1
|
Carbajo-Gordillo AI, Benito E, Galbis E, Grosso R, Iglesias N, Valencia C, Lucas R, García-Martín MG, de-Paz MV. Simultaneous Formation of Polyhydroxyurethanes and Multicomponent Semi-IPN Hydrogels. Polymers (Basel) 2024; 16:880. [PMID: 38611138 PMCID: PMC11013152 DOI: 10.3390/polym16070880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
This study introduces an efficient strategy for synthesizing polyhydroxyurethane-based multicomponent hydrogels with enhanced rheological properties. In a single-step process, 3D materials composed of Polymer 1 (PHU) and Polymer 2 (PVA or gelatin) were produced. Polymer 1, a crosslinked polyhydroxyurethane (PHU), grew within a colloidal solution of Polymer 2, forming an interconnected network. The synthesis of Polymer 1 utilized a Non-Isocyanate Polyurethane (NIPU) methodology based on the aminolysis of bis(cyclic carbonate) (bisCC) monomers derived from 1-thioglycerol and 1,2-dithioglycerol (monomers A and E, respectively). This method, applied for the first time in Semi-Interpenetrating Network (SIPN) formation, demonstrated exceptional orthogonality since the functional groups in Polymer 2 do not interfere with Polymer 1 formation. Optimizing PHU formation involved a 20-trial methodology, identifying influential variables such as polymer concentration, temperature, solvent (an aprotic and a protic solvent), and the organo-catalyst used [a thiourea derivative (TU) and 1,8-diazabicyclo [5.4.0]undec-7-ene (DBU)]. The highest molecular weights were achieved under near-bulk polymerization conditions using TU-protic and DBU-aprotic as catalyst-solvent combinations. Monomer E-based PHU exhibited higher Mw¯ than monomer A-based PHU (34.1 kDa and 16.4 kDa, respectively). Applying the enhanced methodology to prepare 10 multicomponent hydrogels using PVA or gelatin as the polymer scaffold revealed superior rheological properties in PVA-based hydrogels, exhibiting solid-like gel behavior. Incorporating monomer E enhanced mechanical properties and elasticity (with loss tangent values of 0.09 and 0.14). SEM images unveiled distinct microstructures, including a sponge-like pattern in certain PVA-based hydrogels when monomer A was chosen, indicating the formation of highly superporous interpenetrated materials. In summary, this innovative approach presents a versatile methodology for obtaining advanced hydrogel-based systems with potential applications in various biomedical fields.
Collapse
Affiliation(s)
- Ana I. Carbajo-Gordillo
- Dpto. Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain (R.L.); (M.-G.G.-M.)
| | - Elena Benito
- Dpto. Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain (R.L.); (M.-G.G.-M.)
| | - Elsa Galbis
- Dpto. Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain (R.L.); (M.-G.G.-M.)
| | - Roberto Grosso
- Dpto. Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain (R.L.); (M.-G.G.-M.)
| | - Nieves Iglesias
- Dpto. Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain (R.L.); (M.-G.G.-M.)
| | - Concepción Valencia
- Dpto. Ingeniería Química, Facultad de Ciencias Experimentales, Campus El Carmen, Universidad de Huelva, 21071 Huelva, Spain
- Pro2TecS—Chemical Process and Product Technology Research Center, Universidad de Huelva, 21071 Huelva, Spain
| | - Ricardo Lucas
- Dpto. Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain (R.L.); (M.-G.G.-M.)
| | - M.-Gracia García-Martín
- Dpto. Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain (R.L.); (M.-G.G.-M.)
| | - M.-Violante de-Paz
- Dpto. Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain (R.L.); (M.-G.G.-M.)
