1
|
Liu T, Li S, Xia C, Xu D. TERT promoter mutations and methylation for telomerase activation in urothelial carcinomas: New mechanistic insights and clinical significance. Front Immunol 2023; 13:1071390. [PMID: 36713366 PMCID: PMC9877314 DOI: 10.3389/fimmu.2022.1071390] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Telomerase, an RNA-dependent DNA polymerase synthesizing telomeric TTAGGG sequences, is primarily silent in normal human urothelial cells (NHUCs), but widely activated in urothelial cell-derived carcinomas or urothelial carcinomas (UCs) including UC of the bladder (UCB) and upper track UC (UTUC). Telomerase activation for telomere maintenance is required for the UC development and progression, and the key underlying mechanism is the transcriptional de-repression of the telomerase reverse transcriptase (TERT), a gene encoding the rate-limiting, telomerase catalytic component. Recent mechanistic explorations have revealed important roles for TERT promoter mutations and aberrant methylation in activation of TERT transcription and telomerase in UCs. Moreover, these TERT-featured genomic and epigenetic alterations have been evaluated for their usefulness in non-invasive UC diagnostics, recurrence monitoring, outcome prediction and response to treatments such as immunotherapy. Importantly, the detection of the mutated TERT promoter and TERT mRNA as urinary biomarkers holds great promise for urine-based UC liquid biopsy. In the present article, we review recent mechanistic insights into altered TERT promoter-mediated telomerase activation in UCs and discuss potential clinical implications. Specifically, we compare differences in senescence and transformation between NHUCs and other types of epithelial cells, address the interaction between TERT promoter mutations and other factors to affect UC progression and outcomes, evaluate the impact of TERT promoter mutations and TERT-mediated activation of human endogenous retrovirus genes on UC immunotherapy including Bacillus Calmette-Guérin therapy and immune checkpoint inhibitors. Finally, we suggest the standardization of a TERT assay and evaluation system for UC clinical practice.
Collapse
Affiliation(s)
- Tiantian Liu
- Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shihong Li
- Department of Pathology, Maternal and Child Health Hospital of Liaocheng, Liaocheng, China
| | - Chuanyou Xia
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China,*Correspondence: Chuanyou Xia, ; Dawei Xu,
| | - Dawei Xu
- Department of Medicine, Bioclinicum and Center for Molecular Medicine (CMM), Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden,*Correspondence: Chuanyou Xia, ; Dawei Xu,
| |
Collapse
|
2
|
Jafari NV, Rohn JL. The urothelium: a multi-faceted barrier against a harsh environment. Mucosal Immunol 2022; 15:1127-1142. [PMID: 36180582 PMCID: PMC9705259 DOI: 10.1038/s41385-022-00565-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/18/2022] [Accepted: 08/28/2022] [Indexed: 02/04/2023]
Abstract
All mucosal surfaces must deal with the challenge of exposure to the outside world. The urothelium is a highly specialized layer of stratified epithelial cells lining the inner surface of the urinary bladder, a gruelling environment involving significant stretch forces, osmotic and hydrostatic pressures, toxic substances, and microbial invasion. The urinary bladder plays an important barrier role and allows the accommodation and expulsion of large volumes of urine without permitting urine components to diffuse across. The urothelium is made up of three cell types, basal, intermediate, and umbrella cells, whose specialized functions aid in the bladder's mission. In this review, we summarize the recent insights into urothelial structure, function, development, regeneration, and in particular the role of umbrella cells in barrier formation and maintenance. We briefly review diseases which involve the bladder and discuss current human urothelial in vitro models as a complement to traditional animal studies.
Collapse
Affiliation(s)
- Nazila V Jafari
- Department of Renal Medicine, Division of Medicine, University College London, Royal Free Hospital Campus, London, UK
| | - Jennifer L Rohn
- Department of Renal Medicine, Division of Medicine, University College London, Royal Free Hospital Campus, London, UK.
