1
|
Lee LR, Fan PH, Chen YF, Chang MH, Liu YC, Chang CC, Chen JT. Structurally Defined Amphiphilic AAO Membranes Using UV-Assisted Thiol-Yne Chemistry: Applications in Anti-Counterfeiting and Electronics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48073-48084. [PMID: 39189834 PMCID: PMC11403548 DOI: 10.1021/acsami.4c09040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
In this study, we fabricate and characterize amphiphilic anodic aluminum oxide (AAO) membranes using UV-triggered thiol-yne click reactions and photomasks for various innovative applications, including driven polymer nanopatterns, anti-counterfeiting, and conductive pathways. Specifically, we synthesize 10-undecynyl-terminated-AAO membranes and subsequently prepare amphiphilic AAO membranes with superhydrophilic and superhydrophobic regions. Various analytical methods, including grazing angle X-ray photoelectron spectroscopy (GIXPS), energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), nanofocused synchrotron X-ray techniques (nano-XRD and nano-XRF), and water contact angle measurements, confirm the modifications and distinct properties of the modified areas. This work achieves a series of applications, such as driven polymer nanopatterns, solvent- and light-triggered anti-counterfeiting, and region-selective conductive pathways using silver paint with lower resistivity. Besides, the amphiphilic AAO membrane exhibits successful stability, durability, and reusability. To sum up, this study highlights the versatility and potential of amphiphilic AAO membranes in advanced material design and smart applications.
Collapse
Affiliation(s)
- Lin-Ruei Lee
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 300093
| | - Po-Hsin Fan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 300093
| | - Yi-Fan Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 300093
| | - Ming-Hsuan Chang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 300093
| | - Yu-Chun Liu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 300093
| | - Chun-Chi Chang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 300093
| | - Jiun-Tai Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 300093
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 300093
| |
Collapse
|
2
|
Smandri A, Al-Masawa ME, Hwei NM, Fauzi MB. ECM-derived biomaterials for regulating tissue multicellularity and maturation. iScience 2024; 27:109141. [PMID: 38405613 PMCID: PMC10884934 DOI: 10.1016/j.isci.2024.109141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Recent breakthroughs in developing human-relevant organotypic models led to the building of highly resemblant tissue constructs that hold immense potential for transplantation, drug screening, and disease modeling. Despite the progress in fine-tuning stem cell multilineage differentiation in highly controlled spatiotemporal conditions and hosting microenvironments, 3D models still experience naive and incomplete morphogenesis. In particular, existing systems and induction protocols fail to maintain stem cell long-term potency, induce high tissue-level multicellularity, or drive the maturity of stem cell-derived 3D models to levels seen in their in vivo counterparts. In this review, we highlight the use of extracellular matrix (ECM)-derived biomaterials in providing stem cell niche-mimicking microenvironment capable of preserving stem cell long-term potency and inducing spatial and region-specific differentiation. We also examine the maturation of different 3D models, including organoids, encapsulated in ECM biomaterials and provide looking-forward perspectives on employing ECM biomaterials in building more innovative, transplantable, and functional organs.
Collapse
Affiliation(s)
- Ali Smandri
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Maimonah Eissa Al-Masawa
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Ng Min Hwei
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
3
|
Kourti D, Kanioura A, Manouras T, Vamvakaki M, Argitis P, Chatzichristidi M, Kakabakos S, Petrou P. Photolithographically Patterned Cell-Repellent PEG-b-PTHPMA Diblock Copolymer for Guided Cell Adhesion and Growth. Macromol Biosci 2023; 23:e2200301. [PMID: 36189866 DOI: 10.1002/mabi.202200301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/09/2022] [Indexed: 01/19/2023]
Abstract
Surfaces for guided cell adhesion and growth are indispensable in several diagnostic and therapeutic applications. Towards this direction, four diblock copolymers comprising polyethylene glycol (PEG) and poly(2-tetrahydropyranyl methacrylate) (PTHPMA) are synthesized employing PEG macroinitiators of different chain lengths. The copolymer with a 5000 Da PEG block and a PEG-PTHPMA comonomers weight ratio of 43-57 provides a film with the highest stability in the culture medium and the strongest cell repellent properties. This copolymer is used to develop a positive photolithographic material and create stripe patterns onto silicon substrates. The highest selectivity regarding smooth muscle cell adhesion and growth and the highest fidelity of adhered cells for up to 3 days in culture is achieved for stripe patterns with widths between 25 and 27.5 µm. Smooth muscle cells cultured on such patterned substrates exhibit a decrease in their proliferation rate and nucleus area and an increase in their major axis length, compared to the cells cultured onto non-patterned substrates. These alterations are indicative of the adoption of a contractile rather than a synthetic phenotype of the smooth muscle cells grown onto the patterned substrates and demonstrate the potential of the novel photolithographic material and patterning method for guided cell adhesion and growth.
