1
|
Alharthi KF, Baotob SM, Bankhar AM, Alsehli AA, Idris IA, Badawood MS, Alharbi WK, Almatrafi MM, Mahrous AJ, Thabit AK. Characteristics and outcomes of urinary tract infections caused by Enterococci: A multicenter retrospective study from two tertiary hospitals in Saudi Arabia. J Infect Chemother 2024; 30:1190-1193. [PMID: 38942290 DOI: 10.1016/j.jiac.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/20/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Enterococci are Gram-positive coccus bacteria that are normally present in the gastrointestinal tract and ordinarily function commensally with humans. Very few studies have investigated the characteristics of enterococcal infections. We aimed to characterize patients with urinary tract infections (UTIs) due to Enterococci and their outcomes. This was a retrospective cohort study between June 2012-November 2022. Patients who had clinically and microbiologically confirmed Enterococcal UTI based on a urine culture positive for E. faecalis or E. faecium with a count of ≥105 CFU/mL and having urinary tract symptoms were included. A total of 396 patients were eligible and included. The patients had a median age of 61 years and were mostly females (56.8 %). The most common characteristics were hospitalization in a non-ICU ward, having a urinary catheter, and recent use of antibiotics within the last 3 months (66.4 %, 59.3 %, and 51.8 %, respectively). Infection with E. faecalis was more common than E. faecium (77.3 % vs. 22.7 %). However, the latter exhibited higher rates of antibiotic resistance (P < 0.001 to several antibiotics) and was associated with significantly higher median C-reactive protein level (26.7 vs. 13 mg/dL; P = 0.025), mortality (23 % vs. 10.1 %; P = 0.002), and median length of stay (25 vs. 11.5 days; P < 0.001). We found that most patients with enterococcal UTIs had a history of having a urinary catheter and recent antibiotic use and were mostly females and hospitalized in non-ICU wards. E. faecium-infected patients experienced more severe episodes and poorer outcomes compared to patients infected with E. faecalis; thus, would need more aggressive therapy.
Collapse
Affiliation(s)
- Khaled F Alharthi
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Salem M Baotob
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Atheer A Alsehli
- College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Israa A Idris
- College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | | | | | - Malak M Almatrafi
- Department of Pharmaceutical Care, King Abdullah Medical City, Makkah, Saudi Arabia
| | - Ahmad J Mahrous
- Department of Pharmaceutical Practice, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abrar K Thabit
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
2
|
Stangl FP. [Bacterial vaccines for the management of recurrent urinary tract infections: a systematic review and meta-analysis]. UROLOGIE (HEIDELBERG, GERMANY) 2024; 63:1047-1049. [PMID: 39331125 PMCID: PMC11458646 DOI: 10.1007/s00120-024-02444-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/28/2024]
Affiliation(s)
- Fabian P Stangl
- Universitätsklinik für Urologie, Inselspital Bern, Freiburgstraße 41c, 3010, Bern, Schweiz.
| |
Collapse
|
3
|
Kavanaugh LG, Dey D, Shafer WM, Conn GL. Structural and functional diversity of Resistance-Nodulation-Division (RND) efflux pump transporters with implications for antimicrobial resistance. Microbiol Mol Biol Rev 2024; 88:e0008923. [PMID: 39235227 PMCID: PMC11426026 DOI: 10.1128/mmbr.00089-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
SUMMARYThe discovery of bacterial efflux pumps significantly advanced our understanding of how bacteria can resist cytotoxic compounds that they encounter. Within the structurally and functionally distinct families of efflux pumps, those of the Resistance-Nodulation-Division (RND) superfamily are noteworthy for their ability to reduce the intracellular concentration of structurally diverse antimicrobials. RND systems are possessed by many Gram-negative bacteria, including those causing serious human disease, and frequently contribute to resistance to multiple antibiotics. Herein, we review the current literature on the structure-function relationships of representative transporter proteins of tripartite RND efflux pumps of clinically important pathogens. We emphasize their contribution to bacterial resistance to clinically used antibiotics, host defense antimicrobials and other biocides, as well as highlighting structural similarities and differences among efflux transporters that help bacteria survive in the face of antimicrobials. Furthermore, we discuss technical advances that have facilitated and advanced efflux pump research and suggest future areas of investigation that will advance antimicrobial development efforts.
Collapse
Affiliation(s)
- Logan G Kavanaugh
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
- Graduate Program in Microbiology and Molecular Genetics, Emory University, Atlanta, Georgia, USA
| | - Debayan Dey
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - William M Shafer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Laboratories of Microbial Pathogenesis, VA Medical Research Service, Veterans Affairs Medical Center, Decatur, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Golpasand T, Keshvari M, Behzadi P. Distribution of chaperone-usher fimbriae and curli fimbriae among uropathogenic Escherichia coli. BMC Microbiol 2024; 24:344. [PMID: 39271999 PMCID: PMC11401301 DOI: 10.1186/s12866-024-03472-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND In the present study, we aimed to determine the frequency of the csgA, fimH, mrkD, foc, papaGI, papGII and papGIII genes, to provide and to design fimbrial adhesin gene (FAG) patterns and profiles for the isolated uropathogenic Escherichia coli (UPEC) strains. METHODS The enrollment of 108 positive urine samples was performed during seven months, between January 2022 and July 2022. The UPEC strains were confirmed through the standard microbiological and biochemical tests. The antimicrobial susceptibility test was performed through the Kirby-Bauer disc diffusion method. Molecular screening of FAGs was done through the polymerase chain reaction technology. The statistical analyses including chi square and Fisher's exact tests were performed to interpret the obtained results in the present study. RESULTS As the main results, the antimicrobial resistance (AMR) patterns, multi- (MDR) and extensively drug-resistance (XDR) patterns and FAG patterns were designed and provided. fimH (93.3%), csgA (90.4%) and papG (37.5%) (papGII (30.8%)) genes were recognized as the top three FAGs, respectively. Moreover, the frequency of csgA-fimH gene profile was identified as the top FAG pattern (46.2%) among the others. The isolates bearing csgA-fimH gene profile were armed with a versatile of phenotypic AMR patterns. In the current study, 27.8%, 69.4% and 1.9% of the UPEC isolates were detected as extended-spectrum ß-lactamases (ESBLs) producers, MDR and XDR strains, respectively. CONCLUSIONS In conclusion, detection, providing and designing of patterns and profiles in association with FAGs, AMR feature in UPEC strains give us an effective option to have a successful and influential prevention for both of UTIs initiation and AMR feature.
Collapse
Affiliation(s)
- Taha Golpasand
- Department of Microbiology, Shahr-E-Qods Branch, Islamic Azad University, Tehran, 37541-374, Iran
| | - Mohammad Keshvari
- Department of Microbiology, Shahr-E-Qods Branch, Islamic Azad University, Tehran, 37541-374, Iran
| | - Payam Behzadi
- Department of Microbiology, Shahr-E-Qods Branch, Islamic Azad University, Tehran, 37541-374, Iran.
| |
Collapse
|
5
|
Alateeq NM, Mohammed MB, Alsubaie AT, Alshehri AA, Attallah D, Agabawi S, Thabit AK. Beyond urinalysis: evaluation of various clinical and laboratory reflex criteria to warrant urine culture collection in the emergency department. Int J Emerg Med 2024; 17:77. [PMID: 38926667 PMCID: PMC11201778 DOI: 10.1186/s12245-024-00656-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Clinical criteria are essential for diagnosing urinary tract infections (UTIs) followed by urine testing, including urinalysis (UA). No study has evaluated the potential related factors that may guide the appropriate collection of urine cultures. Therefore, we aimed to assess the factors that may guide the appropriate collection of urine cultures. METHODS This was a case-control study of patients for whom a urine culture and a UA were ordered in the emergency department (ED) between February 2018 and December 2022. The cases included patients with positive cultures, whereas the controls included patients without growth. Patients were excluded if they were pregnant, underwent any urological procedure, received antibiotics within 3 days before ED presentation, or before culture collection. RESULTS Of the 263 patients, 123 had growth and 140 did not have growth in urine cultures. In the univariate analysis, female gender, urinary symptoms, urinary white blood cell (WBC) count > 5 cells/hpf, and nitrite in urine were significantly associated with growth (P < 0.05). However, only female gender (aOR, 1.86; 95% CI, 1.06-3.24), urinary WBC count > 5 cells/hpf (aOR, 4.60; 95% CI, 2.21-9.59), and positive nitrite in urine (aOR, 21.90; 95% CI, 2.80-171.00) remained significant in the multivariable analysis. These factors also remained significant in the subgroup of patients with urinary symptoms, except for the female gender. CONCLUSION A high urinary WBC count and positive nitrite in UA should be utilized as a guide to collect urine culture, particularly in female patients, to limit the unnecessary ordering of urine culture in the ED. These factors can be used as evidence-based UA reflex criteria as an antimicrobial stewardship intervention.
Collapse
Affiliation(s)
- Nada M Alateeq
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, 7027 Abdullah Al-Sulaiman Rd Jeddah, Jeddah, 22254-2265, Saudi Arabia
| | - Manal B Mohammed
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, 7027 Abdullah Al-Sulaiman Rd Jeddah, Jeddah, 22254-2265, Saudi Arabia
| | - Albandari T Alsubaie
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, 7027 Abdullah Al-Sulaiman Rd Jeddah, Jeddah, 22254-2265, Saudi Arabia
| | - Amal A Alshehri
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, 7027 Abdullah Al-Sulaiman Rd Jeddah, Jeddah, 22254-2265, Saudi Arabia
| | - Dalya Attallah
- Department of Clinical and Molecular Microbiology Laboratory, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Salem Agabawi
- Department of Internal Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abrar K Thabit
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, 7027 Abdullah Al-Sulaiman Rd Jeddah, Jeddah, 22254-2265, Saudi Arabia.
| |
Collapse
|
6
|
Elia J, Hafron J, Holton M, Ervin C, Hollander MB, Kapoor DA. The Impact of Polymerase Chain Reaction Urine Testing on Clinical Decision-Making in the Management of Complex Urinary Tract Infections. Int J Mol Sci 2024; 25:6616. [PMID: 38928323 PMCID: PMC11203880 DOI: 10.3390/ijms25126616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
While urinary polymerase chain reaction (PCR) testing is effective in organism identification in patients with complex urinary tract infections (cUTI), limited data exists on the clinical usefulness of this test. We serially surveyed physicians treating symptomatic patients with cUTI both at presentation and after PCR, and urine culture (UC) results were available to ascertain how the test results modified the therapy. A total of 96 unique surveys completed by 21 providers were included in the data analysis. The mean age for female and male patients was 69.4 ± 15.5 and 71.6 ± 12.7 years, respectively. The test positivity and line-item concordance for UC and PCR were consistent with prior reports. The PCR results modified or confirmed treatment in 59/96 (61.5%) and 25/96 (26.0%) of the cases, respectively, with 12/29 (41.4%) and 47/67 (70.1%) having negative and positive PCR results, respectively, resulting in treatment change (difference 28.7%, p < 0.01). Of these, 55/59 (57.3%) were alterations in the antibiotic regimen. PCR use to modify treatment was similar across providers and not statistically different when stratified by patient age, gender, or prior empiric therapy. In 31/59 (52.5%) of the cases, the PCR results modified the treatment where UC would not; conversely, UC would have modified the treatment in 3/37 (8.1%) of the cases where PCR did not (difference 44.4%, p < 0.01). We find that PCR test results are used by clinicians in managing cUTI, and use of this test provides an opportunity to improve antibiotic stewardship in this difficult-to-treat subset of patients.
