1
|
Li Y, Pu ZW, Yang ZZ, Wang YD, Shen YT, Wu JB, Long L, Zhou YN, Yan WC. Design and synthesis of fluorinated polyimides with low thermal expansion and enhanced dielectric properties. J Colloid Interface Sci 2025; 685:938-947. [PMID: 39874830 DOI: 10.1016/j.jcis.2025.01.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/10/2025] [Accepted: 01/22/2025] [Indexed: 01/30/2025]
Abstract
Modern microelectronics industries urgently require dielectric materials with low thermal expansion coefficients, low dielectric constants, and minimal dielectric loss. However, the design principles of materials with low dielectric constants and low thermal expansion are contradictory. In this study, a new diamine monomer containing a dibenzocyclooctadiene unit (DBCOD-NH2) was designed and synthesized, which was subsequently polymerized with high fluorine content 4,4'-hexafluoroisopr-opylidene diphthalic anhydride and 4,4'-diamino-2,2'-bis(trifleoromethyl)biphenyl to obtain a series of fluorinated polyimides (PIs). Due to the unique conformational transition of the eight-membered carbon ring, the resulting PI can reach a low averaging thermal expansion coefficient (CTE) of only 12.27 ppm/K over 5-150 ℃ with a size change rate of only 0.16 %. Surprisingly, the synergistic effect of DBCOD-NH2 with the other two monomers enhances the dielectric performance of the PIs. At an electric field frequency of 10 MHz, the dielectric constant (Dk) and the dielectric loss (Df) can be reduced to as low as 2.61 and 0.00194, respectively. The strategy used herein largely tackles the challenge of balancing low Dk with low CTE. Furthermore, these PI films also exhibit good thermal stability (with 5 wt% weight loss temperatures ranging from 453 to 537 ℃ in N2, and glass transition temperatures of 305-337 ℃) and robust mechanical properties (with a tensile modulus of 1.88-2.29 GPa and an elongation at break of 6.36-8.11 %). The combination of low thermal expansion and excellent dielectric properties renders these PIs highly promising for applications in the microelectronics and telecommunications industries.
Collapse
Affiliation(s)
- Yang Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Zhong-Wen Pu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Zhi-Zhou Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Yi-Da Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Yu-Tang Shen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Jing-Bo Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Lingliang Long
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
| | - Yin-Ning Zhou
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Wei-Cheng Yan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
| |
Collapse
|
2
|
Shi Y, Hu J, Li X, Jian J, Jiang L, Yin C, Xi Y, Huang K, Su L, Zhou L. High comprehensive properties of colorless transparent polyimide films derived from fluorine-containing and ether-containing dianhydride. RSC Adv 2024; 14:32613-32623. [PMID: 39416376 PMCID: PMC11480813 DOI: 10.1039/d4ra05505e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Fluorinated colorless transparent polyimide (CPI) films are crucial for flexible displays and wearable devices, but their development is limited by high costs and relatively low mechanical properties. In this study, a series of colorless transparent polyimide films was synthesized by incorporating the cost-effective ether-containing diamine, 4,4'-isopropylidenediphenoxy bis(phthalic anhydride) (BPADA), into commercially available 4,4'-(hexafluoroisopropyl)diphthalic anhydride (6FDA) and 2,2'-bis(trifluoromethyl)benzidine (TFMB). The comprehensive properties of the films were systematically investigated using a combination of experimental and numerical methods, including molecular dynamics (MD) simulations and density functional theory (DFT). This study focuses on exploring the influence of varying dianhydride ratios on the aforementioned properties. The incorporation of BPADA in the dianhydride significantly enhances the mechanical properties and flexibility of the film. When the ratio of ether anhydride to fluorine anhydride is 4 : 6 (CPI-4), the tensile strength is 135.3 MPa, and the elongation at break is 8.3%, which is 109.6% and 118.45% higher than that of the original film without ether anhydride. This research provides valuable insights for the future application of new polyimide materials in flexible display devices.
