1
|
Salfate G, Negrete-Vergara C, Azócar L, Xiao LP, Sun RC, Sánchez J. Lignin and functional polymer-based materials: Synthesis, characterization and application for Cr (VI) and As (V) removal from aqueous media. Int J Biol Macromol 2024; 278:134697. [PMID: 39147352 DOI: 10.1016/j.ijbiomac.2024.134697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 06/12/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
In this study, lignin derived from corncobs was chemically modified by substituting the hydroxyl groups present in its structure with methacrylate groups through a catalytic reaction using methacrylic anhydride, resulting in methacrylated lignin (ML). These MLs were incorporated in polymerization reaction of the monomer 2-[(acryloyloxy)ethyl trimethylammonium] chloride (Cl-AETA) and Cl-AETA, Cl-AETA/ML polymers were obtained, characterized (spectroscopic, thermal and microscopic analysis), and evaluated for removing Cr (VI) and As (V) from aqueous media in function of pH, contact time, initial metal concentrations and adsorbent amount. The Cl-AETA/ML polymers followed the Langmuir adsorption model for the evaluated metal anions and were able to remove up to 91 % of Cr (VI) with a qmax (maximum adsorption capacity) of 201 mg/g, while for As (V), up to 60 % could be removed with a qmax of 58 mg/g. The results demonstrate that simple modifications in lignin enhance its functionalization and properties, making it suitable for removing contaminants from aqueous media, showing promising results for potential future applications.
Collapse
Affiliation(s)
- Gabriel Salfate
- Universidad de Santiago de Chile (USACH), Facultad de Química y Biología, Santiago, Chile
| | - Camila Negrete-Vergara
- Universidad de Santiago de Chile (USACH), Facultad de Química y Biología, Santiago, Chile
| | - Laura Azócar
- Universidad Católica de la Santísima Concepción/Facultad de Ciencias, Departamento de Química Ambiental, Chile
| | - Ling-Ping Xiao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Run-Cang Sun
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Julio Sánchez
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
2
|
Saleem U, Khalid I, Hussain L, Alshammari A, Albekairi NA. Crosslinked PVA- g-poly(AMPS) Nanogels for Enhanced Solubility and Dissolution of Ticagrelor: Synthesis, Characterization, and Toxicity Evaluation. ACS OMEGA 2024; 9:21401-21415. [PMID: 38764664 PMCID: PMC11097175 DOI: 10.1021/acsomega.4c01721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/29/2024] [Accepted: 04/18/2024] [Indexed: 05/21/2024]
Abstract
In this study, we synthesized PVA-g-poly(AMPS) nanogels with the aim of enhancing the solubility and dissolution of ticagrelor (TGR). Ticagrelor, a noncompetitive, reversible P2Y12 receptor antagonist, is prescribed to treat acute coronary syndrome. Ticagrelor has restricted oral bioavailability (≈36%) because of its poor solubility and permeability. The free radical polymerization methodology was employed to synthesize nanogels with varied concentrations of poly(vinyl alcohol) (polymer), 2-acrylamido-2-methylpropanesulfonic acid (monomer), and N,N-methylene bis(acrylamide) (crosslinker). The prepared nanogels were analyzed by swelling studies, % drug entrapment efficiency (DEE), solubility studies, in vitro drug release studies, zeta sizer, Fourier transform infrared (FTIR) spectroscopy, powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). The optimized formulation (PA5) revealed a particle size of 45.86 nm, with a polydispersity index (PDI) of 0.41 and a %DEE of 85.1%. FTIR spectroscopy, XRD, and SEM confirmed the formation of crosslinked nanogels with amorphous and porous structures, and TGA/DSC proved their thermal stability. In vitro dissolution studies showed 99.91% drug release, and the ticagrelor solubility from the synthesized formulations was significantly improved up to 8.2-fold. All formulations followed the Korsmeyer-Peppas model with the Fickian diffusion as the release mechanism. The toxicity studies carried out on rats and the MTT assay on the Caco-2 cell line validated the biocompatibility of the nanogel formulations. The outcomes of the current study led to the conclusion that the PVA-g-poly(AMPS) nanogels synthesized by us could be used as dedicated pharmaceutical delivery systems to achieve enhanced solubility and dissolution of ticagrelor.
