1
|
Plank M, Frieß FV, Bitsch CV, Pieschel J, Reitenbach J, Gallei M. Modular Synthesis of Functional Block Copolymers by Thiol–Maleimide “Click” Chemistry for Porous Membrane Formation. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Martina Plank
- Ernst-Berl Institute of Technical and Macromolecular Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Florian Volker Frieß
- Chair in Polymer Chemistry, Universität des Saarlandes, Campus Saarbrücken, 66123 Saarbrücken, Germany
| | - Carina Vera Bitsch
- Ernst-Berl Institute of Technical and Macromolecular Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Jens Pieschel
- Chair in Polymer Chemistry, Universität des Saarlandes, Campus Saarbrücken, 66123 Saarbrücken, Germany
| | - Julija Reitenbach
- Ernst-Berl Institute of Technical and Macromolecular Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Markus Gallei
- Chair in Polymer Chemistry, Universität des Saarlandes, Campus Saarbrücken, 66123 Saarbrücken, Germany
- Saarene, Saarland Center for Energy Materials and Sustainability, Campus C4 2, 66123 Saarbrücken, Germany
| |
Collapse
|
2
|
Hartmann F, Niebuur BJ, Koch M, Kraus T, Gallei M. Synthesis and Microphase Separation of Dendrimer-like Block Copolymers by Anionic Polymerization Strategies. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
3
|
Hübner H, Niebuur BJ, Büttner T, Koch M, Stühn B, Kraus T, Scheschkewitz D, Gallei M. Self-Assembly of Amphiphilic Carbosilane-Based Block Copolymers in Organic Media and Structure Formation in Colloidal Confinement. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hanna Hübner
- Chair in Polymer Chemistry, Universität des Saarlandes, Campus Saarbrücken, 66123 Saarbrücken, Germany
| | - Bart-Jan Niebuur
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Thomas Büttner
- Krupp-Chair of General and Inorganic Chemistry, Saarland University, 66123 Saarbrücken, Germany
| | - Marcus Koch
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Bernd Stühn
- Institute for Condensed Matter Physics, Technical University of Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| | - Tobias Kraus
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
- Colloid and Interface Chemistry, Saarland University, Campus D2 2, 66123 Saarbrücken, Germany
| | - David Scheschkewitz
- Krupp-Chair of General and Inorganic Chemistry, Saarland University, 66123 Saarbrücken, Germany
| | - Markus Gallei
- Chair in Polymer Chemistry, Universität des Saarlandes, Campus Saarbrücken, 66123 Saarbrücken, Germany
- Saarene, Saarland Center for Energy Materials and Sustainability, Campus C4 2, 66123 Saarbrücken, Germany
| |
Collapse
|
4
|
Wang Z, Chan CLC, Parker RM, Vignolini S. The Limited Palette for Photonic Block-Copolymer Materials: A Historical Problem or a Practical Limitation? Angew Chem Int Ed Engl 2022; 61:e202117275. [PMID: 35446459 PMCID: PMC9325480 DOI: 10.1002/anie.202117275] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 11/11/2022]
Abstract
Block-copolymer self-assembly has proven to be an effective route for the fabrication of photonic films and, more recently, photonic pigments. However, despite extensive research on this topic over the past two decades, the palette of monomers and polymers employed to produce such structurally colored materials has remained surprisingly limited. In this Scientific Perspective, the commonly used block-copolymer systems reported in the literature are summarized (considering both linear and brush architectures) and their use is rationalized from the point of view of both their historical development and physicochemical constraints. Finally, the current challenges facing the field are discussed and promising new areas of research are highlighted to inspire the community to pursue new directions.
Collapse
Affiliation(s)
- Zhen Wang
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | | | - Richard M. Parker
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Silvia Vignolini
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| |
Collapse
|
5
|
Wang Z, Chan CLC, Parker RM, Vignolini S. The Limited Palette for Photonic Block-Copolymer Materials: A Historical Problem or a Practical Limitation? ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202117275. [PMID: 38528985 PMCID: PMC10962576 DOI: 10.1002/ange.202117275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 11/08/2022]
Abstract
Block-copolymer self-assembly has proven to be an effective route for the fabrication of photonic films and, more recently, photonic pigments. However, despite extensive research on this topic over the past two decades, the palette of monomers and polymers employed to produce such structurally colored materials has remained surprisingly limited. In this Scientific Perspective, the commonly used block-copolymer systems reported in the literature are summarized (considering both linear and brush architectures) and their use is rationalized from the point of view of both their historical development and physicochemical constraints. Finally, the current challenges facing the field are discussed and promising new areas of research are highlighted to inspire the community to pursue new directions.