Collapse
Affiliation(s)
- Yan Shi
- Institute of Photovoltaics, Nanchang University Nanchang 330031 P. R. China
| | - Jinzhi Hu
- Institute of Photovoltaics, Nanchang University Nanchang 330031 P. R. China
| | - Xiaomin Li
- Institute of Photovoltaics, Nanchang University Nanchang 330031 P. R. China
- Institute of New Materials Technology, NCU-GQC Institute of PV-HE-ES Technology Jiujiang 332020 P. R. China
| | - Jing Jian
- Institute of Photovoltaics, Nanchang University Nanchang 330031 P. R. China
| | - Lili Jiang
- Institute of Photovoltaics, Nanchang University Nanchang 330031 P. R. China
| | - Chuanqiang Yin
- Institute of Photovoltaics, Nanchang University Nanchang 330031 P. R. China
- Institute of New Materials Technology, NCU-GQC Institute of PV-HE-ES Technology Jiujiang 332020 P. R. China
| | - Yuchun Xi
- Institute of New Materials Technology, NCU-GQC Institute of PV-HE-ES Technology Jiujiang 332020 P. R. China
| | - Kai Huang
- Institute of Photovoltaics, Nanchang University Nanchang 330031 P. R. China
| | - Liejun Su
- Institute of Photovoltaics, Nanchang University Nanchang 330031 P. R. China
| | - Lang Zhou
- Institute of Photovoltaics, Nanchang University Nanchang 330031 P. R. China
- Institute of New Materials Technology, NCU-GQC Institute of PV-HE-ES Technology Jiujiang 332020 P. R. China
| |
Collapse
|
3
|
Fang Y, Lu X, Xiao J, Zhang SY, Lu Q. Thermally Stable and Transparent Polyimide Derived from Side-Group-Regulated Spirobifluorene Unit for Substrate Application. Macromol Rapid Commun 2024; 45:e2400245. [PMID: 39012277 DOI: 10.1002/marc.202400245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/03/2024] [Indexed: 07/17/2024]
Abstract
Advancements in flexible electronic technology, especially the progress in foldable displays and under-display cameras (UDC), have created an urgent demand for high-performance colorless polyimide (CPI). However, current CPIs lack sufficient heat resistance for substrate applications. In this work, four kinds of rigid spirobifluorene diamines are designed, and the corresponding polyimides are prepared by their condensation with 5,5'-(perfluoropropane-2,2-diyl) bis(isobenzofuran-1,3-dione) (6FDA) or 9,9-bis(3,4-dicarboxyphenyl) fluorene dianhydride (BPAF). The rigid and conjugated spirobifluorene units endow the polyimides with higher glass transition temperature (Tg) ranging from 356 to 468 °C. Their optical properties are regulated by small side groups and spirobifluorene structure with a periodically twisted molecular conformation. Consequently, a series of CPIs with an average transmittance ranging from 75% to 88% and a yellowness index (YI) as low as 2.48 are obtained. Among these, 27SPFTFA-BPAF presents excellent comprehensive performance, with a Tg of 422 °C, a 5 wt.% loss temperature (Td5) of 562 °C, a YI of 3.53, and a tensile strength (δmax) of 140 MPa, respectively. The mechanism underlying the structure-property relationship is investigated by experimental comparison and theoretical calculation, and the proposed method provides a pathway for designing highly rigid conjugated CPIs with excellent thermal stability and transparency for photoelectric engineering.
Collapse
Affiliation(s)
- Yunzhi Fang
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xuemin Lu
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Junjie Xiao
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shu-Yu Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- Qinghai Institute of Salt Lakes, Key Laboratory of Green and High-End Utilization of Salt Lake Resources, Chinese Academy of Sciences, Xining, 810008, P. R. China
| | - Qinghua Lu
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
4
|
Zhang Q, Wang T, Du R, Zheng J, Wei H, Cao X, Liu X. Highly Stable Polyimide Composite Nanofiber Membranes with Spectrally Selective for Passive Daytime Radiative Cooling. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40069-40076. [PMID: 39037051 DOI: 10.1021/acsami.4c09549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Passive radiative cooling technology without electric consumption is an emerging sustainability technology that plays a key role in advancing sustainable development. However, most radiative cooling materials are vulnerable to outdoor contamination and thermal/UV exposure, which leads to decreased performance. Herein, we report a hierarchically structured polyimide/zinc oxide (PINF/ZnO) composite membrane that integrates sunlight reflectance of 91.4% in the main thermal effect of the solar spectrum (0.78-1.1 μm), the mid-infrared emissivity of 90.0% (8-13 μm), UV shielding performance, thermal resistance, and ideal hydrophobicity. The comprehensive performance enables the composite membrane to yield a temperature drop of ∼9.3 °C, compared to the air temperature, under the peak solar irradiance of ∼800 W m-2. In addition, the temperature drop of as-obtained composite membranes after heating at 200 °C for 6 h in a nitrogen/air atmosphere can be well maintained at ∼9.0 °C, demonstrating their ideal radiative cooling effect in a high-temperature environment. Additionally, the PINF/ZnO composite membrane shows excellent chemical durability after exposure to the outdoor environment. This work provides a new strategy to integrate chemical durability and thermal resistance with radiative cooling, presenting great potential for passive radiative cooling materials toward practical applications in harsh environments.