Collapse
Affiliation(s)
- Usman Saleem
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Ikrima Khalid
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Liaqat Hussain
- Department
of Pharmacology, School of Medicine and Public Health, Zhejiang University, Hanzghou 310027, China
- Department
of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Abdulrahman Alshammari
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Norah A. Albekairi
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
Yu B, Cheng J, Fang Y, Xie Z, Xiong Q, Zhang H, Shang W, Wurm FR, Liang W, Wei F, Zhao J. Multi-Stimuli-Responsive, Topology-Regulated, and Lignin-Based Nano/Microcapsules from Pickering Emulsion Templates for Bidirectional Delivery of Pesticides. ACS NANO 2024; 18:10031-10044. [PMID: 38547360 DOI: 10.1021/acsnano.3c11621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The increasing demand for improving pesticide utilization efficiency has prompted the development of sustainable, targeted, and stimuli-responsive delivery systems. Herein, a multi-stimuli-responsive nano/microcapsule bidirectional delivery system loaded with pyraclostrobin (Pyr) is prepared through interfacial cross-linking from a lignin-based Pickering emulsion template. During this process, methacrylated alkali lignin nanoparticles (LNPs) are utilized as stabilizers for the tunable oil-water (O/W) Pickering emulsion. Subsequently, a thiol-ene radical reaction occurs with the acid-labile cross-linkers at the oil-water interface, leading to the formation of lignin nano/microcapsules (LNCs) with various topological shapes. Through the investigation of the polymerization process and the structure of LNC, it was found that the amphiphilicity-driven diffusion and distribution of cyclohexanone impact the topology of LNC. The obtained Pyr@LNC exhibits high encapsulation efficiency, tunable size, and excellent UV shielding to Pyr. Additionally, the flexible topology of the Pyr@LNC shell enhances the retention and adhesion of the foliar surface. Furthermore, Pyr@LNC exhibits pH/laccase-responsive targeting against Botrytis disease, enabling the intelligent release of Pyr. The in vivo fungicidal activity shows that efficacy of Pyr@LNC is 53% ± 2% at 14 days postspraying, whereas the effectiveness of Pyr suspension concentrate is only 29% ± 4%, and the acute toxicity of Pyr@LNC to zebrafish is reduced by more than 9-fold compared with that of Pyr technical. Moreover, confocal laser scanning microscopy shows that the LNCs can be bidirectionally translocated in plants. Therefore, the topology-regulated bidirectional delivery system LNC has great practical potential for sustainable agriculture.
Collapse
Affiliation(s)
- Bin Yu
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jingli Cheng
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yun Fang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zhengang Xie
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, P. R. China
| | - Qiuyu Xiong
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, P. R. China
| | - Haonan Zhang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, P. R. China
| | - Wenxuan Shang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, P. R. China
| | - Frederik R Wurm
- Sustainable Polymer Chemistry, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Wenlong Liang
- Sustainable Polymer Chemistry, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Fanglin Wei
- Zhejiang XinNong Chemical Co., Ltd., Hangzhou 310021, P. R. China
| | - Jinhao Zhao
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
4
|
Rahman ANA, Elkhadrawy BA, Mansour AT, Abdel-Ghany HM, Yassin EMM, Elsayyad A, Alwutayd KM, Ismail SH, Mahboub HH. Alleviating Effect of a Magnetite (Fe 3O 4) Nanogel against Waterborne-Lead-Induced Physiological Disturbances, Histopathological Changes, and Lead Bioaccumulation in African Catfish. Gels 2023; 9:641. [PMID: 37623096 PMCID: PMC10453935 DOI: 10.3390/gels9080641] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Heavy metal toxicity is an important issue owing to its harmful influence on fish. Hence, this study is a pioneer attempt to verify the in vitro and in vivo efficacy of a magnetite (Fe3O4) nanogel (MNG) in mitigating waterborne lead (Pb) toxicity in African catfish. Fish (n = 160) were assigned into four groups for 45 days. The first (control) and second (MNG) groups were exposed to 0 and 1.2 mg L-1 of MNG in water. The third (Pb) and fourth (MNG + Pb) groups were exposed to 0 and 1.2 mg L-1 of MNG in water and 69.30 mg L-1 of Pb. In vitro, the MNG caused a dramatic drop in the Pb level within 120 h. The Pb-exposed group showed the lowest survival (57.5%) among the groups, with substantial elevations in hepato-renal function and lipid peroxide (MDA). Moreover, Pb exposure caused a remarkable decline in the protein-immune parameters and hepatic antioxidants, along with higher Pb residual deposition in muscles and obvious histopathological changes in the liver and kidney. Interestingly, adding aqueous MNG to Pb-exposed fish relieved these alterations and increased survivability. Thus, MNG is a novel antitoxic agent against Pb toxicity to maintain the health of C. gariepinus.
