1
|
Boretti G, Baldursson HE, Buonarrivo L, Simonsson S, Brynjólfsson S, Gargiulo P, Sigurjónsson ÓE. Mechanical and Biological Characterization of Ionic and Photo-Crosslinking Effects on Gelatin-Based Hydrogel for Cartilage Tissue Engineering Applications. Polymers (Basel) 2024; 16:2741. [PMID: 39408454 PMCID: PMC11479120 DOI: 10.3390/polym16192741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Articular cartilage degeneration poses a significant public health challenge; techniques such as 3D bioprinting are being explored for its regeneration in vitro. Gelatin-based hydrogels represent one of the most promising biopolymers used in cartilage tissue engineering, especially for its collagen composition and tunable mechanical properties. However, there are no standard protocols that define process parameters such as the crosslinking method to apply. To this aim, a reproducible study was conducted for exploring the influence of different crosslinking methods on 3D bioprinted gelatin structures. This study assessed mechanical properties and cell viability in relation to various crosslinking techniques, revealing promising results particularly for dual (photo + ionic) crosslinking methods, which achieved high cell viability and tunable stiffness. These findings offer new insights into the effects of crosslinking methods on 3D bioprinted gelatin for cartilage applications. For example, ionic and photo-crosslinking methods provide softer materials, with photo-crosslinking supporting cell stretching and diffusion, while ionic crosslinking preserves a spherical stem cell morphology. On the other hand, dual crosslinking provides a stiffer, optimized solution for creating stable cartilage-like constructs. The results of this study offer a new perspective on the standardization of gelatin for cartilage bioprinting, bridging the gap between research and clinical applications.
Collapse
Affiliation(s)
- Gabriele Boretti
- School of Science and Engineering, Reykjavik University, 102 Reykjavik, Iceland; (H.E.B.); (L.B.); (P.G.); (Ó.E.S.)
- Institute of Biomedical and Neural Engineering, Reykjavik University, 102 Reykjavik, Iceland
| | - Hafsteinn Esjar Baldursson
- School of Science and Engineering, Reykjavik University, 102 Reykjavik, Iceland; (H.E.B.); (L.B.); (P.G.); (Ó.E.S.)
| | - Luca Buonarrivo
- School of Science and Engineering, Reykjavik University, 102 Reykjavik, Iceland; (H.E.B.); (L.B.); (P.G.); (Ó.E.S.)
| | - Stina Simonsson
- Institute of Biomedicine, Department of Clinical Chemistry and Transfusion Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden;
| | - Sigurður Brynjólfsson
- Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland, 102 Reykjavik, Iceland;
| | - Paolo Gargiulo
- School of Science and Engineering, Reykjavik University, 102 Reykjavik, Iceland; (H.E.B.); (L.B.); (P.G.); (Ó.E.S.)
- Institute of Biomedical and Neural Engineering, Reykjavik University, 102 Reykjavik, Iceland
| | - Ólafur Eysteinn Sigurjónsson
- School of Science and Engineering, Reykjavik University, 102 Reykjavik, Iceland; (H.E.B.); (L.B.); (P.G.); (Ó.E.S.)
- The Blood Bank, Landspitali—The National University Hospital of Iceland, 101 Reykjavik, Iceland
| |
Collapse
|
2
|
Chandra DK, Reis RL, Kundu SC, Kumar A, Mahapatra C. Nanomaterials-Based Hybrid Bioink Platforms in Advancing 3D Bioprinting Technologies for Regenerative Medicine. ACS Biomater Sci Eng 2024; 10:4145-4174. [PMID: 38822783 DOI: 10.1021/acsbiomaterials.4c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
3D bioprinting is recognized as the ultimate additive biomanufacturing technology in tissue engineering and regeneration, augmented with intelligent bioinks and bioprinters to construct tissues or organs, thereby eliminating the stipulation for artificial organs. For 3D bioprinting of soft tissues, such as kidneys, hearts, and other human body parts, formulations of bioink with enhanced bioinspired rheological and mechanical properties were essential. Nanomaterials-based hybrid bioinks have the potential to overcome the above-mentioned problem and require much attention among researchers. Natural and synthetic nanomaterials such as carbon nanotubes, graphene oxides, titanium oxides, nanosilicates, nanoclay, nanocellulose, etc. and their blended have been used in various 3D bioprinters as bioinks and benefitted enhanced bioprintability, biocompatibility, and biodegradability. A limited number of articles were published, and the above-mentioned requirement pushed us to write this review. We reviewed, explored, and discussed the nanomaterials and nanocomposite-based hybrid bioinks for the 3D bioprinting technology, 3D bioprinters properties, natural, synthetic, and nanomaterial-based hybrid bioinks, including applications with challenges, limitations, ethical considerations, potential solution for future perspective, and technological advancement of efficient and cost-effective 3D bioprinting methods in tissue regeneration and healthcare.