| |
Collapse
|
3
|
Novel Insights on Plant Extracts to Prevent and Treat Recurrent Urinary Tract Infections. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052635] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Urinary tract infections (UTI) represent one of the most widespread infections, and frequent recurrent episodes, induced mostly by uropathogenic Escherichia coli, make them increasingly difficult to treat. Long-term antibiotic therapy is an effective approach to treat recurrent UTI but generates adverse effects, including the emergence of pathogenic strains resistant to the vast majority of antibiotics. These drawbacks have enhanced the interest toward new alternatives based on plant extracts to prevent and treat recurrent UTI, especially in a synergistic antibiotic approach. Therefore, this review highlights the potential of some medicinal plants to be used in the management of recurrent UTI, including plants that have been approved for the treatment of urinary infections and promising, but less studied, plant candidates with proven anti-uropathogenic activity. Pomegranate (Punica granatum L.), black chokeberry (Aronia melanocarpa Michx.), and cornelian cherry (Cornus mas L.) have great potential to be used for prevention or in a combined antibiotic therapy to cure UTI, but more studies and clinical trials in specific population groups are required. Further progress in developing plant-based products to cure rUTI will be supported by advances in UTI pathogenesis and human-based models for a better understanding of their pharmacological activities.
Collapse
|
4
|
Murray BO, Flores C, Williams C, Flusberg DA, Marr EE, Kwiatkowska KM, Charest JL, Isenberg BC, Rohn JL. Recurrent Urinary Tract Infection: A Mystery in Search of Better Model Systems. Front Cell Infect Microbiol 2021; 11:691210. [PMID: 34123879 PMCID: PMC8188986 DOI: 10.3389/fcimb.2021.691210] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
Urinary tract infections (UTIs) are among the most common infectious diseases worldwide but are significantly understudied. Uropathogenic E. coli (UPEC) accounts for a significant proportion of UTI, but a large number of other species can infect the urinary tract, each of which will have unique host-pathogen interactions with the bladder environment. Given the substantial economic burden of UTI and its increasing antibiotic resistance, there is an urgent need to better understand UTI pathophysiology - especially its tendency to relapse and recur. Most models developed to date use murine infection; few human-relevant models exist. Of these, the majority of in vitro UTI models have utilized cells in static culture, but UTI needs to be studied in the context of the unique aspects of the bladder's biophysical environment (e.g., tissue architecture, urine, fluid flow, and stretch). In this review, we summarize the complexities of recurrent UTI, critically assess current infection models and discuss potential improvements. More advanced human cell-based in vitro models have the potential to enable a better understanding of the etiology of UTI disease and to provide a complementary platform alongside animals for drug screening and the search for better treatments.
Collapse
Affiliation(s)
- Benjamin O. Murray
- Centre for Urological Biology, Department of Renal Medicine, University College London, London, United Kingdom
| | - Carlos Flores
- Centre for Urological Biology, Department of Renal Medicine, University College London, London, United Kingdom
| | - Corin Williams
- Department of Bioengineering, Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| | - Deborah A. Flusberg
- Department of Bioengineering, Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| | - Elizabeth E. Marr
- Department of Bioengineering, Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| | - Karolina M. Kwiatkowska
- Centre for Urological Biology, Department of Renal Medicine, University College London, London, United Kingdom
| | - Joseph L. Charest
- Department of Bioengineering, Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| | - Brett C. Isenberg
- Department of Bioengineering, Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| | - Jennifer L. Rohn
- Centre for Urological Biology, Department of Renal Medicine, University College London, London, United Kingdom
| |
Collapse
|
5
|
Roggisch J, Ecke T, Koch S. Molecular identification of telomerase reverse transcriptase (TERT) promotor mutations in primary and recurrent tumors of invasive and noninvasive urothelial bladder cancer. Urol Oncol 2020; 38:77.e17-77.e25. [DOI: 10.1016/j.urolonc.2019.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 11/26/2022]
|
6
|
Santos CP, Lapi E, Martínez de Villarreal J, Álvaro-Espinosa L, Fernández-Barral A, Barbáchano A, Domínguez O, Laughney AM, Megías D, Muñoz A, Real FX. Urothelial organoids originating from Cd49f high mouse stem cells display Notch-dependent differentiation capacity. Nat Commun 2019; 10:4407. [PMID: 31562298 PMCID: PMC6764959 DOI: 10.1038/s41467-019-12307-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 09/02/2019] [Indexed: 12/29/2022] Open
Abstract
Understanding urothelial stem cell biology and differentiation has been limited by the lack of methods for their unlimited propagation. Here, we establish mouse urothelial organoids that can be maintained uninterruptedly for >1 year. Organoid growth is dependent on EGF and Wnt activators. High CD49f/ITGA6 expression features a subpopulation of organoid-forming cells expressing basal markers. Upon differentiation, multilayered organoids undergo reduced proliferation, decreased cell layer number, urothelial program activation, and acquisition of barrier function. Pharmacological modulation of PPARγ and EGFR promotes differentiation. RNA sequencing highlighted genesets enriched in proliferative organoids (i.e. ribosome) and transcriptional networks involved in differentiation, including expression of Wnt ligands and Notch components. Single-cell RNA sequencing (scRNA-Seq) analysis of the organoids revealed five clusters with distinct gene expression profiles. Together, with the use of γ-secretase inhibitors and scRNA-Seq, confirms that Notch signaling is required for differentiation. Urothelial organoids provide a powerful tool to study cell regeneration and differentiation.