Collapse
Affiliation(s)
- Julia Elia
- Michigan Institute of Urology, St. Clair Shores, MI 48081, USA (J.H.); (M.B.H.)
- Solaris Health Holdings, Ft. Lauderdale, FL 33394, USA;
| | - Jason Hafron
- Michigan Institute of Urology, St. Clair Shores, MI 48081, USA (J.H.); (M.B.H.)
- Solaris Health Holdings, Ft. Lauderdale, FL 33394, USA;
| | - Mara Holton
- Solaris Health Holdings, Ft. Lauderdale, FL 33394, USA;
- Anne Arundel Urology, Annapolis, MD 21401, USA
| | | | - Mitchell B. Hollander
- Michigan Institute of Urology, St. Clair Shores, MI 48081, USA (J.H.); (M.B.H.)
- Solaris Health Holdings, Ft. Lauderdale, FL 33394, USA;
| | - Deepak A. Kapoor
- Solaris Health Holdings, Ft. Lauderdale, FL 33394, USA;
- Integrated Medical Professionals, Lake Success, NY 11042, USA
| |
Collapse
|
7
|
Seyedolmohadesin M, Ashkani M, Ghadikolaei TS, Mirshekar M, Bostanghadiri N, Aminzadeh S. Unraveling the complex relationship: Multiple sclerosis, urinary tract infections, and infertility. Mult Scler Relat Disord 2024; 84:105512. [PMID: 38428292 DOI: 10.1016/j.msard.2024.105512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) is an immune system disorder that affects the central nervous system (CNS) and progressively damages nerve fibers and protective myelin. People with MS often experience a wide range of complications, including lower urinary tract dysfunction, urinary tract infections (UTIs) and sexual dysfunction. MS is common in young people and can lead to sexual dysfunction (SD) and infertility, which becomes more pronounced as the disease progresses. RESULTS Over the past two decades, significant advances have been made in the management of MS, which may slow the progression of the disease and alter its course. However, UTI and SD remain significant challenges for these patients. Awareness of the underlying complications of MS, such as UTIs and infertility, is crucial for prevention, early detection and appropriate treatment, as there is a causal relationship between UTIs and the use of corticosteroids during an attack. CONCLUSION This article provides an overview of potential microbial pathogens that contribute to the development of MS, as well as an assessment of people with MS who report UTIs and infertility.
Collapse
Affiliation(s)
- Maryam Seyedolmohadesin
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Azad University, Tehran, Iran
| | - Maedeh Ashkani
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Taravat Sadeghi Ghadikolaei
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Mirshekar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Narjess Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soheila Aminzadeh
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
8
|
Abdulshaheed AA, Hanafiah MM, Nawaz R, Muslim SN. Evaluation of antibacterial, antifungal and antibiofilm activities of A. baumannii-derived tannase and gallic acid against uropathogenic microorganisms. Microb Pathog 2024; 187:106534. [PMID: 38184176 DOI: 10.1016/j.micpath.2024.106534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
One of the most prevalent infectious diseases and a key driver of antibiotic prescriptions in pediatrics is urinary tract infection (UTI). Due to the emergence of more resistant uropathogenic bacterial and fungal strains, current treatments are no longer effective, necessitating the urgent development of novel antibacterial and antifungal drugs. In this study, the antifungal, antibacterial, and anti-biofilm capabilities of compounds, such as tannase (TN) and gallic acid (GA), which were produced from a novel natural source, Acinetobacter baumannii (AB11) bacteria, were assessed for the inactivation of uropathogenic microorganisms (UMs). Ammonium sulphate precipitation, ion exchange, high-performance liquid chromatography, and gel filtration were used to purify TN and GA that were isolated from A. baumannii. A 43.08 % pure TN with 1221.2 U/mg specific activity and 10.51 mg/mL GA was obtained. The antibacterial, antifungal and anti-biofilm activities of TN and GA were evaluated against UMs and compared to those of commercially available antibiotics including sulfamethoxazole (SXT), levofloxacin (LEV), ciprofloxacin (CIP), amikacin (Ak), and nitrofurantoin (F). The results showed that TN and GA were superior to commercial antibiotics in their ability to inactivate UMs and considerably reduced biofilms formation. Additionally, the GA emerges as the top substitute for currently available medications, demonstrating superior antibacterial and antibiofilm properties against all UMs evaluated in this study. The results of this investigation showed that A. baumannii-derived TN and GA could be utilized as an alternative medication to treat UTIs.
Collapse
Affiliation(s)
- Alaa A Abdulshaheed
- Department of Microbiology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia; Department of Biology, College of Science, University of Baghdad, 10071, Baghdad, Iraq
| | - Marlia Mohd Hanafiah
- Centre for Tropical Climate Change System, Institute of Climate Change, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia; Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| | - Rab Nawaz
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Sahira Nsayef Muslim
- Department of Biology, College of Science, Al-Mustansiriyah University, Baghdad, 10422, Iraq
| |
Collapse
|
9
|
Iseri E, Nilsson S, van Belkum A, van der Wijngaart W, Özenci V. Performance of an innovative culture-based digital dipstick for detection of bacteriuria. Microbiol Spectr 2024; 12:e0361323. [PMID: 38088544 PMCID: PMC10783013 DOI: 10.1128/spectrum.03613-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/17/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE In this study, we explore the transformative potential of UTI-lizer, an emerging technology not yet commercially available. Our manuscript shows that UTI-lizer is a promising alternative for detecting the five main pathogens that cause urinary tract infections (UTIs). The results also indicate that digital dipsticks have the potential to uniquely provide UTI diagnostic quality on par with that of gold-standard testing, with the added benefits of ease of testing, rapid test handling time, and simple test equipment. This technology can be helpful in quickly ruling out bacterial infections and reducing the unnecessary use of antibiotics, especially in primary care settings or at the point of care. Moreover, the UTI-lizer test can reduce the number of negative urine samples sent to central laboratories, thus easing the burden of UTI diagnostics on the healthcare system. We believe our study, as well as current and upcoming research based on this technology, is highly relevant for clinical microbiologists, microbiology scientists, general practitioners, and urologists.
Collapse
Affiliation(s)
- Emre Iseri
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden
- UTIlizer AB, Stockholm, Sweden
| | - Sara Nilsson
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | | | | | - Volkan Özenci
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Kumar G, Kumar Y, Kumar G, Tahlan AK. Characterization of uropathogenic E. coli from various geographical locations in India. J Taibah Univ Med Sci 2023; 18:1527-1535. [PMID: 37693820 PMCID: PMC10492208 DOI: 10.1016/j.jtumed.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/16/2023] [Accepted: 07/10/2023] [Indexed: 09/12/2023] Open
Abstract
Objectives Uropathogenic Escherichia coli (UPEC) is the most common causative agent of urinary tract infection, accounting for more than 80% of cases worldwide. This study presents data on prevalent serotypes, resistance profiles, and colonization-aiding virulence characteristics of UPEC from different geographical regions in India. Methods UPEC were serotyped through microtiter plate agglutination. Standard techniques were used to detect various virulence characteristics, i.e., biofilm formation (tissue culture plate method), siderophore production (screened on Chrome Azurol S agar and categorized with Csaky's and Arnow's methods), colicin release (agar overlay technique), gelatin hydrolysis (on gelatinase agar), and cell surface hydrophobicity (salt aggregation method). Antibiotic resistance profiles (against 20 antimicrobial agents) and extended-spectrum beta-lactamase (ESBL) were evaluated according to Clinical and Laboratory Standards Institute guidelines. Results UPEC strains exhibited very high drug resistance rates to most of the commonly used antimicrobial agents; the highest resistance rates were observed for ampicillin (63.4%), nalidixic acid (63.4%), and cefotaxime (62.1%). High rates of multi-drug resistance (63.36%), ESBL-production (34.1%), and carbapenem-resistance (25.0%) were detected in UPEC strains from all geographical regions of India. Hydrophobicity (61.2%), biofilm production (62.5%), and siderophore production (67.7%) were the most common virulence characteristics of UPEC isolates. Co-expression of virulence characteristics was common (69.8%) in UPEC strains. Conclusion UPEC strains with very high antimicrobial-resistance are in circulation in India, and have diverse serotypes and virulence characteristics.
Collapse
Affiliation(s)
- Gulshan Kumar
- National Salmonella and Escherichia Centre, Central Research Institute, Kasauli, Himachal Pradesh, India
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab, India
| | - Yashwant Kumar
- National Salmonella and Escherichia Centre, Central Research Institute, Kasauli, Himachal Pradesh, India
| | - Gaurav Kumar
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab, India
| | - Ajay K. Tahlan
- National Salmonella and Escherichia Centre, Central Research Institute, Kasauli, Himachal Pradesh, India
| |
Collapse
|
11
|
Ramírez Castillo FY, Guerrero Barrera AL, Harel J, Avelar González FJ, Vogeleer P, Arreola Guerra JM, González Gámez M. Biofilm Formation by Escherichia coli Isolated from Urinary Tract Infections from Aguascalientes, Mexico. Microorganisms 2023; 11:2858. [PMID: 38138002 PMCID: PMC10745304 DOI: 10.3390/microorganisms11122858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Uropathogenic Escherichia coli (UPEC) strains are among the leading causes of urinary tract infections (UTIs) worldwide. They can colonize the urinary tract and form biofilms that allow bacteria to survive and persist, causing relapses of infections and life-threatening sequelae. Here, we analyzed biofilm production, antimicrobial susceptibility, virulence factors, and phylogenetic groups in 74 E. coli isolated from diagnosed patients with UTIs to describe their microbiological features and ascertain their relationship with biofilm capabilities. High levels of ceftazidime resistance are present in hospital-acquired UTIs. Isolates of multidrug resistance strains (p = 0.0017) and the yfcV gene (p = 0.0193) were higher in male patients. All the strains tested were able to form biofilms. Significant differences were found among higher optical densities (ODs) and antibiotic resistance to cefazolin (p = 0.0395), ceftazidime (p = 0.0302), and cefepime (p = 0.0420). Overall, the presence of fimH and papC coincided with strong biofilm formation by UPEC. Type 1 fimbriae (p = 0.0349), curli (p = 0.0477), and cellulose (p = 0.0253) production was significantly higher among strong biofilm formation. Our results indicated that high antibiotic resistance may be related to male infections as well as strong and moderate biofilm production. The ability of E. coli strains to produce biofilm is important for controlling urinary tract infections.
