancer cells. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120879] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Kudryavtseva V, Boi S, Read J, Guillemet R, Zhang J, Udalov A, Shesterikov E, Tverdokhlebov S, Pastorino L, Gould DJ, Sukhorukov GB. Biodegradable Defined Shaped Printed Polymer Microcapsules for Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2371-2381. [PMID: 33404209 DOI: 10.1021/acsami.0c21607] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This work describes the preparation and characterization of printed biodegradable polymer (polylactic acid) capsules made in two different shapes: pyramid and rectangular capsules about 1 and 11 μm in size. Obtained core-shell capsules are described in terms of their morphology, loading efficiency, cargo release profile, cell cytotoxicity, and cell uptake. Both types of capsules showed monodisperse size and shape distribution and were found to provide sufficient stability to encapsulate small water-soluble molecules and to retain them for several days and ability for intracellular delivery. Capsules of 1 μm size can be internalized by HeLa cells without causing any toxicity effect. Printed capsules show unique characteristics compared with other drug delivery systems such as a wide range of possible cargoes, triggered release mechanism, and highly controllable shape and size.
Collapse
Affiliation(s)
- Valeriya Kudryavtseva
- Nanoforce Technology Ltd, School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom
- National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050, Russian Federation
| | - Stefania Boi
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Via all'Opera Pia 13, 16145 Genoa, Italy
| | - Jordan Read
- Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Raphael Guillemet
- THALES Research & Technology, 1 Avenue Augustin Fresnel, 91767 Palaiseau, France
| | - Jiaxin Zhang
- Nanoforce Technology Ltd, School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Andrei Udalov
- V.E. Zuev Institute of Atmospheric Optics SB RAS, 1 Academician Zuev Square, Tomsk 634055, Russian Federation
| | - Evgeny Shesterikov
- National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050, Russian Federation
- V.E. Zuev Institute of Atmospheric Optics SB RAS, 1 Academician Zuev Square, Tomsk 634055, Russian Federation
- Tomsk State University of Control Systems and Radioelectronics, 40 Lenin Avenue, Tomsk 634050, Russian Federation
| | - Sergei Tverdokhlebov
- National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050, Russian Federation
| | - Laura Pastorino
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Via all'Opera Pia 13, 16145 Genoa, Italy
| | - David J Gould
- Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Gleb B Sukhorukov
- Nanoforce Technology Ltd, School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, Moscow 143025, Russian Federation
| |
Collapse
|
7
|
Matveevskaya V, Pavlov DI, Sukhikh TS, Gushchin AL, Ivanov AY, Tennikova TB, Sharoyko VV, Baykov SV, Benassi E, Potapov AS. Arene-Ruthenium(II) Complexes Containing 11 H-Indeno[1,2- b]quinoxalin-11-one Derivatives and Tryptanthrin-6-oxime: Synthesis, Characterization, Cytotoxicity, and Catalytic Transfer Hydrogenation of Aryl Ketones. ACS OMEGA 2020; 5:11167-11179. [PMID: 32455240 PMCID: PMC7241045 DOI: 10.1021/acsomega.0c01204] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/28/2020] [Indexed: 05/05/2023]
Abstract
A series of novel mono- and binuclear arene-ruthenium(II) complexes [(p-cym)Ru(L)Cl] containing 11H-indeno[1,2-b]quinoxalin-11-one derivatives or tryptanthrin-6-oxime were synthesized and characterized by X-ray crystallography, IR, NMR spectroscopy, cyclic voltammetry, and elemental analysis. Theoretical calculations invoking singlet state geometry optimization, solvation effects, and noncovalent interactions were done using density functional theory (DFT). DFT calculations were also applied to evaluate the electronic properties, and time-dependent DFT was applied to clarify experimental UV-vis results. Cytotoxicity for cancerous and noncancerous human cell lines was evaluated with cell viability MTT assay. Complexes demonstrated a moderate cytotoxic effect toward cancerous human cell line PANC-1. The catalytic activity of the complexes was evaluated in transfer hydrogenation of aryl ketones. All complexes exhibited good catalytic activity and functional group tolerance.
Collapse
Affiliation(s)
- Vladislava
V. Matveevskaya
- Kizhner
Research Center, National Research Tomsk
Polytechnic University, 30 Lenin Avenue, 634050 Tomsk, Russia
| | - Dmitry I. Pavlov
- Kizhner
Research Center, National Research Tomsk
Polytechnic University, 30 Lenin Avenue, 634050 Tomsk, Russia
| | - Taisiya S. Sukhikh
- Nikolaev
Institute of Inorganic Chemistry, Siberian
Branch of the Russian Academy of Sciences, 3 Lavrentiev Avenue, 630090 Novosibirsk, Russia
- Department
of Natural Sciences, Novosibirsk State University, 1 Pirogov Street, 630090 Novosibirsk, Russia
| | - Artem L. Gushchin
- Nikolaev
Institute of Inorganic Chemistry, Siberian
Branch of the Russian Academy of Sciences, 3 Lavrentiev Avenue, 630090 Novosibirsk, Russia
- Department
of Natural Sciences, Novosibirsk State University, 1 Pirogov Street, 630090 Novosibirsk, Russia
| | - Alexander Yu. Ivanov
- Center
for Magnetic Resonance, Saint Petersburg
State University, 26
Universitetskii Avenue, 198504 Peterhof, Russia
| | - Tatiana B. Tennikova
- Institute
of Chemistry, Saint Petersburg State University, 26 Universitetskii Avenue, 198504 Peterhof, Russia
| | - Vladimir V. Sharoyko
- Institute
of Chemistry, Saint Petersburg State University, 26 Universitetskii Avenue, 198504 Peterhof, Russia
| | - Sergey V. Baykov
- Institute
of Chemistry, Saint Petersburg State University, 26 Universitetskii Avenue, 198504 Peterhof, Russia
| | - Enrico Benassi
- Department
of Chemistry, Shihezi University, 280N 4th Road, 832000 Shihezi, Xinjiang, PR China
| | - Andrei S. Potapov
- Nikolaev
Institute of Inorganic Chemistry, Siberian
Branch of the Russian Academy of Sciences, 3 Lavrentiev Avenue, 630090 Novosibirsk, Russia
- Department
of Natural Sciences, Novosibirsk State University, 1 Pirogov Street, 630090 Novosibirsk, Russia
| |
Collapse
|