Collapse
Affiliation(s)
- Catarina P Santos
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Eleonora Lapi
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Jaime Martínez de Villarreal
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Laura Álvaro-Espinosa
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Asunción Fernández-Barral
- CIBERONC, Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM and IdiPAZ, 28029, Madrid, Spain
| | - Antonio Barbáchano
- CIBERONC, Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM and IdiPAZ, 28029, Madrid, Spain
| | - Orlando Domínguez
- Genomics Unit, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | | | - Diego Megías
- Confocal Microscopy Unit, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Alberto Muñoz
- CIBERONC, Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM and IdiPAZ, 28029, Madrid, Spain
| | - Francisco X Real
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain.
- CIBERONC, Madrid, Spain.
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
7
|
Daza-Cajigal V, Albuquerque AS, Pearson J, Hinley J, Mason AS, Stahlschmidt J, Thrasher AJ, Mishra V, Southgate J, Burns SO. Loss of Janus Associated Kinase 1 Alters Urothelial Cell Function and Facilitates the Development of Bladder Cancer. Front Immunol 2019; 10:2065. [PMID: 31552026 PMCID: PMC6746825 DOI: 10.3389/fimmu.2019.02065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 08/15/2019] [Indexed: 11/13/2022] Open
Abstract
Inherited Primary Immunodeficiency (PID) disorders are associated with increased risk of malignancy that may relate to impaired antitumor immune responses or a direct role for PID germline mutations in tumorigenesis. We recently identified germline loss of function mutations in Janus Associated Kinase 1 (JAK1) causing primary immunodeficiency characterized by infections and associated with early onset, fatal high-grade bladder carcinoma. Somatic mutations in JAK1, required for immune cell signaling in response to interferon gamma (IFNγ), have been associated with several non-hematopoietic and hematopoietic cancer cell types but pathogenic mechanisms remain largely unexplored. Here we demonstrate that JAK1 is required for the intrinsic IFNγ response of urothelial cells impacting immunogenicity and cell survival. Specifically, JAK1-deficient urothelial cells showed reduced surface expression of major histocompatibility complex class II (MHC II), intercellular adhesion molecule-1 (ICAM-1) and programmed death-ligand-1 (PD-L1) after IFNγ stimulation and were resistant to IFNγ-induced apoptosis and lymphocyte-mediated killing. In addition, we identify a previously unknown role for IFNγ signaling in modulating urothelial differentiation. Together, our findings support a role for urothelial cell JAK1 in immune surveillance and development of bladder cancer. Our results have implications for patients with rare JAK1 PID and, more broadly, inform development of biomarker and targeted therapies for urothelial carcinoma.