Collapse
Affiliation(s)
- Dilip Kumar Chandra
- Department of Biotechnology, National Institute of Technology Raipur, G.E. Road, Raipur, Chhattisgarh 492010, India
| | - Rui L Reis
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimarães 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães 4800-058, Braga,Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimarães 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães 4800-058, Braga,Portugal
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology Raipur, G.E. Road, Raipur, Chhattisgarh 492010, India
| | - Chinmaya Mahapatra
- Department of Biotechnology, National Institute of Technology Raipur, G.E. Road, Raipur, Chhattisgarh 492010, India
| |
Collapse
|
3
|
Shashikumar U, Saraswat A, Deshmukh K, Hussain CM, Chandra P, Tsai PC, Huang PC, Chen YH, Ke LY, Lin YC, Chawla S, Ponnusamy VK. Innovative technologies for the fabrication of 3D/4D smart hydrogels and its biomedical applications - A comprehensive review. Adv Colloid Interface Sci 2024; 328:103163. [PMID: 38749384 DOI: 10.1016/j.cis.2024.103163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/18/2024] [Accepted: 04/21/2024] [Indexed: 05/26/2024]
Abstract
Repairing and regenerating damaged tissues or organs, and restoring their functioning has been the ultimate aim of medical innovations. 'Reviving healthcare' blends tissue engineering with alternative techniques such as hydrogels, which have emerged as vital tools in modern medicine. Additive manufacturing (AM) is a practical manufacturing revolution that uses building strategies like molding as a viable solution for precise hydrogel manufacturing. Recent advances in this technology have led to the successful manufacturing of hydrogels with enhanced reproducibility, accuracy, precision, and ease of fabrication. Hydrogels continue to metamorphose as the vital compatible bio-ink matrix for AM. AM hydrogels have paved the way for complex 3D/4D hydrogels that can be loaded with drugs or cells. Bio-mimicking 3D cell cultures designed via hydrogel-based AM is a groundbreaking in-vivo assessment tool in biomedical trials. This brief review focuses on preparations and applications of additively manufactured hydrogels in the biomedical spectrum, such as targeted drug delivery, 3D-cell culture, numerous regenerative strategies, biosensing, bioprinting, and cancer therapies. Prevalent AM techniques like extrusion, inkjet, digital light processing, and stereo-lithography have been explored with their setup and methodology to yield functional hydrogels. The perspectives, limitations, and the possible prospects of AM hydrogels have been critically examined in this study.
Collapse
Affiliation(s)
- Uday Shashikumar
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
| | - Aditya Saraswat
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Noida, UP, India
| | - Kalim Deshmukh
- New Technologies - Research Centre University of West Bohemia Univerzitní 2732/8, 30100, Plzeň, Czech Republic
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, India
| | - Pei-Chien Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Po-Chin Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes (NHRI), Miaoli County 35053, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Medical Research, China Medical University Hospital (CMUH), China Medical University (CMU), Taichung City, Taiwan
| | - Yi-Hsun Chen
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| | - Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yuan-Chung Lin
- Institute of Environmental Engineering, National Sun Yat-sen University (NSYSU), Kaohsiung City 804, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-sen University (NSYSU), Kaohsiung City 804, Taiwan.
| | - Shashi Chawla
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Noida, UP, India.
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-sen University (NSYSU), Kaohsiung City 804, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City 807, Taiwan; Department of Chemistry, National Sun Yat-sen University (NSYSU), Kaohsiung City 804, Taiwan.
| |
Collapse
|
4
|
Galocha-León C, Antich C, Voltes-Martínez A, Marchal JA, Mallandrich M, Halbaut L, Souto EB, Gálvez-Martín P, Clares-Naveros B. Human mesenchymal stromal cells-laden crosslinked hyaluronic acid-alginate bioink for 3D bioprinting applications in tissue engineering. Drug Deliv Transl Res 2024:10.1007/s13346-024-01596-9. [PMID: 38662335 DOI: 10.1007/s13346-024-01596-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2024] [Indexed: 04/26/2024]
Abstract
Three-dimensional (3D) bioprinting is considered one of the most advanced tools to build up materials for tissue engineering. The aim of this work was the design, development and characterization of a bioink composed of human mesenchymal stromal cells (hMSC) for extrusion through nozzles to create these 3D structures that might potentially be apply to replace the function of damaged natural tissue. In this study, we focused on the advantages and the wide potential of biocompatible biomaterials, such as hyaluronic acid and alginate for the inclusion of hMSC. The bioink was characterized for its physical (pH, osmolality, degradation, swelling, porosity, surface electrical properties, conductivity, and surface structure), mechanical (rheology and printability) and biological (viability and proliferation) properties. The developed bioink showed high porosity and high swelling capacity, while the degradation rate was dependent on the temperature. The bioink also showed negative electrical surface and appropriate rheological properties required for bioprinting. Moreover, stress-stability studies did not show any sign of physical instability. The developed bioink provided an excellent environment for the promotion of the viability and growth of hMSC cells. Our work reports the first-time study of the effect of storage temperature on the cell viability of bioinks, besides showing that our bioink promoted a high cell viability after being extruded by the bioprinter. These results support the suggestion that the developed hMSC-composed bioink fulfills all the requirements for tissue engineering and can be proposed as a biological tool with potential applications in regenerative medicine and tissue engineering.