Collapse
Affiliation(s)
- Flor Yazmín Ramírez Castillo
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico;
| | - Alma Lilian Guerrero Barrera
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico;
| | - Josée Harel
- Département de Pathologie et de Microbiologie, Centre de Recherche en Infectologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 7C6, Canada;
| | - Francisco Javier Avelar González
- Laboratorio de Estudios Ambientales, Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico;
| | - Philippe Vogeleer
- Toulouse Biotechnology Institute, INSA, UPS, Université de Toulouse, 31077 Toulouse, France;
| | | | - Mario González Gámez
- Departamento de Infectología, Hospital Centenario Miguel Hidalgo, Aguascalientes 20259, Mexico;
| |
Collapse
|
12
|
Morgaan HA, Omar HMG, Zakaria AS, Mohamed NM. Repurposing carvacrol, cinnamaldehyde, and eugenol as potential anti-quorum sensing agents against uropathogenic Escherichia coli isolates in Alexandria, Egypt. BMC Microbiol 2023; 23:300. [PMID: 37872476 PMCID: PMC10591344 DOI: 10.1186/s12866-023-03055-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Urinary tract infections represent one of the most frequent hospital and community-acquired infections with uropathogenic Escherichia coli (UPEC) being the main causative agent. The global increase in the emergence of multidrug-resistant (MDR) UPEC necessitates exploring novel approaches. Repurposing natural products as anti-quorum sensing (QS) agents to impede bacterial virulence is gaining momentum nowadays. Hence, this study investigates the anti-QS potentials of carvacrol, cinnamaldehyde, and eugenol against E. coli isolated from urine cultures of Egyptian patients. RESULTS Antibiotic susceptibility testing was performed for 67 E. coli isolates and 94% of the isolates showed MDR phenotype. The usp gene was detected using PCR and accordingly, 45% of the isolates were categorized as UPEC. Phytochemicals, at their sub-inhibitory concentrations, inhibited the swimming and twitching motilities of UPEC isolates, with eugenol showing the highest inhibitory effect. The agents hindered the biofilm-forming ability of the tested isolates, at two temperature sets, 37 and 30 °C, where eugenol succeeded in significantly inhibiting the biofilm formation by > 50% at both investigated temperatures, as compared with untreated controls. The phytochemicals were shown to downregulate the expression of the QS gene (luxS) and critical genes related to motility, asserting their anti-QS potential. Further, the combinatory activity of the phytoproducts with five antibiotics was assessed by checkerboard assay. The addition of the phytoproducts significantly reduced the minimum inhibitory concentrations of the antibiotics and generated several synergistic or partially synergistic combinations, some of which have not been previously explored. CONCLUSIONS Overall, carvacrol, cinnamaldehyde, and eugenol could be repurposed as potential anti-QS agents, which preferentially reduce the QS-based communication and attenuate the cascades of gene expression, thus decreasing the production of virulence factors in UPEC, and eventually, subsiding their pathogenicity. Furthermore, the synergistic combinations of these agents with antibiotics might provide a new perspective to circumvent the side effects brought about by high antibiotic doses, thereby paving the way for overcoming antibiotic resistance.
Collapse
Affiliation(s)
- Hadeer A Morgaan
- Microbiology and Immunology Department, Faculty of Pharmacy, Alexandria University, El-Khartoom Square, Azarita, Alexandria, Egypt
| | - Hoda M G Omar
- Microbiology and Immunology Department, Faculty of Pharmacy, Alexandria University, El-Khartoom Square, Azarita, Alexandria, Egypt
| | - Azza S Zakaria
- Microbiology and Immunology Department, Faculty of Pharmacy, Alexandria University, El-Khartoom Square, Azarita, Alexandria, Egypt
| | - Nelly M Mohamed
- Microbiology and Immunology Department, Faculty of Pharmacy, Alexandria University, El-Khartoom Square, Azarita, Alexandria, Egypt.
| |
Collapse
|
13
|
Khunti P, Chantakorn K, Tantibhadrasapa A, Htoo HH, Thiennimitr P, Nonejuie P, Chaikeeratisak V. A novel coli myophage and antibiotics synergistically inhibit the growth of the uropathogenic E. coli strain CFT073 in stoichiometric niches. Microbiol Spectr 2023; 11:e0088923. [PMID: 37732769 PMCID: PMC10580823 DOI: 10.1128/spectrum.00889-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/20/2023] [Indexed: 09/22/2023] Open
Abstract
Urinary tract infections are widespread bacterial infections affecting millions of people annually, with Escherichia coli being the most prevalent. Although phage therapy has recently gained interest as a promising alternative therapy for antibiotic-resistant bacteria, several studies have raised concerns regarding the evolution of phage resistance, making the therapy ineffective. In this study, we discover a novel coli myophage designated as Killian that targets E. coli strains, including the uropathogenic E. coli (UPEC) strain CFT073. It requires at least 20 minutes for 90% of its particles to adsorb to the host cells, undergoes subcellular activities for replication for 30 minutes, and eventually lyses the cells with a burst size of about 139 particles per cell. Additionally, Killian can withstand a wide variety of temperatures (4-50°C) and pHs (4-10). Genome analysis reveals that Killian's genome consists of 169,905 base pairs with 35.5% GC content, encoding 276 open reading frames; of these, 209 are functionally annotated with no undesirable genes detected, highlighting its potential as an antibiotic alternative against UPEC. However, after an 8-hour phage treatment at high multiplicities of infection, bacterial density continuously increases, indicating an onset of bacterial growth revival. Thus, the combination study between the phage and three different antibiotics, including amikacin, ciprofloxacin, and piperacillin, was performed and showed that certain pairs of phage and antibiotics exhibited synergistic interactions in suppressing the bacterial growth revival. These findings suggest that Killian-antibiotic combinations are effective in inhibiting the growth of UPEC. IMPORTANCE Phage therapy has recently been in the spotlight as a viable alternative therapy for bacterial infections. However, several studies have raised concerns about the emergence of phage resistance that occurs during treatment, making the therapy not much effective. Here, we present the discovery of a novel E. coli myophage that, by itself, can effectively kill the uropathogenic E. coli, but the emergence of bacterial growth revival was detected during the treatment. Phage and antibiotics are then combined to improve the efficiency of the phage in suppressing the bacterial re-growth. This research would pave the way for the future development of phage-antibiotic cocktails for the sustainable use of phages for therapeutic purposes.
Collapse
Affiliation(s)
- Patiphan Khunti
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | | | - Htut Htut Htoo
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Parameth Thiennimitr
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| | - Poochit Nonejuie
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | | |
Collapse
|
14
|
Stangl FP, Schneidewind L, Wagenlehner FM, Schultz-Lampel D, Baeßler K, Naumann G, Schönburg S, Anheuser P, Winkelhog-Gran S, Saar M, Hüsch T, Kranz J. Do or Don't: Results of a Multinational Survey on Antibiotic Prophylaxis in Urodynamics. Antibiotics (Basel) 2023; 12:1219. [PMID: 37508315 PMCID: PMC10376729 DOI: 10.3390/antibiotics12071219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Antibiotic prophylaxis contributes substantially to the increase in antibiotic resistance rates worldwide. This investigation aims to assess the current standard of practice in using antibiotic prophylaxis for urodynamics (UDS) and identify barriers to guideline adherence. An online survey using a 22-item questionnaire designed according to the Checklist for Reporting Results of Internet E-Surveys (CHERRIES) was circulated among urologists and gynecologists in Austria, Germany, and Switzerland between September 2021 and March 2022. A total of 105 questionnaires were eligible for analysis. Out of 105 completed surveys, most responders (n = 99, 94%) regularly perform dipstick urine analysis prior to urodynamics, but do not perform a urine culture (n = 68, 65%). Ninety-eight (93%) participants refrain from using antibiotic prophylaxis, and sixty-eight (65%) use prophylaxis if complicating factors exist. If asymptomatic bacteriuria is present, approximately 54 (52%) participants omit UDS and reschedule the procedure until antimicrobial susceptibility testing is available. Seventy-eight (78%) participants do not have a standard procedure for antibiotic prophylaxis in their department. Part of the strategy against the development of bacterial resistance is the optimized use of antibiotics, including antibiotic prophylaxis in urodynamics. Establishing a standard procedure is necessary and purposeful to harmonize both aspects in the field of urological diagnostics.
Collapse
Affiliation(s)
- Fabian P Stangl
- Department of Urology, University Hospital of Bern, 3010 Bern, Switzerland
| | - Laila Schneidewind
- Department of Urology, University Medical Centre Rostock, 18057 Rostock, Germany
| | - Florian M Wagenlehner
- Clinic for Urology, Paediatric Urology and Andrology, Justus-Liebig-University Giessen, 35390 Giessen, Germany
| | - Daniela Schultz-Lampel
- Southwest Continence Center, Schwarzwald-Baar-Klinikum, 78052 Villingen-Schwenningen, Germany
| | - Kaven Baeßler
- Continence-and Pelvic-Floor-Centre, Franziskus-Hospital Berlin, 10787 Berlin, Germany
| | - Gert Naumann
- Women's Hospital, Helios Clinic Erfurt, 99089 Erfurt, Germany
- University Women's Clinic, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Sandra Schönburg
- Department of Urology and Kidney Transplantation, Martin Luther University, 06108 Halle (Saale), Germany
| | - Petra Anheuser
- Klinik für Urologie, Asklepios Klinik Wandsbek, 22043 Hamburg, Germany
| | - Susanne Winkelhog-Gran
- Clinic for Urology and Pediatric Urology, St.-Antonius Hospital gGmbH, Academic Teaching Hospital of RWTH Aachen, 52249 Eschweiler, Germany
| | - Matthias Saar
- Department of Urology and Paediatric Urology, University Clinic RWTH Aachen, 52074 Aachen, Germany
| | - Tanja Hüsch
- Clinic for Urology and Pediatric Urology, University Medicine Johannes-Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Jennifer Kranz
- Department of Urology and Kidney Transplantation, Martin Luther University, 06108 Halle (Saale), Germany
- Department of Urology and Paediatric Urology, University Clinic RWTH Aachen, 52074 Aachen, Germany
| |
Collapse
|
15
|
Arafi V, Hasani A, Sadeghi J, Varshochi M, Poortahmasebi V, Hasani A, Hasani R. Uropathogenic Escherichia coli endeavors: an insight into the characteristic features, resistance mechanism, and treatment choice. Arch Microbiol 2023; 205:226. [PMID: 37156886 DOI: 10.1007/s00203-023-03553-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/10/2023]
Abstract
Uropathogenic Escherichia coli (UPEC) are the strains diverted from the intestinal status and account mainly for uropathogenicity. This pathotype has gained specifications in structure and virulence to turn into a competent uropathogenic organism. Biofilm formation and antibiotic resistance play an important role in the organism's persistence in the urinary tract. Increased consumption of carbapenem prescribed for multidrug-resistant (MDR) and Extended-spectrum-beta lactamase (ESBL)-producing UPECs, has added to the expansion of resistance. The World Health Organization (WHO) and Centre for Disease Control (CDC) placed the Carbapenem-resistant Enterobacteriaceae (CRE) on their treatment priority lists. Understanding both patterns of pathogenicity, and multiple drug resistance may provide guidance for the rational use of anti-bacterial agents in the clinic. Developing an effective vaccine, adherence-inhibiting compounds, cranberry juice, and probiotics are non-antibiotical approaches proposed for the treatment of drug-resistant UTIs. We aimed to review the distinguishing characteristics, current therapeutic options and promising non-antibiotical approaches against ESBL-producing and CRE UPECs.