Collapse
Affiliation(s)
- Vanessa Daza-Cajigal
- Institute of Immunity and Transplantation, University College London, London, United Kingdom.,Department of Immunology, Royal Free London NHS Foundation Trust, London, United Kingdom.,School of Medicine, Universidad Complutense, Madrid, Spain.,Department of Immunology, Hospital Universitario Son Espases, Palma, Spain.,Human Immunopathology Research Laboratory, Institut d'Investigació Sanitaria de Palma (IdISPa), Palma, Spain
| | - Adriana S Albuquerque
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Joanna Pearson
- Jack Birch Unit, Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Jennifer Hinley
- Jack Birch Unit, Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Andrew S Mason
- Jack Birch Unit, Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Jens Stahlschmidt
- Jack Birch Unit, Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom.,Department of Histopathology, St James's University Hospital, Leeds, United Kingdom
| | - Adrian J Thrasher
- Great Ormond Hospital for Children NHS Foundation Trust, London, United Kingdom.,Section of Molecular and Cellular Immunology, Institute of Child Health, University College London, London, United Kingdom
| | - Vibhash Mishra
- Department of Urology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Jennifer Southgate
- Jack Birch Unit, Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Siobhan O Burns
- Institute of Immunity and Transplantation, University College London, London, United Kingdom.,Department of Immunology, Royal Free London NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
8
|
Günes C, Wezel F, Southgate J, Bolenz C. Implications of TERT promoter mutations and telomerase activity in urothelial carcinogenesis. Nat Rev Urol 2019; 15:386-393. [PMID: 29599449 DOI: 10.1038/s41585-018-0001-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Telomerase activity imparts eukaryotic cells with unlimited proliferation capacity, one of the cancer hallmarks. Over 90% of human urothelial carcinoma of the bladder (UCB) tumours are positive for telomerase activity. Telomerase activation can occur through several mechanisms. Mutations in the core promoter region of the human telomerase reverse transcriptase gene (TERT) cause telomerase reactivation in 60-80% of UCBs, whereas the prevalence of these mutations is lower in urothelial cancers of other origins. TERT promoter mutations are the most frequent genetic alteration across all stages of UCB, indicating a strong selection pressure during neoplastic transformation. TERT promoter mutations could arise during regeneration of normal urothelium and, owing to consequential telomerase reactivation, might be the basis of UCB initiation, which represents a new model of urothelial cancer origination. In the future, TERT promoter mutations and telomerase activity might have diagnostic and therapeutic applications in UCB.
Collapse
Affiliation(s)
- Cagatay Günes
- Department of Urology, University of Ulm, Ulm, Germany.
| | - Felix Wezel
- Department of Urology, University of Ulm, Ulm, Germany
| | - Jennifer Southgate
- Department of Biology, Jack Birch Unit of Molecular Carcinogenesis, University of York, York, UK
| | | |
Collapse
|
9
|
A urine-dependent human urothelial organoid offers a potential alternative to rodent models of infection. Sci Rep 2018; 8:1238. [PMID: 29352171 PMCID: PMC5775255 DOI: 10.1038/s41598-018-19690-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 01/04/2018] [Indexed: 12/13/2022] Open
Abstract
Murine models describe a defined host/pathogen interaction for urinary tract infection, but human cell studies are scant. Although recent human urothelial organoid models are promising, none demonstrate long-term tolerance to urine, the natural substrate of the tissue and of the uropathogens that live there. We developed a novel human organoid from progenitor cells which demonstrates key structural hallmarks and biomarkers of the urothelium. After three weeks of transwell culture with 100% urine at the apical interface, the organoid stratified into multiple layers. The apical surface differentiated into enlarged and flattened umbrella-like cells bearing characteristic tight junctions, structures resembling asymmetric unit membrane plaques, and a glycosaminoglycan layer. The apical cells also expressed cytokeratin-20, a spatial feature of the mammalian urothelium. Urine itself was necessary for full development, and undifferentiated cells were urine-tolerant despite the lack of membrane plaques and a glycosaminoglycan layer. Infection with Enterococcus faecalis revealed the expected invasive outcome, including urothelial sloughing and the formation of intracellular colonies similar to those previously observed in patient cells. This new biomimetic model could help illuminate invasive behaviours of uropathogens, and serve as a reproducible test bed for disease formation, treatment and resolution in patients.