Collapse
Grants
- Ministry of Economy and Competitiveness (FEDER funds), grant number RTC-2016-5451-1; Ministry of Economy and Competitiveness, Instituto de Salud Carlos III (FEDER funds), grant numbers DTS19/00143 and DTS17/00087); Consejería de Economía, Conocimiento, Emp Ministry of Economy and Competitiveness (FEDER funds), grant number RTC-2016-5451-1; Ministry of Economy and Competitiveness, Instituto de Salud Carlos III (FEDER funds), grant numbers DTS19/00143 and DTS17/00087); Consejería de Economía, Conocimiento, Emp
- FCT-Fundação para a Ciência e a Tecnologia, I.P., Lisbon, Portugal FCT-Fundação para a Ciência e a Tecnologia, I.P., Lisbon, Portugal
Collapse
Affiliation(s)
- Cristina Galocha-León
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, University Campus of Cartuja, 18071, Granada, Spain
| | - Cristina Antich
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100, Granada, Spain
- Biosanitary Institute of Granada (ibs. GRANADA), University Hospital of Granada-University of Granada, 18100, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18012, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016, Granada, Spain
| | - Ana Voltes-Martínez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100, Granada, Spain
- Biosanitary Institute of Granada (ibs. GRANADA), University Hospital of Granada-University of Granada, 18100, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18012, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016, Granada, Spain
- BioFab i3D Lab - Biofabrication and 3D (Bio)printing Singular Laboratory, University of Granada, 18100, Granada, Spain
| | - Juan A Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100, Granada, Spain
- Biosanitary Institute of Granada (ibs. GRANADA), University Hospital of Granada-University of Granada, 18100, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18012, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016, Granada, Spain
- BioFab i3D Lab - Biofabrication and 3D (Bio)printing Singular Laboratory, University of Granada, 18100, Granada, Spain
| | - Mireia Mallandrich
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
- Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Lyda Halbaut
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
- Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Eliana B Souto
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| | - Patricia Gálvez-Martín
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, University Campus of Cartuja, 18071, Granada, Spain
- R&D Human and Animal Health, Bioibérica S.A.U., 08029, Barcelona, Spain
| | - Beatriz Clares-Naveros
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, University Campus of Cartuja, 18071, Granada, Spain.
- Biosanitary Institute of Granada (ibs. GRANADA), University Hospital of Granada-University of Granada, 18100, Granada, Spain.
- Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, 08028, Barcelona, Spain.
| |
Collapse
|
5
|
Xu L, Wu C, Lay Yap P, Losic D, Zhu J, Yang Y, Qiao S, Ma L, Zhang Y, Wang H. Recent advances of silk fibroin materials: From molecular modification and matrix enhancement to possible encapsulation-related functional food applications. Food Chem 2024; 438:137964. [PMID: 37976879 DOI: 10.1016/j.foodchem.2023.137964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Silk fibroin materials are emergingly explored for food applications due to their inherent properties including safe oral consumption, biocompatibility, gelatinization, antioxidant performance, and mechanical properties. However, silk fibroin possesses drawbacks like brittleness owing to its inherent specific composition and structure, which limit their applications in this field. This review discusses current progress about molecular modification methods on silk fibroin such as extraction, blending, self-assembly, enzymatic catalysis, etc., to address these limitations and improve their physical/chemical properties. It also summarizes matrix enhancement strategies including freeze drying, spray drying, electrospinning/electrospraying, microfluidic spinning/wheel spinning, desolvation and supercritical fluid, to generate nano-, submicron-, micron-, or bulk-scale materials. It finally highlights the food applications of silk fibroin materials, including nutraceutical improvement, emulsions, enzyme immobilization and 3D/4D printing. This review also provides insights on potential opportunities (like safe modification, toxicity risk evaluation, and digestion conditions) and possibilities (like digital additive manufacturing) in functional food industry.