Collapse
Affiliation(s)
- Vahid Arafi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alka Hasani
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Clinical Research Development Unit, Sina Educational, Research and Treatment Centre, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Javid Sadeghi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojtaba Varshochi
- Department of Infectious Diseases and Tropical Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Akbar Hasani
- Department of Clinical Biochemistry and Laboratory Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
16
|
Koroleva EA, Soloveva AV, Morgunova EY, Kapotina LN, Luyksaar SI, Luyksaar SV, Bondareva NE, Nelubina SA, Lubenec NL, Zigangirova NA, Gintsburg AL. Fluorothiazinon inhibits the virulence factors of uropathogenic Escherichia coli involved in the development of urinary tract infection. J Antibiot (Tokyo) 2023; 76:279-290. [PMID: 36922636 DOI: 10.1038/s41429-023-00602-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 03/18/2023]
Abstract
Uropathogenic Escherichia coli (UPEC) is the most common pathogenic bacterium associated with urinary tract infection. Due to the development of antibiotic resistance and MDR, UPEC infection has become a serious problem in the last decade. In order to combat resistance, it is necessary to develop innovative antimicrobial agents that act by different mechanisms than conventional antibiotics. Among the new therapeutic strategies, suppression of pathogen virulence has become a promising alternative, since it fundamentally reduces selective pressure and the development of resistance. In our study, we showed that the compound Fluorothiazinon suppressed UPEC's ability to form biofilms and to move using the flagellum, as well as to penetrate into cells. Prophylactic use with subsequent treatment of FT in rodent models led to an improvement in survival and significantly reduced the bacterial load in the organs of the urinary system, thereby inhibiting the development of ascending infection and preventing the development of pathological changes in prostate tissues. These results suggest that FT affects several UPEC virulence factors at once and if similar results can be found in clinical trials it can potentially be used as a new drug against UPEC.
Collapse
Affiliation(s)
- E A Koroleva
- National Research Center of Epidemiology and Microbiology n. a. N.F. Gamaleya, Russian Ministry of Health, Moscow, 123098, Russia.
| | - A V Soloveva
- National Research Center of Epidemiology and Microbiology n. a. N.F. Gamaleya, Russian Ministry of Health, Moscow, 123098, Russia
| | - E Y Morgunova
- National Research Center of Epidemiology and Microbiology n. a. N.F. Gamaleya, Russian Ministry of Health, Moscow, 123098, Russia
| | - L N Kapotina
- National Research Center of Epidemiology and Microbiology n. a. N.F. Gamaleya, Russian Ministry of Health, Moscow, 123098, Russia
| | - S I Luyksaar
- National Research Center of Epidemiology and Microbiology n. a. N.F. Gamaleya, Russian Ministry of Health, Moscow, 123098, Russia
| | - S V Luyksaar
- National Research Center of Epidemiology and Microbiology n. a. N.F. Gamaleya, Russian Ministry of Health, Moscow, 123098, Russia
| | - N E Bondareva
- National Research Center of Epidemiology and Microbiology n. a. N.F. Gamaleya, Russian Ministry of Health, Moscow, 123098, Russia
| | - S A Nelubina
- National Research Center of Epidemiology and Microbiology n. a. N.F. Gamaleya, Russian Ministry of Health, Moscow, 123098, Russia
| | - N L Lubenec
- National Research Center of Epidemiology and Microbiology n. a. N.F. Gamaleya, Russian Ministry of Health, Moscow, 123098, Russia
| | - N A Zigangirova
- National Research Center of Epidemiology and Microbiology n. a. N.F. Gamaleya, Russian Ministry of Health, Moscow, 123098, Russia
| | - A L Gintsburg
- National Research Center of Epidemiology and Microbiology n. a. N.F. Gamaleya, Russian Ministry of Health, Moscow, 123098, Russia.,I.M. Sechenov First Moscow State Medical University, Moscow, 119992, Russia
| |
Collapse
|
17
|
Urinary Tract Infections Caused by Uropathogenic Escherichia coli Strains—New Strategies for an Old Pathogen. Microorganisms 2022; 10:microorganisms10071425. [PMID: 35889146 PMCID: PMC9321218 DOI: 10.3390/microorganisms10071425] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
Urinary tract infections (UTIs) are among the most common infections worldwide. Uropathogenic Escherichia coli (UPECs) are the main causative agent of UTIs. UPECs initially colonize the human host adhering to the bladder epithelium. Adhesion is followed by the bacterial invasion of urothelial epithelial cells where they can replicate to form compact aggregates of intracellular bacteria with biofilm-like properties. UPEC strains may persist within epithelial urothelial cells, thus acting as quiescent intracellular bacterial reservoirs (QIRs). It has been proposed that host cell invasion may facilitate both the establishment and persistence of UPECs within the human urinary tract. UPEC strains express a variety of virulence factors including fimbrial and afimbrial adhesins, invasins, iron-acquisition systems, and toxins, which cooperate to the establishment of long lasting infections. An increasing resistance rate relative to the antibiotics recommended by current guidelines for the treatment of UTIs and an increasing number of multidrug resistant UPEC isolates were observed. In order to ameliorate the cure rate and improve the outcomes of patients, appropriate therapy founded on new strategies, as alternative to antibiotics, needs to be explored. Here, we take a snapshot of the current knowledge of coordinated efforts to develop innovative anti-infective strategies to control the diffusion of UPECs.
Collapse
|
18
|
Haji Hossein Tabrizi A, Habibi M, Foroohi F, Mohammadian T, Asadi Karam MR. Investigation of the effects of antimicrobial and anti-biofilm peptide IDR1018 and chitosan nanoparticles on ciprofloxacin-resistant Escherichia coli. J Basic Microbiol 2022; 62:1229-1240. [PMID: 35729017 DOI: 10.1002/jobm.202200156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/21/2022] [Accepted: 05/27/2022] [Indexed: 11/07/2022]
Abstract
Peptide IDR1018 and chitosan nanoparticles (CNs) showed antimicrobial and anti-biofilm activity against bacteria. In this study, the antimicrobial effects of peptide IDR1018 and CNs were evaluated on 50 clinical isolates of uropathogenic Escherichia coli (UPEC) resistant to ciprofloxacin. Ion gelation method was applied for CNs synthesis. Scanning electron microscope (SEM) and dynamic light scattering (DLS) were utilized to evaluate the nanoparticles. Antimicrobial and synergistic activity of peptide IDR1018 and CNs with ciprofloxacin were evaluated by microtiter broth dilution method. The checkerboard test was used to investigate the antimicrobial effects of IDR1018 and CNS in combination with ciprofloxacin. Anti-biofilm effect of ciprofloxacin, peptide IDR1018, and CNs was evaluated using crystal violet method. Fourteen (28%), 21 (42%), and 15 (30%) of clinical isolates produced strong, moderate, and weak biofilm, respectively. The CNs were spherical and uniform under electron microscopy with an average diameter of 246 nm. The minimum inhibitory concentration (MIC) values were 16-128, 20-40, and 375-750 (µg/ml) for ciprofloxacin, peptide IDR1018, and CNs, respectively. Fractional inhibitory concentration (FIC) analysis indicated a synergistic effect of ciprofloxacin in combination with peptide IDR1018, but in combination with CNs, this antibiotic showed an additive effect. Our results revealed that peptide IDR1018 and CNs have antimicrobial properties on UPEC isolates. Biofilm inhibition and biofilm eradication of clinical isolate were shown by peptide IDR1018 and CNs in a concentration-dependent manner. The antimicrobial agents alone and in combination decreased the number of viable bacteria in the biofilms. Therefore, these components seem to be a treating approach against biofilm-forming UPEC isolates.
Collapse
Affiliation(s)
| | - Mehri Habibi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Foroohi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Taher Mohammadian
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
19
|
Chen FE, Trick AY, Hasnain AC, Hsieh K, Chen L, Shin DJ, Wang TH. Ratiometric PCR in a Portable Sample-to-Result Device for Broad-Based Pathogen Identification. Anal Chem 2022; 94:9372-9379. [PMID: 35730588 DOI: 10.1021/acs.analchem.2c01357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Polymerase chain reaction (PCR)-based diagnostic testing is the gold standard method for pathogen identification (ID) with recent developments enabling automated PCR tests for point-of-care (POC) use. However, multiplexed identification of several pathogens in PCR assays typically requires optics for an equivalent number of fluorescence channels, increasing instrumentation's complexity and cost. In this study, we first developed ratiometric PCR that surpassed one target per color barrier to allow multiplexed identification while minimizing optical components for affordable POC use. We realized it by amplifying pathogenic targets with fluorescently labeled hydrolysis probes with a specific ratio of red-to-green fluorophores for each bacterial species. We then coupled ratiometric PCR and automated magnetic beads-based sample preparation within a thermoplastic cartridge and a portable droplet magnetofluidic platform. We named the integrated workflow POC-ratioPCR. We demonstrated that the POC-ratioPCR could detect one out of six bacterial targets related to urinary tract infections (UTIs) in a single reaction using only two-color channels. We further evaluated POC-ratioPCR using mock bacterial urine samples spiked with good agreement. The POC-ratioPCR presents a simple and effective method for enabling broad-based POC PCR identification of pathogens directly from crude biosamples with low optical instrumentation complexity.
Collapse
Affiliation(s)
- Fan-En Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Alexander Y Trick
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Alexander C Hasnain
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Liben Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Dong Jin Shin
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
20
|
A Three-Year Look at the Phylogenetic Profile, Antimicrobial Resistance, and Associated Virulence Genes of Uropathogenic Escherichia coli. Pathogens 2022; 11:pathogens11060631. [PMID: 35745485 PMCID: PMC9227886 DOI: 10.3390/pathogens11060631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/19/2022] [Accepted: 05/28/2022] [Indexed: 12/04/2022] Open
Abstract
Uropathogenic Escherichia coli is the most common cause of urinary tract infections, resulting in about 150 million reported annual cases. With multidrug resistance on the rise and the need for global and region surveillance, this investigation looks at the UPEC isolates collected for a 3-year period, with a view of ascertaining their antimicrobial susceptibility patterns and associated virulence determinants. The identification of bacteria isolates, antimicrobial susceptibility, and extended-spectrum beta-lactamases (ESBLs) production was determined with a Vitek 2 Compact Automated System (BioMerieux, Marcy L’Etoile, France). ESBLs were confirmed by the combined disc test (CDT) and basic biochemical test. The isolates were distributed into A (11%), B1 (6%), B2 (62.4%), and D (20.6%). Resistance to the penicillin group was high, between 88% and 100%. Additionally, resistance was high to cephalosporins (100%) in 2017 and 2018. The isolates were all sensitive to tigecycline, while resistance against imipenem and meropenem was low, at 4–12% in 2017 and 2018 and 0% in 2019. The results also showed that ESBL isolates were seen in 2017 and 2018. They were confirmed positive to CTX/CLA (88.5%) and CAZ/CLA (85%). By 2019, the number of resistant isolates reduced, showing only 4% ESBL isolates. Two virulence genes, fimH (46%) and papE/F (15%), were detected among the isolates by PCR. In conclusion, this study found that phylogroups B2 and D carried the most virulence genes as well as MDR and ESBL characteristics, suggesting the UPEC strains to be extraintestinal pathogens responsible for UTIs.