Collapse
Affiliation(s)
- Dimitra Kourti
- Immunoassays-Immunosensors Lab, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR "Demokritos", Aghia Paraskevi, 15341, Greece.,Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, 15771, Greece
| | - Anastasia Kanioura
- Immunoassays-Immunosensors Lab, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR "Demokritos", Aghia Paraskevi, 15341, Greece
| | - Theodore Manouras
- Foundation for Research and Technology-Hellas, Institute of Electronic Structure and Laser, Heraklion, Crete, 70013, Greece.,Greece and Department of Materials Science and Technology, University of Crete, Heraklion, Crete, 70013, Greece
| | - Maria Vamvakaki
- Foundation for Research and Technology-Hellas, Institute of Electronic Structure and Laser, Heraklion, Crete, 70013, Greece.,Greece and Department of Materials Science and Technology, University of Crete, Heraklion, Crete, 70013, Greece
| | - Panagiotis Argitis
- Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", Aghia Paraskevi, 15341, Greece
| | | | - Sotirios Kakabakos
- Immunoassays-Immunosensors Lab, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR "Demokritos", Aghia Paraskevi, 15341, Greece
| | - Panagiota Petrou
- Immunoassays-Immunosensors Lab, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR "Demokritos", Aghia Paraskevi, 15341, Greece
| |
Collapse
|
4
|
Chen D, Wang Y, Zhou H, Huang Z, Zhang Y, Guo CF, Zhou H. Current and Future Trends for Polymer Micro/Nanoprocessing in Industrial Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200903. [PMID: 35313049 DOI: 10.1002/adma.202200903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Polymers are widely used in optical devices, electronic devices, energy-harvesting/storage devices, and sensors, owing to their low weight, excellent flexibility, and simple fabrication process. With advancements in micro/nanoprocessing techniques and more demanding application requirements, it is becoming necessary to realize high-resolution fabrication of polymers to prepare miniaturized devices. This is particularly because conventional processing technologies suffer from high thermal stress and strong adhesion/friction, which can irreversibly damage the micro/nanostructures of miniaturized devices. In addition, although the use of advanced fabrication methods to prepare high-resolution micro/nanostructures is explored, these methods are limited to laboratory research or small-batch production. This review focuses on the micro/nanoprocessing of polymeric materials and devices with high spatial precision and replication accuracy for industrial applications. Specifically, the current state-of-the-art techniques and future trends for micro/nanomolding, high-energy beam processing, and micro/nanomachining are discussed. Moreover, an overview of the fabrication and applications of various polymer-based elements and devices such as microlenses, biosensors, and transistors is provided. These techniques are expected to be widely applied for multiscale and multimaterial processing as well as for multifunction integration in next-generation integrated devices, such as photoelectric, smart, and biodegradable devices.
Collapse
Affiliation(s)
- Dan Chen
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yunming Wang
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Helezi Zhou
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhigao Huang
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yun Zhang
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chuan Fei Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Huamin Zhou
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
5
|
Mitmoen M, Kedem O. UV- and Visible-Light Photopatterning of Molecular Gradients Using the Thiol-yne Click Reaction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32696-32705. [PMID: 35816695 DOI: 10.1021/acsami.2c06946] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The rational design of chemical coatings is used to control surface interactions with small molecules, biomolecules, nanoparticles, and liquids as well as optical and other properties. Specifically, micropatterned surface coatings have been used in a wide variety of applications, including biosensing, cell growth assays, multiplexed biomolecule interaction arrays, and responsive surfaces. Here, a maskless photopatterning process is studied, using the photocatalyzed thiol-yne "click" reaction to create both binary and gradient patterns on thiolated surfaces. Nearly defect-free patterns are produced by first coating glass surfaces with mercaptopropylsilatrane, a silanizing agent that forms smoother self-assembled monolayers than the commonly used 3-mercaptopropyltrimethoxysilane. Photopatterning is then performed using UV (365 nm) or visible (405 nm) light to graft molecules onto the surface in tunable concentrations based on the local exposure. The technique is demonstrated for multiple types of molecular grafts, including fluorescent dyes, poly(ethylene glycol), and biotin, the latter allowing subsequent deposition of biomolecules via biotin-avidin binding. Patterning is demonstrated in water and dimethylformamide, and the process is repeated to combine molecules soluble in different phases. The combination of arbitrary gradient formation, broad applicability, a low defect rate, and fast prototyping thanks to the maskless nature of the process creates a particularly powerful technique for molecular surface patterning that could be used for a wide variety of micropatterned applications.
Collapse
Affiliation(s)
- Mark Mitmoen
- Department of Chemistry, Marquette University, 1414 W Clybourn Street, Milwaukee, Wisconsin 53233, United States
| | - Ofer Kedem
- Department of Chemistry, Marquette University, 1414 W Clybourn Street, Milwaukee, Wisconsin 53233, United States
| |
Collapse
|