Collapse
Affiliation(s)
- Liang Xu
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 400715, PR China
| | - Chaoyang Wu
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Pei Lay Yap
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia; ARC Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Dusan Losic
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia; ARC Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Juncheng Zhu
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Yuxin Yang
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Shihao Qiao
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 400715, PR China.
| | - Hongxia Wang
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 400715, PR China.
| |
Collapse
|
6
|
Tolmacheva N, Bhattacharyya A, Noh I. Calcium Phosphate Biomaterials for 3D Bioprinting in Bone Tissue Engineering. Biomimetics (Basel) 2024; 9:95. [PMID: 38392140 PMCID: PMC10886915 DOI: 10.3390/biomimetics9020095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/12/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
Three-dimensional bioprinting is a promising technology for bone tissue engineering. However, most hydrogel bioinks lack the mechanical and post-printing fidelity properties suitable for such hard tissue regeneration. To overcome these weak properties, calcium phosphates can be employed in a bioink to compensate for the lack of certain characteristics. Further, the extracellular matrix of natural bone contains this mineral, resulting in its structural robustness. Thus, calcium phosphates are necessary components of bioink for bone tissue engineering. This review paper examines different recently explored calcium phosphates, as a component of potential bioinks, for the biological, mechanical and structural properties required of 3D bioprinted scaffolds, exploring their distinctive properties that render them favorable biomaterials for bone tissue engineering. The discussion encompasses recent applications and adaptations of 3D-printed scaffolds built with calcium phosphates, delving into the scientific reasons behind the prevalence of certain types of calcium phosphates over others. Additionally, this paper elucidates their interactions with polymer hydrogels for 3D bioprinting applications. Overall, the current status of calcium phosphate/hydrogel bioinks for 3D bioprinting in bone tissue engineering has been investigated.
Collapse
Affiliation(s)
- Nelli Tolmacheva
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Amitava Bhattacharyya
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
- Medical Electronics Research Center, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Insup Noh
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| |
Collapse
|
7
|
Patrocinio D, Galván-Chacón V, Gómez-Blanco JC, Miguel SP, Loureiro J, Ribeiro MP, Coutinho P, Pagador JB, Sanchez-Margallo FM. Biopolymers for Tissue Engineering: Crosslinking, Printing Techniques, and Applications. Gels 2023; 9:890. [PMID: 37998980 PMCID: PMC10670821 DOI: 10.3390/gels9110890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Currently, tissue engineering has been dedicated to the development of 3D structures through bioprinting techniques that aim to obtain personalized, dynamic, and complex hydrogel 3D structures. Among the different materials used for the fabrication of such structures, proteins and polysaccharides are the main biological compounds (biopolymers) selected for the bioink formulation. These biomaterials obtained from natural sources are commonly compatible with tissues and cells (biocompatibility), friendly with biological digestion processes (biodegradability), and provide specific macromolecular structural and mechanical properties (biomimicry). However, the rheological behaviors of these natural-based bioinks constitute the main challenge of the cell-laden printing process (bioprinting). For this reason, bioprinting usually requires chemical modifications and/or inter-macromolecular crosslinking. In this sense, a comprehensive analysis describing these biopolymers (natural proteins and polysaccharides)-based bioinks, their modifications, and their stimuli-responsive nature is performed. This manuscript is organized into three sections: (1) tissue engineering application, (2) crosslinking, and (3) bioprinting techniques, analyzing the current challenges and strengths of biopolymers in bioprinting. In conclusion, all hydrogels try to resemble extracellular matrix properties for bioprinted structures while maintaining good printability and stability during the printing process.
Collapse
Affiliation(s)
- David Patrocinio
- CCMIJU, Bioengineering and Health Technologies, Jesus Usón Minimally Invasive Surgery Center, 10071 Cáceres, Spain; (D.P.); (V.G.-C.); (J.B.P.)
| | - Victor Galván-Chacón
- CCMIJU, Bioengineering and Health Technologies, Jesus Usón Minimally Invasive Surgery Center, 10071 Cáceres, Spain; (D.P.); (V.G.-C.); (J.B.P.)
| | - J. Carlos Gómez-Blanco
- CCMIJU, Bioengineering and Health Technologies, Jesus Usón Minimally Invasive Surgery Center, 10071 Cáceres, Spain; (D.P.); (V.G.-C.); (J.B.P.)
| | - Sonia P. Miguel
- CPIRN-IPG, Center of Potential and Innovation of Natural Resources, Polytechnic of Guarda, 6300-559 Guarda, Portugal (M.P.R.)
- CICS-UBI, Health Science Research Center, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Jorge Loureiro
- CPIRN-IPG, Center of Potential and Innovation of Natural Resources, Polytechnic of Guarda, 6300-559 Guarda, Portugal (M.P.R.)
| | - Maximiano P. Ribeiro
- CPIRN-IPG, Center of Potential and Innovation of Natural Resources, Polytechnic of Guarda, 6300-559 Guarda, Portugal (M.P.R.)
- CICS-UBI, Health Science Research Center, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Paula Coutinho
- CPIRN-IPG, Center of Potential and Innovation of Natural Resources, Polytechnic of Guarda, 6300-559 Guarda, Portugal (M.P.R.)
- CICS-UBI, Health Science Research Center, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - J. Blas Pagador
- CCMIJU, Bioengineering and Health Technologies, Jesus Usón Minimally Invasive Surgery Center, 10071 Cáceres, Spain; (D.P.); (V.G.-C.); (J.B.P.)