Collapse
|
21
|
Study of Antibacterial Chemical Substances and Molecular Investigation among Sulfamethoxazole-trimethoprim (SXT)-Resistant Escherichia coli Isolates. Rep Biochem Mol Biol 2022; 11:166-175. [PMID: 35765533 PMCID: PMC9208570 DOI: 10.52547/rbmb.11.1.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 01/11/2023]
Abstract
Background Escherichia coli (E. coli) remains one of the leading agents of urinary tract infection (UTIs), it has become resistant to many drugs. Current work aimed to evaluate some chemical substances as antibacterial agents and molecular study of virulence factors associated with UTIs. Methods This work involved 133 urine specimens obtained from females' patients suffering from UTIs, Methods of well diffusion and disk diffusion were achieved to assay the effect of some chemical substances and antibiogram profiles toward Sulfamethoxazole-trimethoprim (SXT)-resistant E. coli respectively. Virulence genes were done based on the technique of Polymerase Chain Reaction (PCR). Results The results recorded 49/133 (36.84%) E. coli among women suffering UTIs, 28/49 (57.14%) were resistant to SXT drug. imipenem, meropenem, and nitrofurantoin were recorded more effectively. Chemicals substances at the concentration 0.3 (g/ml) recorded percentages of inhibition, reaching 9.143±1.442, 15.36±0.5914, and 21.82±0.8699 for NaHCO3, Ch4c, and Viroxide Super™ respectively. PCR demonstrated that 28/28 (100%) of SXT-resistant E. coli isolates were harbored Sul-2, FeoB and PapC genes, while 14/28 (50%), 15/28 (53.57%), 19/28 (67.85%) and 26/28 (92.85%) in U250 (pet), FumC, Sul-1 and IutA genes, respectively. Sul-3 gene was not observed. Conclusion Observed a high percentage of E. coli that were resistant to SXT drug, and having several virulence genes, poses a real threat, it requires a real pause to create substitutions to limit the spreading of this threat.
Collapse
|
22
|
Bandyopadhyay D, Mukherjee M. Combination of bactericidal antibiotics and inhibitors of Universal stress protein A (UspA): a potential therapeutic alternative against multidrug resistant Escherichia coli in urinary tract infections. J Antibiot (Tokyo) 2022; 75:21-28. [PMID: 34526667 DOI: 10.1038/s41429-021-00477-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 11/09/2022]
Abstract
The increasing incidence of multidrug resistant uropathogenic E. coli (MDR-UPEC), the most common opportunistic pathogen in urinary tract infections (UTI) pose a global health problem and demands searching for alternative therapeutics. Antibiotics generate oxidative stress in bacteria which results in overexpression of the universal stress protein, UspA that helps in bacterial survival. An in silico study showed that two compounds ZINC000104153710, and ZINC000000217308 effectively bound bacterial UspA. This study aimed to determine the activity of ZINC000104153710, and ZINC000000217308 against bacterial UspA function in MDR-UPEC in vitro. Twenty-five highly MDR-UPEC were screened against ZINC000104153710, and, ZINC000000217308 either alone or in combination with the bactericidal antibiotics; ciprofloxacin (CIP), ceftazidime(CAZ), gentamicin(GEN) respectively by determining minimum inhibitory concentrations (MICs) using a broth microdilution assay. Additionally, the effect of ZINC000104153710, and ZINC000000217308 in the absence and presence of antibiotics on the bacteria was monitored by bacterial growth curve assays, ROS production, structure of the organism by scanning electron microscopy (FESEM) and quantitating UspA using a western blot technique. A 2-8 fold reduction in MIC values against ZINC000104153710, and ZINC000000217308 was observed against all 25 MDR-UPEC isolates in the presence of antibiotics with no alteration in intracellular ROS production. Discrete changes in cell morphology was evident in bacteria treated with ZINC000104153710 or ZINC000000217308 and antibiotics individually by FESEM compared with untreated control. Reduction in the level of UspA protein in bacteria treated with combination of ZINC000104153710 or ZINC000000217308 with individual antibiotics established their ability to inhibit UspA whose expression was elevated in presence of antibiotics alone. Therefore this study validated ZINC000104153710, and ZINC000000217308 as potent inhibitors of bacterial UspA function and indicated their potential as alternative therapeutics to combat the MDR-UPEC.
Collapse
Affiliation(s)
- Debojyoty Bandyopadhyay
- Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India
| | - Mandira Mukherjee
- Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India.
| |
Collapse
|
23
|
Mohamed Abu El-Wafa W, Abouwarda AM. In vitro assessment of the antibacterial effects of the combinations of fosfomycin, colistin, trimethoprim and nitrofurantoin against multi-drug-resistant Escherichia coli. Lett Appl Microbiol 2021; 74:334-343. [PMID: 34839528 DOI: 10.1111/lam.13619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/28/2022]
Abstract
MDR UPEC has become a global health challenge. Our study investigates the pairwise interactions among FOS, COL, NIT and TRI against 29 UPEC strains using the checkerboard method. The synergistic combinations are further evaluated for their bactericidal effects against the most resistant strain (MRS) using the time-kill method. The results showed that 100% of these strains were resistant to TRI and NIT, whereas 75·86% of them were susceptible to FOS and COL. Among all tested strains, only seven strains were highly resistant to all used antibiotics. Remarkably, FOS/COL, COL/NIT and COL/TRI combinations represent the most effective synergistic (fractional inhibitory concentration index <1) combinations against the seven strains at MICs lower than the susceptible breakpoint ranges, followed by FOS/NIT and FOS/TRI, which achieved synergistic interactions against 1/7 and 2/7 of these strains. Importantly, the bactericidal effects (reduction ≥3·0 log10 CFU per ml) were only observed with FOS/COL, COL/NIT and COL/TRI combinations against MRS after 24 h of post-treatment. Our data suggested that FOS/COL, COL/NIT and COL/TRI combinations could be a promising option against MDR UPEC infections. Additionally, FOS/NIT and FOS/TRI probably represent a good option for MDR UPEC with lower MICs.
Collapse
Affiliation(s)
- W Mohamed Abu El-Wafa
- Department of Microbiology, General Division of Basic Medical Sciences, Egyptian Drug Authority (EDA), Formerly National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - A M Abouwarda
- Department of Microbiology, General Division of Basic Medical Sciences, Egyptian Drug Authority (EDA), Formerly National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| |
Collapse
|
24
|
Vega-Hernández R, Ochoa SA, Valle-Rios R, Jaimes-Ortega GA, Arellano-Galindo J, Aparicio-Ozores G, Ibarra JA, Hernández-Castro R, Cruz-Córdova A, Xicohtencatl-Cortes J. Flagella, Type I Fimbriae and Curli of Uropathogenic Escherichia coli Promote the Release of Proinflammatory Cytokines in a Coculture System. Microorganisms 2021; 9:2233. [PMID: 34835359 PMCID: PMC8624364 DOI: 10.3390/microorganisms9112233] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Urinary tract infections (UTIs) are a public health problem in Mexico, and uropathogenic Escherichia coli (UPEC) is one of the main etiological agents. Flagella, type I fimbriae, and curli promote the ability of these bacteria to successfully colonize its host. AIM This study aimed to determine whether flagella-, type I fimbriae-, and curli-expressing UPEC induces the release of proinflammatory cytokines in an established coculture system. METHODS The fliC, fimH, and csgA genes by UPEC strain were disrupted by allelic replacement. Flagella, type I fimbriae, and curli were visualized by transmission electron microscopy (TEM). HTB-5 (upper chamber) and HMC-1 (lower chamber) cells cocultured in Transwell® plates were infected with these UPEC strains and purified proteins. There was adherence to HTB-5 cells treated with different UPEC strains and they were quantified as colony-forming units (CFU)/mL. RESULTS High concentrations of IL-6 and IL-8 were induced by the FimH and FliC proteins; however, these cytokines were detected in low concentrations in presence of CsgA. Compared with UPEC CFT073, CFT073ΔfimH, CFT073ΔfimHΔfliC, and CFT073ΔcsgAΔfimH strains significantly reduced the adherence to HTB-5 cells. CONCLUSION The FimH and FliC proteins are involved in IL-6 and IL-8 release in a coculture model of HTB-5 and HMC-1 cells.
Collapse
Affiliation(s)
- Rubí Vega-Hernández
- Laboratorio de Investigación en Bacteriología Intestinal, Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, 06720 Ciudad de México, Mexico; (R.V.-H.); (S.A.O.)
- Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 09340 Ciudad de México, Mexico
| | - Sara A. Ochoa
- Laboratorio de Investigación en Bacteriología Intestinal, Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, 06720 Ciudad de México, Mexico; (R.V.-H.); (S.A.O.)
| | - Ricardo Valle-Rios
- Unidad Universitaria de Investigación en Cáncer e Inmunología, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico; (R.V.-R.); (G.A.J.-O.)
- Unidadde Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, 06720 Ciudad de México, Mexico
| | - Gustavo A. Jaimes-Ortega
- Unidad Universitaria de Investigación en Cáncer e Inmunología, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico; (R.V.-R.); (G.A.J.-O.)