Collapse
|
10
|
Urinary Tissue Engineering: Challenges and Opportunities. Sex Med Rev 2017; 6:35-44. [PMID: 29066225 DOI: 10.1016/j.sxmr.2017.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/09/2017] [Accepted: 08/17/2017] [Indexed: 01/14/2023]
Abstract
INTRODUCTION In this review, we discuss major advancements and common challenges in constructing and regenerating a neo-urinary conduit (NUC). First, we focus on the need for regenerating the urothelium, the hallmark the urine barrier, unique to urinary tissues. Second, we focus on clinically feasible scaffolds based on decellularized matrices and molded collagen that are currently of great research interest. AIM To discuss the major advancements in constructing a tissue-engineered NUC (TE-NUC) and the challenges involved in their successful clinical translation. METHODS A comprehensive search of peer-reviewed literature from PubMed and Google Scholar on subjects related to urothelium regeneration, decellularized tissue matrices, and collagen scaffolds was conducted. MAIN OUTCOME MEASURE We evaluated the main biological and mechanical functions of urinary tissues, the need for TE implants to create a urinary diversion, the reasons for their failures in clinical settings, and the applications of decellularized tissue matrices and collagen-based molded scaffolds in their regeneration. RESULTS It is necessary to create a urine barrier that prevents urine leakage into the stroma that can cause failure of the graft. Despite the regeneration potential of the urothelium, the limited supply of healthy urothelial cells in patients with bladder cancer remains a major challenge. In this context, alternative strategies, such as transdifferentiation of cells into urothelium or engineered scaffolds based on decellularized tissues and molded collagen with robust urine barrier properties, are active areas of research. CONCLUSION There is an immediate need for developing a functional TE-NUC that can improve the quality of life of patients with bladder cancer. It is possible to achieve a TE-NUC by bioengineering an implant that has appropriate biological and mechanical properties to store and transport urine. We anticipate that future advancements in urothelium regeneration and material design will lead us closer to successful neo-urinary tissue constructs. Singh A, Bivalacqua TJ, Sopko N. Urinary Tissue Engineering: Challenges and Opportunities. Sex Med Rev 2018;6:35-44.
Collapse
|
11
|
Abstract
The accumulation of 'senescent' cells has long been proposed to act as an ageing mechanism. These cells display a radically altered transcriptome and degenerative phenotype compared with their growing counterparts. Tremendous progress has been made in recent years both in understanding the molecular mechanisms controlling entry into the senescent state and in the direct demonstration that senescent cells act as causal agents of mammalian ageing. The challenges now are to gain a better understanding of how the senescent cell phenotype varies between different individuals and tissues, discover how senescence predisposes to organismal frailty, and develop mechanisms by which the deleterious effects of senescent cells can be ameliorated.
Collapse
Affiliation(s)
- Richard Ga Faragher
- Stress, Ageing and Disease Research Group, School of Pharmacy & Biomolecular Sciences, University of Brighton, Brighton, East Sussex, UK
| | - Anne McArdle
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Alison Willows
- Stress, Ageing and Disease Research Group, School of Pharmacy & Biomolecular Sciences, University of Brighton, Brighton, East Sussex, UK
| | - Elizabeth L Ostler
- Stress, Ageing and Disease Research Group, School of Pharmacy & Biomolecular Sciences, University of Brighton, Brighton, East Sussex, UK
| |
Collapse
|
12
|
Dunnill CJ, Ibraheem K, Mohamed A, Southgate J, Georgopoulos NT. A redox state-dictated signalling pathway deciphers the malignant cell specificity of CD40-mediated apoptosis. Oncogene 2016; 36:2515-2528. [PMID: 27869172 PMCID: PMC5422712 DOI: 10.1038/onc.2016.401] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 09/08/2016] [Accepted: 09/16/2016] [Indexed: 12/19/2022]
Abstract
CD40, a member of the tumour necrosis factor receptor (TNFR) superfamily, has the capacity to cause extensive apoptosis in carcinoma cells, while sparing normal epithelial cells. Yet, apoptosis is only achieved by membrane-presented CD40 ligand (mCD40L), as soluble receptor agonists are but weakly pro-apoptotic. Here, for the first time we have identified the precise signalling cascade underpinning mCD40L-mediated death as involving sequential TRAF3 stabilisation, ASK1 phosphorylation, MKK4 (but not MKK7) activation and JNK/AP-1 induction, leading to a Bak- and Bax-dependent mitochondrial apoptosis pathway. TRAF3 is central in the activation of the NADPH oxidase (Nox)-2 component p40phox and the elevation of reactive oxygen species (ROS) is essential in apoptosis. Strikingly, CD40 activation resulted in down-regulation of Thioredoxin (Trx)-1 to permit ASK1 activation and apoptosis. Although soluble receptor agonist alone could not induce death, combinatorial treatment incorporating soluble CD40 agonist and pharmacological inhibition of Trx-1 was functionally equivalent to the signal triggered by mCD40L. Finally, we demonstrate using normal, ‘para-malignant' and tumour-derived cells that progression to malignant transformation is associated with increase in oxidative stress in epithelial cells, which coincides with increased susceptibility to CD40 killing, while in normal cells CD40 signalling is cytoprotective. Our studies have revealed the molecular nature of the tumour specificity of CD40 signalling and explained the differences in pro-apoptotic potential between soluble and membrane-bound CD40 agonists. Equally importantly, by exploiting a unique epithelial culture system that allowed us to monitor alterations in the redox-state of epithelial cells at different stages of malignant transformation, our study reveals how pro-apoptotic signals can elevate ROS past a previously hypothesised ‘lethal pro-apoptotic threshold' to induce death; an observation that is both of fundamental importance and carries implications for cancer therapy.