- CIBER CV, Centro de Investigación Biomédica en Red—Enfermedades Cardiovasculares, 28029 Madrid, Spain;
| | - Francisco M. Sanchez-Margallo
- CIBER CV, Centro de Investigación Biomédica en Red—Enfermedades Cardiovasculares, 28029 Madrid, Spain;
- Scientific Direction, Jesus Usón Minimally Invasive Surgery Center, 10071 Cáceres, Spain
- TERAV/ISCIII, Red Española de Terapias Avanzadas, Instituto de Salud Carlos III (RICORS, RD21/0017/0029), 28029 Madrid, Spain
| |
Collapse
|
8
|
Phan TV, Oo Y, Rodboon T, Nguyen TT, Sariya L, Chaisuparat R, Phoolcharoen W, Yodmuang S, Ferreira JN. Plant molecular farming-derived epidermal growth factor revolutionizes hydrogels for improving glandular epithelial organoid biofabrication. SLAS Technol 2023; 28:278-291. [PMID: 36966988 DOI: 10.1016/j.slast.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/24/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023]
Abstract
Epidermal growth factor (EGF) is a known signaling cue essential towards the development and organoid biofabrication particularly for exocrine glands. This study developed an in vitro EGF delivery platform with Nicotiana benthamiana plant-produced EGF (P-EGF) encapsulated on hyaluronic acid/alginate (HA/Alg) hydrogel to improve the effectiveness of glandular organoid biofabrication in short-term culture systems. Primary submandibular gland epithelial cells were treated with 5 - 20 ng/mL of P-EGF and commercially available bacteria-derived EGF (B-EGF). Cell proliferation and metabolic activity were measured by MTT and luciferase-based ATP assays. P-EGF and B-EGF 5 - 20 ng/mL promoted glandular epithelial cell proliferation during 6 culture days on a comparable fashion. Organoid forming efficiency and cellular viability, ATP-dependent activity and expansion were evaluated using two EGF delivery systems, HA/Alg-based encapsulation and media supplementation. Phosphate buffered saline (PBS) was used as a control vehicle. Epithelial organoids fabricated from PBS-, B-EGF-, and P-EGF-encapsulated hydrogels were characterized genotypically, phenotypically and by functional assays. P-EGF-encapsulated hydrogel enhanced organoid formation efficiency and cellular viability and metabolism relative to P-EGF supplementation. At culture day 3, epithelial organoids developed from P-EGF-encapsulated HA/Alg platform contained functional cell clusters expressing specific glandular epithelial markers such as exocrine pro-acinar (AQP5, NKCC1, CHRM1, CHRM3, Mist1), ductal (K18, Krt19), and myoepithelial (α-SMA, Acta2), and possessed a high mitotic activity (38-62% Ki67 cells) with a large epithelial progenitor population (∼70% K14 cells). The P-EGF encapsulation strikingly upregulated the expression of pro-acinar AQP5 cells through culture time when compared to others (B-EGF, PBS). Thus, the utilization of Nicotiana benthamiana in molecular farming can produce EGF biologicals amenable to encapsulation in HA/Alg-based in vitro platforms, which can effectively and promptly induce the biofabrication of exocrine gland organoids.
Collapse
Affiliation(s)
- Toan V Phan
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; International Graduate Program in Oral Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Yamin Oo
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Teerapat Rodboon
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Truc T Nguyen
- Medical Sciences Program, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ladawan Sariya
- Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Risa Chaisuparat
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Oral Pathology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Waranyoo Phoolcharoen
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Supansa Yodmuang
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Joao N Ferreira
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
9
|
Bîrcă AC, Gherasim O, Niculescu AG, Grumezescu AM, Neacșu IA, Chircov C, Vasile BȘ, Oprea OC, Andronescu E, Stan MS, Curuțiu C, Dițu LM, Holban AM. A Microfluidic Approach for Synthesis of Silver Nanoparticles as a Potential Antimicrobial Agent in Alginate-Hyaluronic Acid-Based Wound Dressings. Int J Mol Sci 2023; 24:11466. [PMID: 37511219 PMCID: PMC10380883 DOI: 10.3390/ijms241411466] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The recognized antimicrobial activity of silver nanoparticles is a well-studied property, especially when designing and developing biomaterials with medical applications. As biological activity is closely related to the physicochemical characteristics of a material, aspects such as particle morphology and dimension should be considered. Microfluidic systems in continuous flow represent a promising method to control the size, shape, and size distribution of synthesized nanoparticles. Moreover, using microfluidics widens the synthesis options by creating and controlling parameters that are otherwise difficult to maintain in conventional batch procedures. This study used a microfluidic platform with a cross-shape design as an innovative method for synthesizing silver nanoparticles and varied the precursor concentration and the purging speed as experimental parameters. The compositional and microstructural characterization of the obtained samples was carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). Four formulations of alginate-based hydrogels with the addition of hyaluronic acid and silver nanoparticles were obtained to highlight the antimicrobial activity of silver nanoparticles and the efficiency of such a composite in wound treatment. The porous structure, swelling capacity, and biological properties were evaluated through physicochemical analysis (FT-IR and SEM) and through contact with prokaryotic and eukaryotic cells. The results of the physicochemical and biological investigations revealed desirable characteristics for performant wound dressings (i.e., biocompatibility, appropriate porous structure, swelling rate, and degradation rate, ability to inhibit biofilm formation, and cell growth stimulation capacity), and the obtained materials are thus recommended for treating chronic and infected wounds.