- Unidadde Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, 06720 Ciudad de México, Mexico
- Posgrado en Biología Experimental, Departamento de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, 09340 Ciudad de México, Mexico
| | - José Arellano-Galindo
- Laboratorio de Virología Clínica y Experimental, Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de Mexico Federico Gómez, 06720 Ciudad de México, Mexico;
| | - Gerardo Aparicio-Ozores
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340 Ciudad de México, Mexico; (G.A.-O.); (J.A.I.)
| | - José Antonio Ibarra
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340 Ciudad de México, Mexico; (G.A.-O.); (J.A.I.)
| | - Rigoberto Hernández-Castro
- Departamento de Ecología de Agentes Patógenos, Hospital General Dr. Manuel Gea González, 4800 Ciudad de México, Mexico;
| | - Ariadnna Cruz-Córdova
- Laboratorio de Investigación en Bacteriología Intestinal, Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, 06720 Ciudad de México, Mexico; (R.V.-H.); (S.A.O.)
| | - Juan Xicohtencatl-Cortes
- Laboratorio de Investigación en Bacteriología Intestinal, Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, 06720 Ciudad de México, Mexico; (R.V.-H.); (S.A.O.)
| |
Collapse
|
25
|
Shi HJ, Wee JH, Eom JS. Challenges to Early Discharge of Patients with Upper Urinary Tract Infections by ESBL Producers: TMP/SMX as a Step-Down Therapy for Shorter Hospitalization and Lower Costs. Infect Drug Resist 2021; 14:3589-3597. [PMID: 34511950 PMCID: PMC8422030 DOI: 10.2147/idr.s321888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/30/2021] [Indexed: 12/25/2022] Open
Abstract
Background Urinary tract infections (UTIs) caused by extended spectrum beta-lactamase (ESBL) producing pathogens have increased and are treated with carbapenem in general. Carbapenem use is associated with prolonged hospitalization or daily outpatient visit. The aim of this study was to investigate patients with UTIs by ESBL-producing pathogens for early discharge using an old oral antibiotic, trimethoprim-sulfamethoxazole (TMP-SMX), which is susceptible to ESBL-producing pathogens. Methods Data on UTIs caused by ESBL-producing pathogens from a single tertiary hospital were collected retrospectively. Patients who had been treated with intravenous carbapenems or oral TMP/SMX were included. Patients’ clinical and microbiological outcomes were compared between oral TMP/SMX and ertapenem treatment groups. Results A total of 103 patients were included, 21 of whom had been treated with TMP/SMX, whereas 82 with ertapenem. Clinical outcomes between the two groups were not significantly different (TMP/SMX: 90.5%; ertapenem: 84.1%, p = 0.73). The microbiological cure rate was higher in the TMP/SMX group than in the ertapenem group (90.5% vs 58.5%, respectively, p = 0.01). The mean duration of hospitalization was significantly shorter in the TMP/SMX group than in the ertapenem group (8.00 ± 10.50 days vs 14.00 ± 37.00 days, p = 0.07). The mean duration of antibiotic treatment was longer in the ertapenem group than in the TMP/SMX group (16.45 ± 4.77 vs 12.76 ± 5.37 days, p = 0.006). Conclusion For susceptible pathogens, TMP/SMX may enable early discharge as an effective oral antibiotic treatment option for UTIs caused by ESBL-positive pathogens. Additionally, use of oral antibiotics can shorten hospital stays and reduce medical costs.
Collapse
Affiliation(s)
- Hye Jin Shi
- Division of Infectious Diseases, Department of Internal Medicine, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Jae Hee Wee
- Division of Infectious Diseases, Department of Internal Medicine, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Joong Sik Eom
- Division of Infectious Diseases, Department of Internal Medicine, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| |
Collapse
|
26
|
Josephs-Spaulding J, Krogh TJ, Rettig HC, Lyng M, Chkonia M, Waschina S, Graspeuntner S, Rupp J, Møller-Jensen J, Kaleta C. Recurrent Urinary Tract Infections: Unraveling the Complicated Environment of Uncomplicated rUTIs. Front Cell Infect Microbiol 2021; 11:562525. [PMID: 34368008 PMCID: PMC8340884 DOI: 10.3389/fcimb.2021.562525] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 05/18/2021] [Indexed: 12/14/2022] Open
Abstract
Urinary tract infections (UTIs) are frequent in humans, affecting the upper and lower urinary tract. Present diagnosis relies on the positive culture of uropathogenic bacteria from urine and clinical markers of inflammation of the urinary tract. The bladder is constantly challenged by adverse environmental stimuli which influence urinary tract physiology, contributing to a dysbiotic environment. Simultaneously, pathogens are primed by environmental stressors such as antibiotics, favoring recurrent UTIs (rUTIs), resulting in chronic illness. Due to different confounders for UTI onset, a greater understanding of the fundamental environmental mechanisms and microbial ecology of the human urinary tract is required. Such advancements could promote the tandem translation of bench and computational studies for precision treatments and clinical management of UTIs. Therefore, there is an urgent need to understand the ecological interactions of the human urogenital microbial communities which precede rUTIs. This review aims to outline the mechanistic aspects of rUTI ecology underlying dysbiosis between both the human microbiome and host physiology which predisposes humans to rUTIs. By assessing the applications of next generation and systems level methods, we also recommend novel approaches to elucidate the systemic consequences of rUTIs which requires an integrated approach for successful treatment. To this end, we will provide an outlook towards the so-called 'uncomplicated environment of UTIs', a holistic and systems view that applies ecological principles to define patient-specific UTIs. This perspective illustrates the need to withdraw from traditional reductionist perspectives in infection biology and instead, a move towards a systems-view revolving around patient-specific pathophysiology during UTIs.
Collapse
Affiliation(s)
- Jonathan Josephs-Spaulding
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Christian-Albrechts-Universität, Kiel, Germany
| | - Thøger Jensen Krogh
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Hannah Clara Rettig
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Mark Lyng
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Mariam Chkonia
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Silvio Waschina
- Research Group Nutriinformatics, Institute of Human Nutrition and Food Science, Christian-Albrechts-Universität, Kiel, Germany
| | - Simon Graspeuntner
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| | - Jakob Møller-Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Christoph Kaleta
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Christian-Albrechts-Universität, Kiel, Germany
| |
Collapse
|
27
|
Antonelli G, Cappelli L, Cinelli P, Cuffaro R, Manca B, Nicchi S, Tondi S, Vezzani G, Viviani V, Delany I, Scarselli M, Schiavetti F. Strategies to Tackle Antimicrobial Resistance: The Example of Escherichia coli and Pseudomonas aeruginosa. Int J Mol Sci 2021; 22:4943. [PMID: 34066555 PMCID: PMC8125385 DOI: 10.3390/ijms22094943] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
Traditional antimicrobial treatments consist of drugs which target different essential functions in pathogens. Nevertheless, bacteria continue to evolve new mechanisms to evade this drug-mediated killing with surprising speed on the deployment of each new drug and antibiotic worldwide, a phenomenon called antimicrobial resistance (AMR). Nowadays, AMR represents a critical health threat, for which new medical interventions are urgently needed. By 2050, it is estimated that the leading cause of death will be through untreatable AMR pathogens. Although antibiotics remain a first-line treatment, non-antibiotic therapies such as prophylactic vaccines and therapeutic monoclonal antibodies (mAbs) are increasingly interesting alternatives to limit the spread of such antibiotic resistant microorganisms. For the discovery of new vaccines and mAbs, the search for effective antigens that are able to raise protective immune responses is a challenging undertaking. In this context, outer membrane vesicles (OMV) represent a promising approach, as they recapitulate the complete antigen repertoire that occurs on the surface of Gram-negative bacteria. In this review, we present Escherichia coli and Pseudomonas aeruginosa as specific examples of key AMR threats caused by Gram-negative bacteria and we discuss the current status of mAbs and vaccine approaches under development as well as how knowledge on OMV could benefit antigen discovery strategies.
Collapse
Affiliation(s)
- Giada Antonelli
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Luigia Cappelli
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Paolo Cinelli
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Rossella Cuffaro
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Benedetta Manca
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Sonia Nicchi
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Serena Tondi
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Giacomo Vezzani
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Viola Viviani
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Isabel Delany
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
| | - Maria Scarselli
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
| | - Francesca Schiavetti
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
| |
Collapse
|
28
|
Antibiotic Resistance of Uropathogens Isolated from Patients Hospitalized in District Hospital in Central Poland in 2020. Antibiotics (Basel) 2021; 10:antibiotics10040447. [PMID: 33923389 PMCID: PMC8071495 DOI: 10.3390/antibiotics10040447] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to determine antibiotic resistance patterns and the prevalence of uropathogenes causing urinary tract infections (UTIs) in patients hospitalized in January–June 2020 in central Poland. Antimicrobial susceptibility testing was performed using the disk-diffusion method. Escherichia coli (52.2%), Klebsiella pneumoniae (13.7%), Enterococcus faecalis (9.3%), E. faecium (6.2%), and Proteus mirabilis (4,3%) were most commonly isolated from urine samples. E. coli was significantly more frequent in women (58.6%) (p = 0.0089) and in the age group 0–18, while K. pneumoniae was more frequent in men (24.4%) (p = 0.0119) and in individuals aged 40–60 and >60. Gram-negative species showed resistance to ampicillin. K. pneumoniae were resistant to amoxicillin plus clavulanic acid (75.0%), piperacillin plus tazobactam (76.2%), cefotaxime (76.2%), cefuroxime (81.0%), ciprofloxacin (81.0%), and trimethoprim plus sulphamethoxazole (81.0%). Carbapenems were effective against all E. coli and P. mirabilis. Some K. pneumoniae (13.6%) produced metallo-β-lactamases (MBLs). E. coli (22.6%), K. pneumoniae (81.8%), and all E. faecium were multidrug-resistant (MDR). Some E. coli (26.2%), K. pneumoniae (63.6%), and P. mirabilis (14.3%) isolates produced extended-spectrum beta-lactamases (ESBL). Vancomycin-resistant E. faecium was also found. This study showed that the possibilities of UTIs therapy using available antibiotics become limited due to the increasing number of antibiotic-resistant uropathogens.
Collapse
|
29
|
Tewawong N, Kowaboot S, Pimainog Y, Watanagul N, Thongmee T, Poovorawan Y. Distribution of phylogenetic groups, adhesin genes, biofilm formation, and antimicrobial resistance of uropathogenic Escherichia coli isolated from hospitalized patients in Thailand. PeerJ 2020; 8:e10453. [PMID: 33344087 PMCID: PMC7718785 DOI: 10.7717/peerj.10453] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
Background Urinary tract infections (UTIs) are the most common bacterial infections and are often caused by uropathogenic Escherichia coli (UPEC). We investigated the distribution of phylogenetic groups, adhesin genes, antimicrobial resistance, and biofilm formation in E. coli isolated from patients with UTIs. Methods In the present study, 208 UPEC isolated from Thai patients were classified into phylogenetic groups and adhesin genes were detected using multiplex PCR. Antimicrobial susceptibility testing was performed using agar disk diffusion. The Congo red agar method was used to determine the ability of the UPEC to form biofilm. Results The most prevalent UPEC strains in this study belonged to phylogenetic group B2 (58.7%), followed by group C (12.5%), group E (12.0%), and the other groups (16.8%). Among adhesin genes, the prevalence of fimH (91.8%) was highest, followed by pap (79.3%), sfa (12.0%), and afa (7.7%). The rates of resistance to fluoroquinolones, trimethoprim-sulfamethoxazole, and amoxicillin-clavulanate were 65%, 54.3%, and 36.5%, respectively. The presence of adhesin genes and antibiotic resistance were more frequent in groups B2 and C compared to the other groups. Of the 129 multidrug-resistant UPEC strains, 54% were biofilm producers. Our findings further indicated that biofilm production was significantly correlated with the pap adhesin gene (p ≤ 0.05). Conclusion These findings provide molecular epidemiologic data, antibiotic resistance profiles, and the potential for biofilm formation among UPEC strains that can inform further development of the appropriate prevention and control strategies for UTIs in this region.