Collapse
Affiliation(s)
- C J Dunnill
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - K Ibraheem
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - A Mohamed
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - J Southgate
- Jack Birch Unit of Molecular Carcinogenesis, Department of Biology, University of York, York, UK
| | - N T Georgopoulos
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| |
Collapse
|
13
|
Hoffmann MJ, Koutsogiannouli E, Skowron MA, Pinkerneil M, Niegisch G, Brandt A, Stepanow S, Rieder H, Schulz WA. The New Immortalized Uroepithelial Cell Line HBLAK Contains Defined Genetic Aberrations Typical of Early Stage Urothelial Tumors. Bladder Cancer 2016; 2:449-463. [PMID: 28035326 PMCID: PMC5181672 DOI: 10.3233/blc-160065] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Background: Cell culture models of normal urothelial cells are important for studying differentiation, disease mechanisms and anticancer drug development. Beyond primary cultures with their limitations in lifespan, interindividual heterogeneity and supply, few conditionally immortalized cell lines with limited applicability due to partial transformation or impaired differentiation capacity are available. We describe characteristics of the new spontaneously immortalized cell line HBLAK derived from a primary culture of uroepithelial cells. Objective: To characterize utility and limitations of HBLAK cells as an urothelial cell culture model. Methods: Differentiation markers were investigated by immunofluorescence and RT-PCR, genetic changes by standard karyotyping, array-CGH, PCR, RT-PCR and exome sequencing; expression of p53 and p21 by Western blotting. Results: HBLAK cells proliferated for >50 passages without senescing. They expressed cytokeratins of basal urothelial cells. Terminal differentiation markers appeared only after induction of differentiation by specific protocols. The karyotype was stable, with few chromosomal changes, especially gains of chromosomes 5 and 20 and a chromosome 9p21 deletion resulting in p16INK4A loss. A C228T TERT promoter mutation was present, but no other mutation typical of urothelial carcinoma. TP53 was wild-type and the cell cycle was arrested in response to genomic stress. Conclusions: HBLAK cells retain some differentiation potential and respond to cytotoxic agents similar to normal urothelial cells, but contain genetic changes contributing to immortalization in urothelial tumors. HBLAK may be valuable for evaluating the tumor specificity of novel cancer drugs, but may also be applied as an urothelial in vitro carcinogenesis model.
Collapse
Affiliation(s)
- Michèle J Hoffmann
- Department of Urology, Medical Faculty, Heinrich-Heine-University Düsseldorf , Düsseldorf, Germany
| | | | - Margaretha A Skowron
- Department of Urology, Medical Faculty, Heinrich-Heine-University Düsseldorf , Düsseldorf, Germany
| | - Maria Pinkerneil
- Department of Urology, Medical Faculty, Heinrich-Heine-University Düsseldorf , Düsseldorf, Germany
| | - Günter Niegisch
- Department of Urology, Medical Faculty, Heinrich-Heine-University Düsseldorf , Düsseldorf, Germany
| | - Artur Brandt
- Institute for Human Genetics, Medical Faculty, Heinrich-Heine-University Düsseldorf , Düsseldorf, Germany
| | - Stefanie Stepanow
- Biological and Medical Research Center (BMFZ), Heinrich-Heine-University Düsseldorf , Düsseldorf, Germany
| | - Harald Rieder
- Institute for Human Genetics, Medical Faculty, Heinrich-Heine-University Düsseldorf , Düsseldorf, Germany
| | - Wolfgang A Schulz
- Department of Urology, Medical Faculty, Heinrich-Heine-University Düsseldorf , Düsseldorf, Germany
| |
Collapse
|
14
|