Collapse
Affiliation(s)
- Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Oana Gherasim
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Ionela Andreea Neacșu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Ovidiu Cristian Oprea
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Miruna Silvia Stan
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Carmen Curuțiu
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 077206 Bucharest, Romania
| | - Lia Mara Dițu
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 077206 Bucharest, Romania
| | - Alina Maria Holban
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 077206 Bucharest, Romania
| |
Collapse
|
10
|
Asim S, Tabish TA, Liaqat U, Ozbolat IT, Rizwan M. Advances in Gelatin Bioinks to Optimize Bioprinted Cell Functions. Adv Healthc Mater 2023; 12:e2203148. [PMID: 36802199 PMCID: PMC10330013 DOI: 10.1002/adhm.202203148] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/31/2023] [Indexed: 02/21/2023]
Abstract
Gelatin is a widely utilized bioprinting biomaterial due to its cell-adhesive and enzymatically cleavable properties, which improve cell adhesion and growth. Gelatin is often covalently cross-linked to stabilize bioprinted structures, yet the covalently cross-linked matrix is unable to recapitulate the dynamic microenvironment of the natural extracellular matrix (ECM), thereby limiting the functions of bioprinted cells. To some extent, a double network bioink can provide a more ECM-mimetic, bioprinted niche for cell growth. More recently, gelatin matrices are being designed using reversible cross-linking methods that can emulate the dynamic mechanical properties of the ECM. This review analyzes the progress in developing gelatin bioink formulations for 3D cell culture, and critically analyzes the bioprinting and cross-linking techniques, with a focus on strategies to optimize the functions of bioprinted cells. This review discusses new cross-linking chemistries that recapitulate the viscoelastic, stress-relaxing microenvironment of the ECM, and enable advanced cell functions, yet are less explored in engineering the gelatin bioink. Finally, this work presents the perspective on the areas of future research and argues that the next generation of gelatin bioinks should be designed by considering cell-matrix interactions, and bioprinted constructs should be validated against currently established 3D cell culture standards to achieve improved therapeutic outcomes.
Collapse
Affiliation(s)
- Saad Asim
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, 49931 USA
| | - Tanveer A. Tabish
- Cardiovascular Division, Radcliff Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Usman Liaqat
- Department of Materials Engineering, School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Pakistan
| | - Ibrahim T. Ozbolat
- Engineering Science and Mechanics, Penn State, University Park, PA 16802, USA
- Department of Biomedical Engineering, Penn State, University Park, PA 16802, USA
- Department of Neurosurgery, Penn State, Hershey, PA 16802, USA
- Department of Medical Oncology, Cukurova University, Adana 01330, Turkey
| | - Muhammad Rizwan
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, 49931 USA
- Health Research Institute, Michigan Technological University, Houghton, MI, 49931 USA
| |
Collapse
|
11
|
Simińska-Stanny J, Hachemi F, Dodi G, Cojocaru FD, Gardikiotis I, Podstawczyk D, Delporte C, Jiang G, Nie L, Shavandi A. Optimizing phenol-modified hyaluronic acid for designing shape-maintaining biofabricated hydrogel scaffolds in soft tissue engineering. Int J Biol Macromol 2023:125201. [PMID: 37270140 DOI: 10.1016/j.ijbiomac.2023.125201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/18/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
In this study, we developed a well-printable biomaterial ink for 3D printing of shape-maintaining hydrogel scaffolds. The hydrogel base comprised tyramine-modified hyaluronic acid (HA-Tyr) and gelatin methacrylate (GelMA) and was dually cross-linked. Using the Box-Behnken design, we explored how varying the ink composition affected fiber formation and shape preservation. By adjusting the polymer ratios, we produced a stable hydrogel with varying responses, from a viscous liquid to a thick gel, and optimized 3D scaffolds that were structurally stable both during and after printing, offering precision and flexibility. Our ink exhibited shear-thinning behavior and high swelling capacity, as well as ECM-like characteristics and biocompatibility, making it an ideal candidate for soft tissues matrices with storage modulus of around 300 Pa. Animal trials and CAM assays confirmed its biocompatibility and integration with host tissue.