Collapse
Affiliation(s)
- Afaf N. Abdel Rahman
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Basma Ahmed Elkhadrawy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt;
| | - Abdallah Tageldein Mansour
- Animal and Fish Production Department, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Hofuf 31982, Saudi Arabia
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Heba M. Abdel-Ghany
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | | | - Asmaa Elsayyad
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Sameh H. Ismail
- Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Branch Campus, Giza 12588, Egypt;
| | - Heba H. Mahboub
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
5
|
Zheng L, Seidi F, Wu W, Pan Y, Xiao H. Dual-functional lignin-based hydrogels for sustained release of agrochemicals and heavy metal ion complexation. Int J Biol Macromol 2023; 235:123701. [PMID: 36801277 DOI: 10.1016/j.ijbiomac.2023.123701] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/03/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
An effective way of improving the efficiency of agrochemicals and improving crop yield and quality is by slow or sustained release, which is conducive to environmental protection. Meanwhile, the excessive amount of heavy metal ions in soil can create toxicity in plants. Here, we prepared lignin-based dual-functional hydrogels containing conjugated agrochemical and heavy metal ligands through free-radical copolymerization. The content of the agrochemicals (including plant growth regulator 3-indoleacetic acid (IAC) and herbicide 2,4-dichlorophenoxyacetic acid (DCP)) in the hydrogels were tuned by changing the hydrogel composition. The conjugated agrochemicals could slowly release through the gradual cleavage of the ester bond. As a result of the release of the DCP herbicide, the growth of lettuce was effectively regulated, thus confirming the feasibility and effectiveness of this system in application. At the same time, due to the presence of metal chelating groups (such as COOH, phenolic OH, and tertiary amine) the hydrogels could act as adsorbents or stabilizers towards heavy metal ions for improving the soil remediation and preventing the adsorption of these toxic metals by plant roots. Specifically, Cu(II) and Pb(II) could be adsorbed >380 and 60 mg/g, respectively.
Collapse
Affiliation(s)
- Ling Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Weibing Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yuanfeng Pan
- Guangxi Colleges and Universities Key Laboratory of New Chemical Application Technology in Resources, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5 A3, Canada.
| |
Collapse
|
6
|
Stability Phenomena Associated with the Development of Polymer-Based Nanopesticides. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5766199. [PMID: 35509832 PMCID: PMC9060970 DOI: 10.1155/2022/5766199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/14/2022] [Accepted: 04/01/2022] [Indexed: 12/16/2022]
Abstract
Pesticides have been used in agricultural activity for decades because they represent the first defense against pathogens, harmful insects, and parasitic weeds. Conventional pesticides are commonly employed at high dosages to prevent their loss and degradation, guaranteeing effectiveness; however, this results in a large waste of resources and significant environmental pollution. In this regard, the search for biocompatible, biodegradable, and responsive materials has received greater attention in the last years to achieve the obtention of an efficient and green pesticide formulation. Nanotechnology is a useful tool to design and develop “nanopesticides” that limit pest degradation and ensure a controlled release using a lower concentration than the conventional methods. Besides different types of nanoparticles, polymeric nanocarriers represent the most promising group of nanomaterials to improve the agrochemicals’ sustainability due to polymers’ intrinsic properties. Polymeric nanoparticles are biocompatible, biodegradable, and suitable for chemical surface modification, making them attractive for pesticide delivery. This review summarizes the current use of synthetic and natural polymer-based nanopesticides, discussing their characteristics and their most common design shapes. Furthermore, we approached the instability phenomena in polymer-based nanopesticides and strategies to avoid it. Finally, we discussed the environmental risks and future challenges of polymeric nanopesticides to present a comprehensive analysis of this type of nanosystem.
Collapse
|
7
|
Gabellone S, Piccinino D, Filippi S, Castrignanò T, Zippilli C, Del Buono D, Saladino R. Lignin Nanoparticles Deliver Novel Thymine Biomimetic Photo-Adducts with Antimelanoma Activity. Int J Mol Sci 2022; 23:ijms23020915. [PMID: 35055101 PMCID: PMC8777952 DOI: 10.3390/ijms23020915] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 02/05/2023] Open
Abstract
We report here the synthesis of novel thymine biomimetic photo-adducts bearing an alkane spacer between nucleobases and characterized by antimelanoma activity against two mutated cancer cell lines overexpressing human Topoisomerase 1 (TOP1), namely SKMEL28 and RPMI7951. Among them, Dewar Valence photo-adducts showed a selectivity index higher than the corresponding pyrimidine-(6-4)-pyrimidone and cyclobutane counterpart and were characterized by the highest affinity towards TOP1/DNA complex as evaluated by molecular docking analysis. The antimelanoma activity of novel photo-adducts was retained after loading into UV photo-protective lignin nanoparticles as stabilizing agent and efficient drug delivery system. Overall, these results support a combined antimelanoma and UV sunscreen strategy involving the use of photo-protective lignin nanoparticles for the controlled release of thymine dimers on the skin followed by their sacrificial transformation into photo-adducts and successive inhibition of melanoma and alert of cellular UV machinery repair pathways.