| |
Collapse
|
2
|
Wang L, Guo S, Zhang X. Novel Radiochromic Elastomer Dosimeter Based on the Self-Sensitizing Effect of Disulfide Bonds. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6474-6484. [PMID: 38285620 DOI: 10.1021/acsami.3c17945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
γ-Irradiation is a kind of high-energy ionizing ray, which has widespread applications in material, food, and medical industries as well as in the environment. Since this irradiation is invisible, quantitatively monitoring its exposure doses is crucial to irradiated targets. As a type of dosimeter, radiochromic dosimeters can detect γ-irradiation by color changing, and its strategy to realize the radiochromic behavior basically relies on active radicals from radiolysis of an external environmental medium. However, the primary problem of this external environment-mediated sensitization strategy is that it complicates the components of dosimeters. Herein, we present a novel type of self-sensitizing radiochromic poly(urethane-urea) elastomers (PUUEs), where disulfide bonds, serving as radiation-responsive and sensitizing units, are introduced. This is the first attempt to utilize radicals generated from radiolysis of weak bonds in a solid polymer matrix to sensitize color change of dye-doped radiochromic dosimeters. Moreover, it is intriguing that the simultaneously introduced aryl hydrazone bond endows dosimeters with excellent color retention and maintains the Δa* value of 72.9% even after 1 month on the basis of the as-irradiated specimen. Besides, the metathesis of disulfide bonds not only endows dosimeters with better self-healing capability, but also accelerates the postcuring behavior and hydrogen bond reconfiguration, resulting in improved mechanical performance.
Collapse
Affiliation(s)
- Lei Wang
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Shaoyun Guo
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Xianlong Zhang
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| |
Collapse
|
3
|
A novel biocompatible polymer derived from D-mannitol used as a vector in the field of genetic engineering of eukaryotic cells. Colloids Surf B Biointerfaces 2023; 224:113219. [PMID: 36848782 DOI: 10.1016/j.colsurfb.2023.113219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
The design and preparation of new vectors to transport genetic material and increase the transfection efficiency continue being an important research line. Here, a novel biocompatible sugar-based polymer derived from D-mannitol has been synthesized to be used as a gene material nanocarrier in human (gene transfection) and microalga cells (transformation process). Its low toxicity allows its use in processes with both medical and industrial applications. A multidisciplinary study about the formation of polymer/p-DNA polyplexes has been carried out using techniques such as gel electrophoresis, zeta potential, dynamic light scattering, atomic force microscopy, and circular dichroism spectroscopy. The nucleic acids used were the eukaryotic expression plasmid pEGFP-C1 and the microalgal expression plasmid Phyco69, which showed different behaviors. The importance of DNA supercoiling in both transfection and transformation processes was demonstrated. Better results were obtained in microalga cells nuclear transformation than in human cells gene transfection. This was related to the plasmid's conformational changes, in particular to their superhelical structure. It is noteworthy that the same nanocarrier has been used with eukaryotic cells from both human and microalga.
Collapse
|
4
|
Redox-Responsive Polymersomes as Smart Doxorubicin Delivery Systems. Pharmaceutics 2022; 14:pharmaceutics14081724. [PMID: 36015350 PMCID: PMC9412847 DOI: 10.3390/pharmaceutics14081724] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 11/22/2022] Open
Abstract
Stimuli-responsive polymersomes have emerged as smart drug delivery systems for programmed release of highly cytotoxic anticancer agents such as doxorubicin hydrochloride (Dox·HCl). Recently, a biodegradable redox-responsive triblock copolymer (mPEG–PDH–mPEG) was synthesized with a central hydrophobic block containing disulfide linkages and two hydrophilic segments of poly(ethylene glycol) methyl ether. Taking advantage of the self-assembly of this amphiphilic copolymer in aqueous solution, in the present investigation we introduce a solvent-exchange method that simultaneously achieves polymersome formation and drug loading in phosphate buffer saline (10 mM, pH 7.4). Blank and drug-loaded polymersomes (5 and 10 wt.% feeding ratios) were prepared and characterized for morphology, particle size, surface charge, encapsulation efficiency and drug release behavior. Spherical vesicles of uniform size (120–190 nm) and negative zeta potentials were obtained. Dox·HCl was encapsulated into polymersomes with a remarkably high efficiency (up to 98 wt.%). In vitro drug release studies demonstrated a prolonged and diffusion-driven release at physiological conditions (~34% after 48 h). Cleavage of the disulfide bonds in the presence of 50 mM glutathione (GSH) enhanced drug release (~77%) due to the contribution of the erosion mechanism. Therefore, the designed polymersomes are promising candidates for selective drug release in the reductive environment of cancer cells.