Collapse
Affiliation(s)
- Julia Simińska-Stanny
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium; Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland
| | - Feza Hachemi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium; Université Paris Saclay, Polytech Paris Saclay, Rue Louis de Broglie, 91400 Orsay, France
| | - Gianina Dodi
- Faculty of Medical Bioengineering, Grigore T. Popa, University of Medicine and Pharmacy of Iasi, Romania
| | - Florina D Cojocaru
- Faculty of Medical Bioengineering, Grigore T. Popa, University of Medicine and Pharmacy of Iasi, Romania
| | - Ioannis Gardikiotis
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa, University of Medicine and Pharmacy of Iasi, Romania
| | - Daria Podstawczyk
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland
| | - Christine Delporte
- Université libre de Bruxelles (ULB), Faculté de Médecine, Campus Erasme - CP 611, Laboratory of Pathophysiological and Nutritional Biochemistry, Route de Lennik, 808, 1070 Bruxelles, Belgium
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China; International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers, Zhejiang Sci-Tech University, Hangzhou, China
| | - Lei Nie
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium; College of Life Science, Xinyang Normal University, Xinyang, China
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium.
| |
Collapse
|
12
|
Murphy EJ, Fehrenbach GW, Abidin IZ, Buckley C, Montgomery T, Pogue R, Murray P, Major I, Rezoagli E. Polysaccharides-Naturally Occurring Immune Modulators. Polymers (Basel) 2023; 15:polym15102373. [PMID: 37242947 DOI: 10.3390/polym15102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/06/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
The prevention of disease and infection requires immune systems that operate effectively. This is accomplished by the elimination of infections and abnormal cells. Immune or biological therapy treats disease by either stimulating or inhibiting the immune system, dependent upon the circumstances. In plants, animals, and microbes, polysaccharides are abundant biomacromolecules. Due to the intricacy of their structure, polysaccharides may interact with and impact the immune response; hence, they play a crucial role in the treatment of several human illnesses. There is an urgent need for the identification of natural biomolecules that may prevent infection and treat chronic disease. This article addresses some of the naturally occurring polysaccharides of known therapeutic potential that have already been identified. This article also discusses extraction methods and immunological modulatory capabilities.
Collapse
Affiliation(s)
- Emma J Murphy
- Shannon Applied Biotechnology Centre, Midwest Campus, Technological University of the Shannon, V94EC5T Limerick, Ireland
- LIFE-Health and Biosciences Research Institute, Midwest Campus, Technological University of the Shannon, V94EC5T Limerick, Ireland
- PRISM, Research Institute, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
| | - Gustavo Waltzer Fehrenbach
- PRISM, Research Institute, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
- Applied Polymer Technologies, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
| | - Ismin Zainol Abidin
- PRISM, Research Institute, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
- Applied Polymer Technologies, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
| | - Ciara Buckley
- PRISM, Research Institute, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
- Applied Polymer Technologies, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
| | - Therese Montgomery
- School of Science and Computing, Atlantic Technological University, H91 T8NW Galway, Ireland
| | - Robert Pogue
- Universidade Católica de Brasilia, QS 7 LOTE 1-Taguatinga, Brasília 71680-613, DF, Brazil
| | - Patrick Murray
- Shannon Applied Biotechnology Centre, Midwest Campus, Technological University of the Shannon, V94EC5T Limerick, Ireland
- LIFE-Health and Biosciences Research Institute, Midwest Campus, Technological University of the Shannon, V94EC5T Limerick, Ireland
| | - Ian Major
- PRISM, Research Institute, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
- Applied Polymer Technologies, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
| | - Emanuele Rezoagli
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
13
|
Ghaffari-Bohlouli P, Simińska-Stanny J, Jafari H, Mirzaei M, Nie L, Delporte C, Shavandi A. Printable hyaluronic acid hydrogel functionalized with yeast-derived peptide for skin wound healing. Int J Biol Macromol 2023; 232:123348. [PMID: 36682658 DOI: 10.1016/j.ijbiomac.2023.123348] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/02/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Targeted delivery of bioactive agents, growth factors, and drugs to skin wounds is a growing trend in biomaterials development for wound healing. This study presents a printable hyaluronic acid (HA) based hydrogel to deliver yeast-derived ACE-inhibitory peptide of VLSTSFPPW (VW-9) to the wound site. We first conjugated tyramine (Ty) on the carboxyl groups of the HA to form a phenol-functionalized HA (HA-Ty); then, the carboxylic acid groups of HA-Ty were aminated with ethylenediamine (HA-Ty-NH2). The primary amine groups of the HA-Ty-NH2 could then react with the carboxylic acids of the peptide. The hydrogel was then 3D printed and crosslinked with visible light. The modification of HA was confirmed by 1H NMR and FTIR. The swelling capacity of the conjugated hydrogels was 1.5-fold higher compared to the HA-Ty-NH2 hydrogel. The conjugated peptide did not affect on rheological properties and morphology of the hydrogels. The 3T3-L1 fibroblast cells seeded on the peptide-modified hydrogels exhibited higher viability than the hydrogels without the peptide, indicating that the peptide-enriched hydrogels may have the potential for wound healing applications.