Collapse
|
8
|
Gigli M, Fellet G, Pilotto L, Sgarzi M, Marchiol L, Crestini C. Lignin-based nano-enabled agriculture: A mini-review. FRONTIERS IN PLANT SCIENCE 2022; 13:976410. [PMID: 36407611 PMCID: PMC9667414 DOI: 10.3389/fpls.2022.976410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/04/2022] [Indexed: 05/05/2023]
Abstract
Nowadays sustainable nanotechnological strategies to improve the efficiency of conventional agricultural practices are of utmost importance. As a matter of fact, the increasing use of productive factors in response to the growing food demand plays an important role in determining the environmental impact of agriculture. In this respect, low-efficiency conventional practices are becoming obsolete. On the other hand, the exploitation of nanoscaled systems for the controlled delivery of fertilizers, pesticides and herbicides shows great potential towards the development of sustainable, efficient and resilient agricultural processes, while promoting food security. In this context, lignin - especially in the form of its nanostructures - can play an important role as sustainable biomaterial for nano-enabled agricultural applications. In this review, we present and discuss the current advancements in the preparation of lignin nanoparticles for the controlled release of pesticides, herbicides, and fertilizers, as well as the latest findings in terms of plant response to their application. Special attention has been paid to the state-of-the-art literature concerning the release performance of these lignin-based nanomaterials, whose efficiency is compared with the conventional approaches. Finally, the major challenges and the future scenarios of lignin-based nano-enabled agriculture are considered.
Collapse
Affiliation(s)
- Matteo Gigli
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Venezia-Mestre, Italy
| | - Guido Fellet
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
- *Correspondence: Guido Fellet, ; Massimo Sgarzi,
| | - Laura Pilotto
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Massimo Sgarzi
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Venezia-Mestre, Italy
- *Correspondence: Guido Fellet, ; Massimo Sgarzi,
| | - Luca Marchiol
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Claudia Crestini
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Venezia-Mestre, Italy
| |
Collapse
|
9
|
Lima PHCD, Antunes DR, Forini MMDL, Pontes MDS, Mattos BD, Grillo R. Recent Advances on Lignocellulosic-Based Nanopesticides for Agricultural Applications. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.809329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Controlled release systems of agrochemicals have been developed in recent years. However, the design of intelligent nanocarriers that can be manufactured with renewable and low-cost materials is still a challenge for agricultural applications. Lignocellulosic building blocks (cellulose, lignin, and hemicellulose) are ideal candidates to manufacture ecofriendly nanocarriers given their low-cost, abundancy and sustainability. Complexity and heterogeneity of biopolymers have posed challenges in the development of nanocarriers; however, the current engineering toolbox for biopolymer modification has increased remarkably, which enables better control over their properties and tuned interactions with cargoes and plant tissues. In this mini-review, we explore recent advances on lignocellulosic-based nanocarriers for the controlled release of agrochemicals. We also offer a critical discussion regarding the future challenges of potential bio-based nanocarrier for sustainable agricultural development.
Collapse
|
10
|
Yiamsawas D, Kangwansupamonkon W, Kiatkamjornwong S. Lignin‐Based Microgels by Inverse Suspension Polymerization: Syntheses and Dye Removal. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Doungporn Yiamsawas
- National Nanotechnology Center National Science and Technology Development Agency 111 Thailand Science Park, Phahonyothin Rd., Khlong Luang Phathum Thani 12120 Thailand
| | - Wiyong Kangwansupamonkon
- National Nanotechnology Center National Science and Technology Development Agency 111 Thailand Science Park, Phahonyothin Rd., Khlong Luang Phathum Thani 12120 Thailand
- AFRS (T) the Royal Society of Thailand Sanam Sueapa, Dusit Bangkok 10300 Thailand
| | - Suda Kiatkamjornwong
- Office of Research Affairs Chulalongkorn University Phyathai Road, Wangmai, Patumwan Bangkok 10330 Thailand
- FRS (T) the Royal Society of Thailand Sanam Sueapa, Dusit Bangkok 10300 Thailand
| |
Collapse
|