Smith NJ, Hinley J, Varley CL, Eardley I, Trejdosiewicz LK, Southgate J. The human urothelial tight junction: claudin 3 and the ZO-1α + switch. Bladder (San Franc) 2015; 2:e9. [PMID: 26269793 PMCID: PMC4530542 DOI: 10.14440/bladder.2015.33] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objective Tight junctions are multicomponent structures, with claudin proteins defining paracellular permeability. Claudin 3 is a candidate for the exceptional “tightness” of human urothelium, being localised to the terminal tight junction (TJ) of superficial cells. Our aim was to determine whether claudin 3 plays an instigating and/or a functional role in the urothelial TJ. Materials and Methods Normal human urothelial (NHU) cells maintained as non-immortalised cell lines were retrovirally-transduced to over-express or silence claudin 3 expression. Stable sublines induced to stratify or differentiate were assessed for TJ formation by immunocytochemistry and transepithelial electrical resistance (TER). Expression of claudin 3, ZO-1 and ZO-1α+ was examined in native urothelium by immunohistochemistry. Results Claudin 3 expression was associated with differentiation and development of a tight barrier and along with ZO-1 and ZO-1α+ was localised to the apical tight junction in native urothelium. Knockdown of claudin 3 inhibited formation of a tight barrier in three independent cell lines, however, overexpression of claudin 3 was not sufficient to induce tight barrier development in the absence of differentiation. A differentiation-dependent induction of the ZO-1α+ isoform was found to coincide with barrier formation. Whereas claudin 3 overexpression did not induce the switch to co-expression of ZO-1α−/ZO-1α+, claudin 3 knockdown decreased localisation of ZO-1 to the TJ and resulted in compromised barrier function. Conclusions Urothelial cytodifferentiation is accompanied by induction of claudin 3 which is essential for the development of a terminal TJ. A coordinated switch to the ZO-1α+ isotype was also observed and for the first time may indicate that ZO-1α+ is involved in the structural assembly and function of the urothelial terminal TJ.
Collapse
Affiliation(s)
- Nicholas J Smith
- Jack Birch Unit of Molecular Carcinogenesis, Department of Biology, University of York, York YO10 5DD, United Kingdom ; Pyrah Department of Urology, St James's University Hospital, Leeds LS9 7TF, United Kingdom
| | - Jennifer Hinley
- Jack Birch Unit of Molecular Carcinogenesis, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Claire L Varley
- Jack Birch Unit of Molecular Carcinogenesis, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Ian Eardley
- Pyrah Department of Urology, St James's University Hospital, Leeds LS9 7TF, United Kingdom
| | - Ludwik K Trejdosiewicz
- Jack Birch Unit of Molecular Carcinogenesis, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Jennifer Southgate
- Jack Birch Unit of Molecular Carcinogenesis, Department of Biology, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
15
|
Georgopoulos NT, Kirkwood LA, Southgate J. A novel bidirectional positive-feedback loop between Wnt-β-catenin and EGFR-ERK plays a role in context-specific modulation of epithelial tissue regeneration. J Cell Sci 2014; 127:2967-82. [PMID: 24816560 PMCID: PMC4077591 DOI: 10.1242/jcs.150888] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
By operating as both a subunit of the cadherin complex and a key component of Wnt signalling, β-catenin acts as the lynchpin between cell–cell contact and transcriptional regulation of proliferation, coordinating epithelial tissue homeostasis and regeneration. The integration of multiple growth-regulatory inputs with β-catenin signalling has been observed in cancer-derived cells, yet the existence of pathway crosstalk in normal cells is unknown. Using a highly regenerative normal human epithelial culture system that displays contact inhibition, we demonstrate that the receptor tyrosine kinase (RTK)-driven MAPK and Wnt–β-catenin signalling axes form a bidirectional positive-feedback loop to drive cellular proliferation. We show that β-catenin both drives and is regulated by proliferative signalling cues, and its downregulation coincides with the switch from proliferation to contact-inhibited quiescence. We reveal a novel contextual interrelationship whereby positive and negative feedback between three major signalling pathways – EGFR–ERK, PI3K–AKT and Wnt–β-catenin – enable autocrine-regulated tissue homeostasis as an emergent property of physical interactions between cells. Our work has direct implications for normal epithelial tissue homeostasis and provides insight as to how dysregulation of these pathways could drive excessive and sustained cellular growth in disease.