Collapse
Affiliation(s)
- Nipaporn Tewawong
- Faculty of Medical Technology, Rangsit University, Muang, Pathumthani, Thailand
| | - Siriporn Kowaboot
- Faculty of Medical Technology, Rangsit University, Muang, Pathumthani, Thailand
| | - Yaowaluk Pimainog
- Faculty of Medical Technology, Rangsit University, Muang, Pathumthani, Thailand
| | - Naiyana Watanagul
- Department of Microbiology, Nopparat Rajathanee Hospital, Khannayao, Bangkok, Thailand
| | - Thanunrat Thongmee
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| |
Collapse
|
30
|
Majchrzak M, Zając E, Wawszczak M, Filipiak A, Głuszek S, Adamus-Białek W. Mathematical Analysis of Induced Antibiotic Resistance Among Uropathogenic Escherichia coli Strains. Microb Drug Resist 2020; 26:1236-1244. [DOI: 10.1089/mdr.2019.0292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Michał Majchrzak
- Department of Surgical Medicine with the Laboratory of Medical Genetics, Collegium Medicum, The Jan Kochanowski University, Kielce, Poland
| | - Elżbieta Zając
- Department of Mathematics, The Jan Kochanowski University, Kielce, Poland
| | - Monika Wawszczak
- Department of Surgical Medicine with the Laboratory of Medical Genetics, Collegium Medicum, The Jan Kochanowski University, Kielce, Poland
| | - Aneta Filipiak
- Department of Surgical Medicine with the Laboratory of Medical Genetics, Collegium Medicum, The Jan Kochanowski University, Kielce, Poland
| | - Stanisław Głuszek
- Department of Surgical Medicine with the Laboratory of Medical Genetics, Collegium Medicum, The Jan Kochanowski University, Kielce, Poland
| | - Wioletta Adamus-Białek
- Department of Surgical Medicine with the Laboratory of Medical Genetics, Collegium Medicum, The Jan Kochanowski University, Kielce, Poland
| |
Collapse
|
31
|
Zalewska-Piątek B, Piątek R. Phage Therapy as a Novel Strategy in the Treatment of Urinary Tract Infections Caused by E. Coli. Antibiotics (Basel) 2020; 9:antibiotics9060304. [PMID: 32517088 PMCID: PMC7344395 DOI: 10.3390/antibiotics9060304] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
Urinary tract infections (UTIs) are regarded as one of the most common bacterial infections affecting millions of people, in all age groups, annually in the world. The major causative agent of complicated and uncomplicated UTIs are uropathogenic E. coli strains (UPECs). Huge problems with infections of this type are their chronicity and periodic recurrences. Other disadvantages that are associated with UTIs are accompanying complications and high costs of health care, systematically increasing resistance of uropathogens to routinely used antibiotics, as well as biofilm formation by them. This creates the need to develop new approaches for the prevention and treatment of UTIs, among which phage therapy has a dominant potential to eliminate uropathogens within urinary tract. Due to the growing interest in such therapy in the last decade, the bacteriophages (natural, genetically modified, engineered, or combined with antibiotics or disinfectants) represent an innovative antimicrobial alternative and a strategy for managing the resistance of uropathogenic microorganisms and controlling UTIs.
Collapse
|
32
|
Koguchi D, Murakami Y, Ikeda M, Dobashi M, Ishii J. Cefaclor as a first-line treatment for acute uncomplicated cystitis: a retrospective single-center study. BMC Urol 2020; 20:38. [PMID: 32252747 PMCID: PMC7137291 DOI: 10.1186/s12894-020-00605-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/25/2020] [Indexed: 11/24/2022] Open
Abstract
Background Wide-spectrum antibiotics have been favored to treat acute uncomplicated cystitis (AUC) for a long time, leading to the emergence of multi-drug resistant bacteria. We hypothesize that narrow-spectrum antibiotics might mitigate the issue and aim to investigate the clinical efficacy of cefaclor in patients with AUC. Methods We retrospectively reviewed the clinical data of female outpatients with AUC treated with cefaclor and evaluated the safety and clinical efficacy. Clinical cure was defined as the elimination of clinical symptom under 4 white blood cells (WBCs) per high power field on microscopy. Results Overall, 223 women with AUC were enrolled. Escherichia coli was the dominant pathogen (n = 160; 68.6%), followed by Klebsiella species and E. coli-extended spectrum β-lactamase (ESBL) (n = 19; 8.1% and n = 18; 7.7%). Overall success rate was 94.0% (n = 219) and susceptibility rate of cefazolin was 84.1%, which was close to that of levofloxacin (82.9%). Ampicillin showed the lowest rate of 63.7% with a significantly greater resistance rate of 35.3% among all antibiotics (P < 0.001). In the subgroup analysis, the success rate in patients with resistance to levofloxacin or cefazolin was 100% (n = 24) or 93.3% (n = 14). The rate in patients with resistance to both antibiotics was 60.0% (n = 9), and the pathogens in the other 40.0% (n = 6) of patients with treatment failure were E. coli-ESBL. Conclusion Cefaclor showed excellent efficacy in AUC patients, even in those with in vitro resistance to cefazolin or levofloxacin. Cefaclor may be considered as a first-line option in patients with AUC and a second-line option for those with levofloxacin treatment failure.
Collapse
Affiliation(s)
- Dai Koguchi
- Department of Urology, International University of Health and Welfare Atami Hospital, 13-1 Higashikaiganchou Atami, Shizuoka, 413-0012, Japan.
| | - Yasukiyo Murakami
- Department of Urology, International University of Health and Welfare Atami Hospital, 13-1 Higashikaiganchou Atami, Shizuoka, 413-0012, Japan
| | - Masaomi Ikeda
- Department of Urology, International University of Health and Welfare Atami Hospital, 13-1 Higashikaiganchou Atami, Shizuoka, 413-0012, Japan
| | - Masato Dobashi
- Department of Urology, International University of Health and Welfare Atami Hospital, 13-1 Higashikaiganchou Atami, Shizuoka, 413-0012, Japan
| | - Junichiro Ishii
- Department of Urology, International University of Health and Welfare Atami Hospital, 13-1 Higashikaiganchou Atami, Shizuoka, 413-0012, Japan
| |
Collapse
|
33
|
Kot B. Antibiotic Resistance Among Uropathogenic Escherichia coli. Pol J Microbiol 2019; 68:403-415. [PMID: 31880885 PMCID: PMC7260639 DOI: 10.33073/pjm-2019-048] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/09/2019] [Accepted: 09/24/2019] [Indexed: 12/31/2022] Open
Abstract
Urinary tract infections (UTIs) belong to the most common community-acquired and nosocomial infections. A main etiological factor of UTIs is uropathogenic Escherichia coli (UPEC). This review describes the current state of knowledge on the resistance of UPEC to antibiotics recommended for the treatment of UTIs based on the available literature data. Nitrofurantoin and fosfomycin are recommended as first-line therapy in the treatment of uncomplicated cystitis, and the resistance to these antimicrobial agents remains low between UPEC. Recently, in many countries, the increasing resistance is observed to trimethoprim-sulfamethoxazole, which is widely used as the first-line antimicrobial in the treatment of uncomplicated UTIs. In European countries, the resistance of UPEC to this antimicrobial agent ranges from 14.6% to 60%. The widespread use of fluoroquinolones (FQs), especially ciprofloxacin, in the outpatients is the cause of a continuous increase in resistance to these drugs. The resistance of UPEC to FQs is significantly higher in developing countries (55.5–85.5%) than in developed countries (5.1–32.0%). Amoxicillin-clavulanic acid is recommended as first line-therapy for pyelonephritis or complicated UTI. Resistance rates of UPEC to amoxicillin-clavulanic acid are regionally variable. In European countries the level of resistance to this antimicrobial ranges from 5.3% (Germany) to 37.6% (France). Increasing rates of UPEC resistance to antimicrobials indicate that careful monitoring of their use for UTI treatment is necessary.
Collapse
Affiliation(s)
- Barbara Kot
- Department of Microbiology, Faculty of Natural Sciences, Siedlce University of Natural Sciences and Humanities , Siedlce , Poland
| |
Collapse
|
34
|
Correlation of Antibiotic Resistance and Restriction Mapping of Plasmid DNA Isolated from E. coli Causing Urinary Tract Infection. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.2.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
35
|
Uropathogenic Escherichia coli and the related virulence factors. GINECOLOGIA.RO 2019. [DOI: 10.26416/gine.26.4.2019.2713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
36
|
Al-Naqshbandi AA, Chawsheen MA, Abdulqader HH. Prevalence and antimicrobial susceptibility of bacterial pathogens isolated from urine specimens received in rizgary hospital - Erbil. J Infect Public Health 2018; 12:330-336. [PMID: 30522892 DOI: 10.1016/j.jiph.2018.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/25/2018] [Accepted: 11/15/2018] [Indexed: 10/27/2022] Open
Abstract
BACKGROUND Urinary tract infection (UTI) is a common health-associated problem worldwide. Like other medical conditions, UTI patients may suffer from poor treatment outcomes due to the emergence of antimicrobial resistance. Determining patterns of antimicrobial susceptibility in uropathogens will guide physicians to choose the best antibiotics for treating affected patients. In this project we aimed to evaluate the frequencies of pathogens associated with UTI and their antimicrobial susceptibility patterns. METHODS This study was conducted on 2692 urine samples of patients visited Rizgary Teaching Hospital in Erbil city. Aerobic bacterial growth identification and antimicrobial susceptibility tests were performed using VITEK®2 compact system. RESULTS Our data show that more than 20% of all studied samples were negative for bacterial growth; only 16.72% of them were pathogenic bacteria in which 82.44% of them were Gram negative bacteria (GNB) and the rest were Gram positive bacteria (GPB). Escherichia coli was the most frequent, and Acinetobacter baumannii was the most resistant GNB. Staphylococcus haemolyticus was the most frequent, and Enterococcus faecalis was the most resistant GPB. In general GNB were highly resistant to Ticarcillin and Cefepime, and GPB were also resistant to Ticarcillin, and Tigecycline antibiotics. CONCLUSIONS The amount of negative culture growth indicates that symptoms only based diagnosis for UTI detection is unreliable. E. coli is the most UTI related pathogen, E. faecalis and A. baumannii were among highly antibiotic resistant bacteria. Finally, since many of GNG and GPB isolates were resistant to several antibiotics, there might be a high possibility for multi drug resistant among local population in Erbil.
Collapse
Affiliation(s)
| | | | - Haval H Abdulqader
- Laboratory Department, Rizgary Teaching Hospital, Erbil, Kurdistan Region, Iraq
| |
Collapse
|
37
|
Lee DS, Lee SJ, Choe HS. Community-Acquired Urinary Tract Infection by Escherichia coli in the Era of Antibiotic Resistance. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7656752. [PMID: 30356438 PMCID: PMC6178185 DOI: 10.1155/2018/7656752] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/19/2018] [Accepted: 09/09/2018] [Indexed: 01/27/2023]
Abstract
Urinary tract infections (UTIs) caused by Escherichia coli (E. coli) are the most common types of infections in women. The antibiotic resistance of E. coli is increasing rapidly, causing physicians to hesitate when selecting oral antibiotics. In this review, our objective is to ensure that clinicians understand the current seriousness of antibiotic-resistant E. coli, the mechanisms by which resistance is selected for, and methods that can be used to prevent antibiotic resistance.