Collapse
|
5
|
Baghbanbashi M, Yong HW, Zhang I, Lotocki V, Yuan Z, Pazuki G, Maysinger D, Kakkar A. Stimuli-Responsive Miktoarm Polymer-Based Formulations for Fisetin Delivery and Regulatory Effects in Hyperactive Human Microglia. Macromol Biosci 2022; 22:e2200174. [PMID: 35817026 DOI: 10.1002/mabi.202200174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/20/2022] [Indexed: 11/09/2022]
Abstract
Branched star polymers offer exciting opportunities in enhancing the efficacy of nanocarriers in delivering biologically active lipophilic agents. We demonstrate that the star polymeric architecture can be leveraged to yield soft nanoparticles of vesicular morphology with precisely located stimuli-sensitive chemical entities. Amphiphilic stars of AB2 (A = PEG, B = PCL) composition with/without oxidative stress or reduction responsive units at the core junction of A and B arms, are constructed using synthetic articulation. Fisetin, a natural flavonoid with remarkable anti-inflammatory and antioxidant properties, but of limited clinical value due to its poor aqueous solubility, was physically encapsulated into miktoarm star-derived aqueous polymersomes. We evaluated polymersomes and fisetin separately, and in combination, in human microglia (HMC3), to show if (i) polymersomes are toxic; (ii) fisetin reduces the abundance of reactive oxygen species (ROS); and (iii) fisetin modulates the activation of ERK1/2. These signaling molecules and pathways are implicated in inflammatory processes and cell survival. Fisetin, both incorporated and non-incorporated into polymersomes, reduced ROS and ERK1/2 phosphorylation in lipopolysaccharide-treated human microglia, normalizing excessive oxidative stress and ERK-mediated signaling. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mojhdeh Baghbanbashi
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada.,Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Avenue, Tehran, 1591634311, Iran
| | - Hui Wen Yong
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| | - Issan Zhang
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec, H3G 1Y6, Canada
| | - Victor Lotocki
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| | - Zhuoer Yuan
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec, H3G 1Y6, Canada
| | - Gholamreza Pazuki
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Avenue, Tehran, 1591634311, Iran
| | - Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec, H3G 1Y6, Canada
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| |
Collapse
|
6
|
Grosso R, de-Paz MV. Thiolated-Polymer-Based Nanoparticles as an Avant-Garde Approach for Anticancer Therapies-Reviewing Thiomers from Chitosan and Hyaluronic Acid. Pharmaceutics 2021; 13:854. [PMID: 34201403 PMCID: PMC8227107 DOI: 10.3390/pharmaceutics13060854] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 12/21/2022] Open
Abstract
Thiomers (or thiolated polymers) have broken through as avant-garde approaches in anticancer therapy. Their distinguished reactivity and properties, closely linked to their final applications, justify the extensive research conducted on their preparation and use as smart drug-delivery systems (DDSs). Multiple studies have demonstrated that thiomer-rich nanoformulations can overcome major drawbacks found when administering diverse active pharmaceutical ingredients (APIs), especially in cancer therapy. This work focuses on providing a complete and concise review of the synthetic tools available to thiolate cationic and anionic polymers, in particular chitosan (CTS) and hyaluronic acid (HA), respectively, drawing attention to the most successful procedures. Their chemical reactivity and most relevant properties regarding their use in anticancer formulations are also discussed. In addition, a variety of NP formation procedures are outlined, as well as their use in cancer therapy, particularly for taxanes and siRNA. It is expected that the current work could clarify the main synthetic strategies available, with their scope and drawbacks, as well as provide some insight into thiomer chemistry. Therefore, this review can inspire new research strategies in the development of efficient formulations for the treatment of cancer.
Collapse
Affiliation(s)
| | - M.-Violante de-Paz
- Departamento Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain;
| |
Collapse
|