1
|
Bottega Pergher B, Weinland DH, van Putten RJ, Gruter GJM. The search for rigid, tough polyesters with high T g - renewable aromatic polyesters with high isosorbide content. RSC SUSTAINABILITY 2024; 2:2644-2656. [PMID: 39211506 PMCID: PMC11353682 DOI: 10.1039/d4su00294f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/28/2024] [Indexed: 09/04/2024]
Abstract
Renewable polyesters with a good balance between impact strength and elastic modulus (stiffness) are not very common, especially when combined with high glass transition temperature (T g). Achieving such high performance properties would enable the substitution of high performance polymers like ABS and polycarbonate with chemically recyclable polyesters from bio-based or recycled sources. One of the challenges in developing these materials is to select the right composition of the right monomers/comonomer ratios and making these materials with high molecular weight, which can be challenging since some of the most promising rigid diols, such as isosorbide, are unreactive. This study comprises aromatic polyesters from (potentially) renewable monomers, using bio-based isosorbide as a means to increase their T g and to inhibit their crystallization, while using flexible co-diols to improve impact strength. To incorporate a high amount of isosorbide into the targeted polyesters, we used the synthesis method with reactive phenolic solvents previously developed in our group. The selected compositions display high T g's (>90 °C) and high tensile modulus (>1850 MPa). We show that more polar monomers such as the stiffer 2,5-furandicarboxylic acid (FDCA) and diethylene glycol cause high stiffness but decreased impact strength (<5 kJ m-2). Combining terephthalic acid and isosorbide with more flexible diols like 1,4-butanediol, 1,4-cyclohexanedimethanol (CHDM) and 1,3-propanediol provides a better balance, including the combination of high tensile modulus (>1850 MPa) and high impact strength (>10 kJ m-2).
Collapse
Affiliation(s)
- Bruno Bottega Pergher
- Industrial Sustainable Chemistry, van't Hoff Institute of Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Daniel H Weinland
- Industrial Sustainable Chemistry, van't Hoff Institute of Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | | | - Gert-Jan M Gruter
- Industrial Sustainable Chemistry, van't Hoff Institute of Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
- Avantium Support B.V. Zekeringstraat 29 1014 BV Amsterdam The Netherlands
| |
Collapse
|
2
|
Walkowiak K, Paszkiewicz S. Modifications of Furan-Based Polyesters with the Use of Rigid Diols. Polymers (Basel) 2024; 16:2064. [PMID: 39065381 PMCID: PMC11280799 DOI: 10.3390/polym16142064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The replacement of polymers derived from petrochemical resources has been a prominent area of focus in recent decades. Polymers used in engineering materials must exhibit mechanical strength and stiffness while maintaining performance through a broad temperature range. Most of the polyesters used as engineering materials are based on terephthalic acid (TPA) and its derivatives, which provide necessary rigidity to molecular chains due to an aromatic ring. Bio-based alternatives for TPA-based polyesters that are gaining popularity are the polyesters derived from 2,5-furandicarboxylic acid (FDCA). To broaden applicational possibilities, one effective way to achieve specific properties in targeted applications is to adjust the composition and structure of polymers using advanced polymer chemistry techniques. The incorporation of rigid diols such as isosorbide, 1,4-cyclohexanedimethanol (CHDM), and 2,2,4,4-tetramethyl-1,3-cyclobutanediol (CBDO) should result in a greater stiffness of the molecular chains. This review extensively explores the effect of incorporating rigid diols on material properties through a review of research articles as well as patents. Moreover, this review mainly focuses on the polyesters and copolyesters synthesized via two-step melt polycondensation and its alterations due to the industrial importance of this method. Innovative synthesis strategies and the resulting material properties are presented.
Collapse
Affiliation(s)
- Konrad Walkowiak
- Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology, 70-310 Szczecin, Poland;
| | | |
Collapse
|
3
|
Djouonkep LDW, Tamo CT, Simo BE, Issah N, Tchouagtie MN, Selabi NBS, Doench I, Kamdem Tamo A, Xie B, Osorio-Madrazo A. Synthesis by Melt-Polymerization of a Novel Series of Bio-Based and Biodegradable Thiophene-Containing Copolyesters with Promising Gas Barrier and High Thermomechanical Properties. Molecules 2023; 28:1825. [PMID: 36838821 PMCID: PMC9965281 DOI: 10.3390/molecules28041825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Volatile global oil prices, owing to the scarcity of fossil resources, have impacted the cost of producing petrochemicals. Therefore, there is a need to seek novel, renewable chemicals from biomass feedstocks that have comparable properties to petrochemicals. In this study, synthesis, thermal and mechanical properties, and degradability studies of a novel series of sustainable thiophene-based copolyesters like poly(hexylene 2,5-thiophenedicarboxylate-co-bis(2-hydroxyethoxybenzene) (PTBxHy) were conducted via a controlled melt polymerization method. Fourier-transform infrared (FTIR) and nuclear magnetic resonance (1H NMR) spectroscopy techniques elucidated the degree of randomness and structural properties of copolyesters. Meanwhile, gel permeation chromatography (GPC) analysis showed a high average molecular weight in the range of 67.4-78.7 × 103 g/mol. The glass transition temperature (Tg) was between 69.4 and 105.5 °C, and the melting point between 173.7 and 194.2 °C. The synthesized polymers outperformed poly(ethylene 2,5-thiophenedicarboxylate) (PETF) and behaved similarly to polyethylene terephthalate. The copolyesters exhibited a high tensile strength of 46.4-70.5 MPa and a toughness of more than 600%, superior to their corresponding homopolyesters. The copolyesters, which ranged from 1,4-bis(2-hydroxyethyl)benzene thiophenedicarboxylate (TBB)-enriched to hexylene thiophenedicarboxylate (THH)-enriched, offered significant control over crystallinity, thermal and mechanical properties. Enzymatic hydrolysis of synthetized polymers using porcine pancreatic lipase (PP-L) over a short period resulted in significant weight losses of 9.6, 11.4, 30.2, and 35 wt%, as observed by scanning electron microscopy (SEM), with perforations visible on all surfaces of the films. Thus, thiophene-based polyesters with cyclic aromatic structures similar to terephthalic acid (TPA) show great promise as PET mimics. At the same time, PP-L appears to be a promising biocatalyst for the degradation of bioplastic waste and its recycling via re-synthesis processes.