Collapse
Affiliation(s)
- Zhen Wang
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | | | - Richard M. Parker
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Silvia Vignolini
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| |
Collapse
|
6
|
Gemmer L, Hu Q, Niebuur BJ, Kraus T, Balzer BN, Gallei M. A block copolymer templated approach for the preparation of nanoporous polymer structures and cellulose fiber hybrids by ozone treatment. Polym Chem 2022. [DOI: 10.1039/d2py00562j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Porous nanostructures were derived after self-assembly of amphiphilic block copolymers and subsequent ozone-mediated block segment degradation. Highly ordered pores were obtained for BCP films and for coatings at cellulose fibers’ surfaces.
Collapse
Affiliation(s)
- Lea Gemmer
- Chair in Polymer Chemistry, Universität des Saarlandes, Campus Saarbrücken C4 2, 66123 Saarbrücken, Germany
| | - Qiwei Hu
- Institute of Physical Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Bart-Jan Niebuur
- INM – Leibniz-Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Tobias Kraus
- INM – Leibniz-Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
- Colloid and Interface Chemistry, Universität des Saarlandes, Campus D2 2, 66123 Saarbrücken, Germany
| | - Bizan N. Balzer
- Institute of Physical Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Str. 21, 79104 Freiburg, Germany
| | - Markus Gallei
- Chair in Polymer Chemistry, Universität des Saarlandes, Campus Saarbrücken C4 2, 66123 Saarbrücken, Germany
- Saarene, Saarland Center for Energy Materials and Sustainability, Campus Saarbrücken C4 2, 66123 Saarbrücken, Germany
| |
Collapse
|
7
|
Frieß FV, Hu Q, Mayer J, Gemmer L, Presser V, Balzer BN, Gallei M. Nanoporous Block Copolymer Membranes with Enhanced Solvent Resistance Via UV-Mediated Cross-Linking Strategies. Macromol Rapid Commun 2021; 43:e2100632. [PMID: 34752668 DOI: 10.1002/marc.202100632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/22/2021] [Indexed: 01/25/2023]
Abstract
In this work, a block copolymer (BCP) consisting of poly((butyl methacrylate-co-benzophenone methacrylate-co-methyl methacrylate)-block-(2-hydroxyethyl methacrylate)) (P(BMA-co-BPMA-co-MMA)-b-P(HEMA)) is prepared by a two-step atom-transfer radical polymerization (ATRP) procedure. BCP membranes are fabricated applying the self-assembly and nonsolvent induced phase separation (SNIPS) process from a ternary solvent mixture of tetrahydrofuran (THF), 1,4-dioxane, and dimethylformamide (DMF). The presence of a porous top layer of the integral asymmetric membrane featuring pores of about 30 nm is confirmed via scanning electron microscopy (SEM). UV-mediated cross-linking protocols for the nanoporous membrane are adjusted to maintain the open and isoporous top layer. The swelling capability of the noncross-linked and cross-linked BCP membranes is investigated in water, water/ethanol mixture (1:1), and pure ethanol using atomic force microscopy, proving a stabilizing effect of the UV cross-linking on the porous structures. Finally, the influence of the herein described cross-linking protocols on water-flux measurements for the obtained membranes is explored. As a result, an increased swelling resistance for all tested solvents is found, leading to an increased water flux compared to the pristine membrane. The herein established UV-mediated cross-linking protocol is expected to pave the way to a new generation of porous and stabilized membranes within the fields of separation technologies.
Collapse
Affiliation(s)
- Florian V Frieß
- Department of Chemistry, Saarland University, 66123, Saarbrücken, Germany.,Saarene, Saarland Center for Energy Materials and Sustainability, Campus C4 2, 66123, Saarbrücken, Germany
| | - Qiwei Hu
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104, Freiburg, Germany.,Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
| | - Jannik Mayer
- Ernst-Berl-Institute of Chemical Engineering and Macromolecular Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Lea Gemmer
- Department of Chemistry, Saarland University, 66123, Saarbrücken, Germany.,Saarene, Saarland Center for Energy Materials and Sustainability, Campus C4 2, 66123, Saarbrücken, Germany
| | - Volker Presser
- Saarene, Saarland Center for Energy Materials and Sustainability, Campus C4 2, 66123, Saarbrücken, Germany.,Department of Materials Science and Engineering, Saarland University, Campus D2 2, 66123, Saarbrücken, Germany.,INM - Leibniz-Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Bizan N Balzer
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104, Freiburg, Germany.,Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
| | - Markus Gallei
- Department of Chemistry, Saarland University, 66123, Saarbrücken, Germany.,Saarene, Saarland Center for Energy Materials and Sustainability, Campus C4 2, 66123, Saarbrücken, Germany
| |
Collapse
|