Collapse
Affiliation(s)
- Qiaoran Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Tengrui Wang
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Ran Du
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jiayi Zheng
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Hongliang Wei
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xiaoyu Cao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xianhu Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| |
Collapse
|
5
|
Li Q, Guo Y, Wu M, Deng F, Feng J, Liu J, Liu S, Ouyang C, Duan W, Yi S, Liao G. Fluorinated Polyimide/Allomelanin Nanocomposites for UV-Shielding Applications. Molecules 2023; 28:5523. [PMID: 37513395 PMCID: PMC10386243 DOI: 10.3390/molecules28145523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
A series of highly fluorinated polyimide/allomelanin nanoparticles (FPI/AMNPs) films were prepared with FPI as the matrix and AMNPs as the filler. Due to the formation of hydrogen bonds, significantly reinforced mechanical and UV-shielding properties are acquired. Stress-strain curves demonstrated a maximum tensile strength of 150.59 MPa and a fracture elongation of 1.40% (0.7 wt.% AMNPs), respectively, 1.78 and 1.56× that of pure FPI. The measurements of the UV-vis spectrum, photodegradation of curcumin and repeated running tests confirmed the splendid UV-shielding capabilities of FPI/AMNPs films. The enhancement mechanisms, such as synergistic UV absorption of the charge transfer complexes in FPI and AMNPs and photothermal conversion, were the reasons for its exceptional UV shielding. The excellent comprehensive properties above enable FPI/AMNPs nanocomposites to be potential candidates in the field of UV shielding.
Collapse
Affiliation(s)
- Qing Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
- Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530105, China
| | - Yujuan Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Meijia Wu
- Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530105, China
| | - Fei Deng
- Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530105, China
| | - Jieying Feng
- Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530105, China
| | - Jiafeng Liu
- Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530105, China
| | - Sheng Liu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
- Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530105, China
| | - Chaoliu Ouyang
- Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530105, China
| | - Wengui Duan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Shunmin Yi
- Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530105, China
| | - Guangfu Liao
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
6
|
Li D, Li D, Ke Z, Gu Q, Xu K, Chen C, Qian G, Liu G. Synthesis of colorless polyimides with high
T
g
and low coefficient of thermal expansion from benzimidazole diamine containing biamide. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20230055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Dongwu Li
- Center for Advanced Low‐Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering Donghua University Shanghai People's Republic of China
| | - Dandan Li
- Center for Advanced Low‐Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering Donghua University Shanghai People's Republic of China
| | - Zhao Ke
- Center for Advanced Low‐Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering Donghua University Shanghai People's Republic of China
| | - Qian Gu
- Center for Advanced Low‐Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering Donghua University Shanghai People's Republic of China
| | - Ke Xu
- Center for Advanced Low‐Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering Donghua University Shanghai People's Republic of China
| | - Chunhai Chen
- Center for Advanced Low‐Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering Donghua University Shanghai People's Republic of China
| | - Guangtao Qian
- Center for Civil Aviation Composites Donghua University Shanghai People's Republic of China
| | - Gang Liu
- Center for Advanced Low‐Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering Donghua University Shanghai People's Republic of China
| |
Collapse
|
7
|
Achieving both low thermal expansion and low birefringence for polyimides by regulating chain structures. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
8
|
Lin CL, Lin WL, Rwei SP. Synthesis and characterization of poly(urethane-imide) derived from structural effect of diisocyanates. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-022-03408-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Design and preparation of thermoplastic polyimides with high transmittance based on 4,4'-(4,4'-isopropyldiphenoxy)bis(phthalic anhydride) (BPADA). Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Li D, Wang C, Yan X, Ma S, Lu R, Qian G, Zhou H. Heat-resistant colorless polyimides from benzimidazole diamines: Synthesis and properties. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|