Collapse
Affiliation(s)
- Pejman Ghaffari-Bohlouli
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50, CP 165/61, 1050 Brussels, Belgium
| | - Julia Simińska-Stanny
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50, CP 165/61, 1050 Brussels, Belgium
| | - Hafez Jafari
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50, CP 165/61, 1050 Brussels, Belgium
| | - Mahta Mirzaei
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50, CP 165/61, 1050 Brussels, Belgium; Centre for Food Chemistry and Technology, Ghent University Global Campus, Incheon, South Korea; Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, geb. A, B-9000 Ghent, Belgium
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China.
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Medical School, Université Libre de Bruxelles, Route de Lennik, 808, CP611, Brussels 1070, Belgium
| | - Amin Shavandi
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50, CP 165/61, 1050 Brussels, Belgium.
| |
Collapse
|
14
|
Kishore A, Mithul Aravind S, Singh A. Bionanocomposites for active and smart food packaging: A review on its application, safety, and health aspects. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
15
|
Janarthanan G, Kim JH, Kim IG, Lee C, Chung EJ, Noh I. Manufacturing of self-standing multi-layered 3D-bioprinted alginate-hyaluronate constructs by controlling the cross-linking mechanisms for tissue engineering applications. Biofabrication 2022; 14. [PMID: 35504259 DOI: 10.1088/1758-5090/ac6c4c] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/03/2022] [Indexed: 11/12/2022]
Abstract
3D bioprinting of self-supporting stable tissue and organ structure is critically important in extrusion-based bioprinting system, especially for tissue engineering and regenerative medicine applications. However, the development of self-standing bioinks with desired crosslinking density, biocompatibility, tunable mechanical strength and other properties like self-healing, in situ gelation, drug or protein incorporation is still a challenge. In this study, we report a hydrogel bioink prepared from alginate (Alg) and hyaluronic acid (HA) crosslinked through multiple crosslinking mechanisms, i.e., acyl-hydrazone, hydrazide interactions and calcium ions. These Alg-HA gels were highly dynamic and shear-thinning with exceptional biocompatibility and tunable mechanical properties. The increased dynamic nature of the gels is mainly chemically attributed to the presence of acyl-hydrazone bonds formed between the amine groups of the acyl-hydrazide of alginate and the monoaldehyde of the hyaluronic acid. Among the different combinations of Alg-HA gel compositions prepared, the A5H5 (Alginate-acyl-hydrazide: HA-monoaldehyde, ratio 50:50) one showed a gelation time of ~60 s, viscosity of ~400 Pa.s (at zero shear rate), high stability in various pH solutions and increased degradation time (>50 days) than the other samples. The A5H5 gels showed high printability with increased post-printing stability as observed from the 3D printed structures (e.g., hollow tube (~100 layers), porous cube (~50 layers), star, heart-in, meniscus and lattice). The scanning electron microscopy analysis of the 3D constructs and hydrogels showed the interconnected pores (~181 µm) and crosslinked networks. Further, the gels showed sustained release of 5-amino salicylic acid and bovine serum albumin. Also, the mechanical properties were tuned by secondary crosslinking via different calcium concentrations. In vitro assays confirmed the cytocompatibility of these gels, where the 3D bioprinted lattice and tubular (~70 layers) constructs demonstrated high cell viability under fluorescence analysis. In in vivo studies, Alg-HA gel showed high biocompatibility (>90%) and increased angiogenesis (3 folds) and reduced macrophage infiltration (2-fold decrease), demonstrating the promising potential of these hydrogels in 3D bioprinting applications for tissue engineering and regenerative medicine with tunable properties.
Collapse
Affiliation(s)
- Gopinathan Janarthanan
- Dept of chemical and biomolecular engineering, Seoul National University of Science and Technology, Seoul National University of Science and Technology (Seoul Tech), 223-1, 6-Chungun Hall, Gongneung-ro 232, Nowon-Gu, Seoul 01811, Nowon-gu, 01811, Korea (the Republic of)
| | - Jung Hyun Kim
- Seoul National University of Science and Technology, Gongnung-ro 232, Nowon-gu, Chung Hall 223-1, Nowon-gu, Seoul, 01811, Korea (the Republic of)
| | - In-Gul Kim
- Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, Republic of Korea, Seoul, 03080, Korea (the Republic of)
| | - Chibum Lee
- Mechanical System Design Engineering, Seoul National University of Science and Technology, Frontier Bldg, RM904, 232 Gongreung-Ro, Nowon-Gu, Seoul, 01811, Korea (the Republic of)
| | - Eun-Jae Chung
- Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, Republic of Korea, Jongno-gu, 03080, Korea (the Republic of)
| | - Insup Noh
- Department of Chemical Engineering, Seoul National University of Science and Technology, 172 Gongnung-dong,, Nowon-gu, Seoul, 139-743, Korea, Nowon-gu, 01811, Korea (the Republic of)
| |
Collapse
|