Collapse
Affiliation(s)
- Dong Sup Lee
- Department of Urology, St. Vincent's Hospital, The Catholic University of Korea, College of Medicine, Republic of Korea
| | - Seung-Ju Lee
- Department of Urology, St. Vincent's Hospital, The Catholic University of Korea, College of Medicine, Republic of Korea
| | - Hyun-Sop Choe
- Department of Urology, St. Vincent's Hospital, The Catholic University of Korea, College of Medicine, Republic of Korea
| |
Collapse
|
38
|
Lorenzin G, Piccinelli G, Carlassara L, Scolari F, Caccuri F, Caruso A, De Francesco MA. Myroides odoratimimus urinary tract infection in an immunocompromised patient: an emerging multidrug-resistant micro-organism. Antimicrob Resist Infect Control 2018; 7:96. [PMID: 30094005 PMCID: PMC6080552 DOI: 10.1186/s13756-018-0391-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 07/31/2018] [Indexed: 01/07/2023] Open
Abstract
Background Myroides spp. are common environmental organisms and they can be isolated predominantly in water, soil, food and in sewage treatment plants. In the last two decades, an increasing number of infections such as urinary tract infections and skin and soft tissue infections, caused by these microorganisms has been reported. Selection of appropriate antibiotic therapy to treat the infections caused by Myroides spp. is difficult due to the production of a biofilm and the organism's intrinsic resistance to many antibiotic classes. Case presentation We report the case of a 69-year-old immunocompromised patient who presented with repeated episodes of macroscopic haematuria, from Northern Italy.A midstream urine sample cultured a Gram negative rod in significant amounts (> 105 colony-forming units (cfu)/mL), which was identified as Myroides odoratimimus. The patient was successfully treated with trimethoprim/sulfamethoxazole after antibiotic susceptibility testing confirmed its activity. Conclusion This case underlines the emergence of multidrug resistant Myroides spp. which are ubiquitous in the environment and it demands that clinicians should be more mindful about the role played by atypical pathogens, which may harbour or express multidrug resistant characteristics, in immunocompromised patients or where there is a failure of empiric antimicrobial therapy.
Collapse
Affiliation(s)
- Giovanni Lorenzin
- Institute of Microbiology, Department of Molecular and Translational Medicine, University of Brescia-Spedali Civili, P. le Spedali Civili 1, 25123 Brescia, Italy
- Institute of Microbiology and Virology, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Giorgio Piccinelli
- Institute of Microbiology, Department of Molecular and Translational Medicine, University of Brescia-Spedali Civili, P. le Spedali Civili 1, 25123 Brescia, Italy
| | - Lucrezia Carlassara
- Department of Nephrology, University of Brescia, Hospital of Montichiari, Brescia, Italy
| | - Francesco Scolari
- Department of Nephrology, University of Brescia, Hospital of Montichiari, Brescia, Italy
| | - Francesca Caccuri
- Institute of Microbiology, Department of Molecular and Translational Medicine, University of Brescia-Spedali Civili, P. le Spedali Civili 1, 25123 Brescia, Italy
| | - Arnaldo Caruso
- Institute of Microbiology, Department of Molecular and Translational Medicine, University of Brescia-Spedali Civili, P. le Spedali Civili 1, 25123 Brescia, Italy
| | - Maria Antonia De Francesco
- Institute of Microbiology, Department of Molecular and Translational Medicine, University of Brescia-Spedali Civili, P. le Spedali Civili 1, 25123 Brescia, Italy
| |
Collapse
|
39
|
Abstract
Urinary tract infection (UTI) is one of the most common bacterial infections in humans, and the majority are caused by uropathogenic Escherichia coli (UPEC). The rising antibiotic resistance among UPEC and the frequent failure of antibiotics to effectively treat recurrent UTI and catheter-associated UTI motivate research on alternative ways of managing UTI. Abundant evidence indicates that the toxic radical nitric oxide (NO), formed by activation of the inducible nitric oxide synthase, plays an important role in host defence to bacterial infections, including UTI. The major source of NO production during UTI is from inflammatory cells, especially neutrophils, and from the uroepithelial cells that are known to orchestrate the innate immune response during UTI. NO and reactive nitrogen species have a wide range of antibacterial targets, including DNA, heme proteins, iron-sulfur clusters, and protein thiol groups. However, UPEC have acquired a variety of defence mechanisms for protection against NO, such as the NO-detoxifying enzyme flavohemoglobin and the NO-tolerant cytochrome bd-I respiratory oxidase. The cytotoxicity of NO-derived intermediates is nonspecific and may be detrimental to host cells, and a balanced NO production is crucial to maintain the tissue integrity of the urinary tract. In this review, we will give an overview of how NO production from host cells in the urinary tract is activated and regulated, the effect of NO on UPEC growth and colonization, and the ability of UPEC to protect themselves against NO. We also discuss the attempts that have been made to develop NO-based therapeutics for UTI treatment.
Collapse
|
40
|
Ghouri F, Hollywood A, Ryan K. A systematic review of non-antibiotic measures for the prevention of urinary tract infections in pregnancy. BMC Pregnancy Childbirth 2018; 18:99. [PMID: 29653573 PMCID: PMC5899369 DOI: 10.1186/s12884-018-1732-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/05/2018] [Indexed: 11/16/2022] Open
Abstract
Background Urinary tract infections (UTIs) are common in pregnancy and account for the highest proportion of primary care antibiotic prescriptions issued to pregnant women in the UK. It is well known that antibiotic use is associated with increased antimicrobial resistance and therefore measures to minimise antibiotic use for UTI prevention have been studied. The efficacy and safety of these measures in pregnancy have not been addressed and therefore the aim of this study was to systematically review the literature to identify and evaluate potential measures to prevent UTIs in pregnant women. Methods Ten databases (EMBASE, AMED, BNI, CINAHL, Medline, PubMed, PsycINFO, Cochrane Trials, Scopus and Science Direct) were systematically searched in July 2017 for studies reporting non-antibiotic measures to prevent UTIs in pregnancy. The terms (“urinary tract infection” or UTI or bacteriuria or cystitis) AND (prevention) AND (pregnan*) were used. The quality of the publications was appraised using the Critical Appraisal Skills Programme (CASP) checklists for cohort study, case-control study and randomised controlled trial. The results were synthesised using a textual narrative approach. Results Search results yielded 3276 publications and after reviewing titles and removing duplicates, 57 full text articles were assessed for eligibility and eight were included in the review. Five different approaches (hygiene measures, cranberry juice, immunisation, ascorbic acid and Canephron® N) have been identified, all of which are reported to be safe in pregnancy. Conclusion The quality of the evidence varied considerably and only hygiene measures were supported by evidence to be recommended in practice. Future work needs to concentrate on strengthening the evidence base through improved design and reporting of studies with a focus on immunisation, ascorbic acid and Canephron® N. Electronic supplementary material The online version of this article (10.1186/s12884-018-1732-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Flavia Ghouri
- School of Pharmacy, University of Reading, PO Box 226, Whiteknights, Reading, RG6 6AP, UK
| | - Amelia Hollywood
- School of Pharmacy, University of Reading, PO Box 226, Whiteknights, Reading, RG6 6AP, UK.
| | - Kath Ryan
- School of Pharmacy, University of Reading, PO Box 226, Whiteknights, Reading, RG6 6AP, UK
| |
Collapse
|
41
|
Ng QX, Peters C, Venkatanarayanan N, Goh YY, Ho CYX, Yeo WS. Use of Lactobacillus spp. to prevent recurrent urinary tract infections in females. Med Hypotheses 2018; 114:49-54. [PMID: 29602464 DOI: 10.1016/j.mehy.2018.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 02/27/2018] [Accepted: 03/03/2018] [Indexed: 01/21/2023]
Abstract
Urinary tract infections (UTIs) are the most common bacterial infections seen in the community, especially amongst females. The widespread use of antibiotics has led to the increased occurrence of E. coli resistant isolates worldwide. A promising non-antibiotic approach is the use of probiotic lactobacilli strains. This paper hypothesizes that Lactobacillus spp. containing products are able to prevent recurrent urinary tract infections in females. Using the keywords [lactobacillus OR lactobacilli OR probiotic] and [urinary tract infection OR UTI OR cystitis], a preliminary search on the PubMed, Ovid, Google Scholar and ClinicalTrials.gov database yielded 1,647 papers published in English between 1-Jan-1960 and 1-May-2017. 9 clinical trials with a total of 726 patients were reviewed. Different lactobacilli strains (in either oral or suppository formulation) were utilized and they demonstrated varying efficacy in the prevention of recurrent UTIs. Using a random-effects model, pooled risk ratio of at least one recurrent UTI episode during the entire study duration was 0.684 (95% CI 0.438 to 0.929, p < 0.001), per-protocol analysis. However, key limitations include significant inter-study variability and the limited duration of follow-up of most studies. Our hypothesis on the chemoprophylactic effects of probiotics for UTIs is plausible and supported by current data. Lactobacillus rhamnosus GR1 and Lactobacillus reuteri RC14 were the most commonly studied lactobacilli strains. Further and more robust randomized controlled trials with standardized lactobacilli strains and formulation are required for confirmation of effects.
Collapse
Affiliation(s)
- Qin Xiang Ng
- Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore.
| | - Christina Peters
- University of Nottingham Medical School, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Nandini Venkatanarayanan
- University of Nottingham Medical School, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Yan Yih Goh
- Anglo Singapore International School, Sukhumvit 64, Bangchark, Prakanong, Bangkok 10260, Thailand
| | - Collin Yih Xian Ho
- National University Hospital, National University Health System, 119074, Singapore
| | - Wee-Song Yeo
- Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore; National University Hospital, National University Health System, 119074, Singapore
| |
Collapse
|
42
|
Terlizzi ME, Gribaudo G, Maffei ME. UroPathogenic Escherichia coli (UPEC) Infections: Virulence Factors, Bladder Responses, Antibiotic, and Non-antibiotic Antimicrobial Strategies. Front Microbiol 2017; 8:1566. [PMID: 28861072 PMCID: PMC5559502 DOI: 10.3389/fmicb.2017.01566] [Citation(s) in RCA: 354] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/02/2017] [Indexed: 12/21/2022] Open
Abstract
Urinary tract infections (UTIs) are one of the most common pathological conditions in both community and hospital settings. It has been estimated that about 150 million people worldwide develop UTI each year, with high social costs in terms of hospitalizations and medical expenses. Among the common uropathogens associated to UTIs development, UroPathogenic Escherichia coli (UPEC) is the primary cause. UPEC strains possess a plethora of both structural (as fimbriae, pili, curli, flagella) and secreted (toxins, iron-acquisition systems) virulence factors that contribute to their capacity to cause disease, although the ability to adhere to host epithelial cells in the urinary tract represents the most important determinant of pathogenicity. On the opposite side, the bladder epithelium shows a multifaceted array of host defenses including the urine flow and the secretion of antimicrobial substances, which represent useful tools to counteract bacterial infections. The fascinating and intricate dynamics between these players determine a complex interaction system that needs to be revealed. This review will focus on the most relevant components of UPEC arsenal of pathogenicity together with the major host responses to infection, the current approved treatment and the emergence of resistant UPEC strains, the vaccine strategies, the natural antimicrobial compounds along with innovative anti-adhesive and prophylactic approaches to prevent UTIs.
Collapse
Affiliation(s)
| | | | - Massimo E. Maffei
- Department of Life Sciences and Systems Biology, University of TurinTorino, Italy
| |
Collapse
|