Collapse
Affiliation(s)
- Lesly Dasilva Wandji Djouonkep
- Department of Petroleum Engineering, Applied Chemistry in Oil and Gas Fields, Yangtze University, Wuhan 430100, China
- Lost Circulation Control Laboratory, National Engineering Laboratory for Petroleum Drilling Engineering, Yangtze University, Wuhan 430100, China
- Key Laboratory of Drilling and Production Engineering for Oil and Gas, Wuhan 430100, China
| | - Christian Tatchum Tamo
- National Advanced School of Engineering, University of Maroua, Maroua P.O. Box 46, Cameroon
| | - Belle Elda Simo
- Department of Earth Sciences, University of Dschang, Dschang P.O. Box 96, Cameroon
| | - Nasiru Issah
- Department of Biochemistry, Kwame Nkrumah University, Kabwe P.O. Box 80404, Ghana
| | | | - Naomie Beolle Songwe Selabi
- Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Ingo Doench
- Laboratory for Bioinspired Materials, Institute of Microsystems Engineering—IMTEK, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies—FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center—FMF, University of Freiburg, 79104 Freiburg, Germany
| | - Arnaud Kamdem Tamo
- Laboratory for Bioinspired Materials, Institute of Microsystems Engineering—IMTEK, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies—FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center—FMF, University of Freiburg, 79104 Freiburg, Germany
| | - Binqiang Xie
- Department of Petroleum Engineering, Applied Chemistry in Oil and Gas Fields, Yangtze University, Wuhan 430100, China
- Lost Circulation Control Laboratory, National Engineering Laboratory for Petroleum Drilling Engineering, Yangtze University, Wuhan 430100, China
- Key Laboratory of Drilling and Production Engineering for Oil and Gas, Wuhan 430100, China
| | - Anayancy Osorio-Madrazo
- Laboratory for Bioinspired Materials, Institute of Microsystems Engineering—IMTEK, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies—FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center—FMF, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
5
|
Karlinskii BY, Ananikov VP. Recent advances in the development of green furan ring-containing polymeric materials based on renewable plant biomass. Chem Soc Rev 2023; 52:836-862. [PMID: 36562482 DOI: 10.1039/d2cs00773h] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fossil resources are rapidly depleting, forcing researchers in various fields of chemistry and materials science to switch to the use of renewable sources and the development of corresponding technologies. In this regard, the field of sustainable materials science is experiencing an extraordinary surge of interest in recent times due to the significant advances made in the development of new polymers with desired and controllable properties. This review summarizes important scientific reports in recent times dedicated to the synthesis, construction and computational studies of novel sustainable polymeric materials containing unchanged (pseudo)aromatic furan cores in their structure. Linear polymers for thermoplastics, branched polymers for thermosets and other crosslinked materials are emerging materials to highlight. Various polymer blends and composites based on sustainable polyfurans are also considered as pathways to achieve high-value-added products.
Collapse
Affiliation(s)
- Bogdan Ya Karlinskii
- Tula State University, Lenin pr. 92, Tula, 300012, Russia.,Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow, 119991, Russia.
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow, 119991, Russia.
| |
Collapse
|
8
|
Dong Y, Wang J, Yang Y, Wang Q, Zhang X, Hu H, Zhu J. Bio-based poly(butylene diglycolate-co-furandicarboxylate) copolyesters with balanced mechanical, barrier and biodegradable properties: A prospective substitute for PBAT. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
He J, Liu S, Chen D, Wang G, Wang Q, Bai Y. Preparation and characterization of high‐performance fibers copolymerized by melamine formaldehyde with 1,4‐cyclohexanedimethanol. J Appl Polym Sci 2022. [DOI: 10.1002/app.52031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jianming He
- Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
- National Engineering Laboratory for VOCs Pollution Control Material & Technology University of Chinese Academy of Sciences Beijing China
| | - Shaoying Liu
- Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
| | - Dongliang Chen
- Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
| | - Gongying Wang
- Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
| | - Qingyin Wang
- Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
| | - Yuansheng Bai
- Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
| |
Collapse
|
11
|
Shen A, Wang J, Zhang X, Fei X, Fan L, Zhu Y, Dong Y, Zhu J. High thermal resistance amorphous copolyesters synthesized from bio‐based 2,5‐furandicarboxylic acid. J Appl Polym Sci 2022. [DOI: 10.1002/app.52469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ang Shen
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo China
- Department of Materials University of Chinese Academy of Sciences Beijing China
| | - Jinggang Wang
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo China
| | - Xiaoqin Zhang
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo China
| | - Xuan Fei
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo China
- Department of Materials University of Chinese Academy of Sciences Beijing China
| | - Lin Fan
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo China
| | - Yanliu Zhu
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo China
- Department of Materials University of Chinese Academy of Sciences Beijing China
| | - Yunxiao Dong
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo China
- Department of Materials University of Chinese Academy of Sciences Beijing China
| | - Jin Zhu
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo China
| |
Collapse
|