Collapse
Affiliation(s)
- Nikolaos T Georgopoulos
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology, University of York, York YO10 5DD, UK Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Lisa A Kirkwood
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology, University of York, York YO10 5DD, UK
| | - Jennifer Southgate
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
16
|
Glycan-targeted drug delivery for intravesical therapy: in the footsteps of uropathogenic bacteria. Ther Deliv 2014; 5:537-53. [DOI: 10.4155/tde.14.25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The human urothelium belongs to the most efficient biobarriers, and represents a highly rewarding but challenging target for local drug administration. Inadequate urothelial bioavailability is a major obstacle for successful treatment of bladder cancer and other diseases, yet little research has addressed the development of advanced delivery concepts for the intravesical route. A prominent example of how to overcome the urothelial barrier by means of specific biorecognition is the efficient cytoinvasion of UPEC bacteria, mediated by the mannose-targeted lectin domain FimH. Similar mechanisms of non-bacterial origin may be exploited for enhancing drug uptake from the bladder cavity. This review covers the current status in the development of lectin-based delivery strategies for the urinary tract. Different concepts for preparing and optimizing carbohydrate-targeted delivery systems are presented, along with important design parameters, benefits and shortcomings. Bioconjugate- and nano-/microparticle-based systems are discussed in further detail with regard to their performance in preclinical testing.
Collapse
|
17
|
Baker SC, Shabir S, Southgate J. Biomimetic urothelial tissue models for the in vitro evaluation of barrier physiology and bladder drug efficacy. Mol Pharm 2014; 11:1964-70. [PMID: 24697150 DOI: 10.1021/mp500065m] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The bladder is an important tissue in which to evaluate xenobiotic drug interactions and toxicities due to the concentration of parent drug and hepatic/enteric-derived metabolites in the urine as a result of renal excretion. Breaching of the barrier provided by the bladder epithelial lining (the urothelium) can expose the underlying tissues to urine and cause harmful effects (e.g., cystitis or cancer). Human urothelium is most commonly represented in vitro as immortalized or established cancer-derived cell lines, but the compromised ability of such cells to undergo differentiation and barrier formation means that nonimmortalized, normal human urothelial (NHU) cells provide a more relevant cell culture system. The impressive capacity for urothelial self-renewal in vivo can be harnessed in vitro to generate experimentally-useful quantities of NHU cells, which can subsequently be differentiated to form a functional or "biomimetic" urothelium. When seeded onto permeable membranes, these barrier-forming human urothelial tissue models enable the modeling of serum and luminal (intravesical) exposure to drugs and metabolites, thus supporting efficacy/toxicity assessments. Biomimetic human urothelial constructs provide a potential step along the preclinical trail and may support the extrapolation from rodent in vivo data to determine human relevance. Early evidence is beginning to demonstrate that human urothelium in vitro can provide information that supersedes conventional rodent studies, but further validation is needed to support widespread adoption.
Collapse
Affiliation(s)
- Simon C Baker
- Jack Birch Unit of Molecular Carcinogenesis, Department of Biology, University of York , Heslington, York YO10 5DD, U.K
| | | | | |
Collapse
|
18
|
Bakali E, Elliott RA, Taylor AH, Lambert DG, Willets JM, Tincello DG. Human urothelial cell lines as potential models for studying cannabinoid and excitatory receptor interactions in the urinary bladder. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:581-9. [PMID: 24652077 DOI: 10.1007/s00210-014-0973-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 03/05/2014] [Indexed: 11/25/2022]
Abstract
To characterize human urothelial cell lines' cannabinoid receptor expression and evaluate their possible use for studying signalling interactions with purinergic and muscarinic receptor activation. PCR was used to detect cannabinoid (CB), muscarinic and purinergic receptor transcripts in HCV29 and UROtsa cells, whilst immunofluorescence evaluated protein expression and localization of cannabinoid receptors. The effect of CB1 agonist (ACEA) on carbachol- and ATP-induced changes in intracellular calcium ([Ca(2+)]i) levels was measured using fluorimetry. The ability of ACEA to reduce intracellular cAMP was investigated in HCV29 cells. CB1 and GPR55 receptor transcripts were detected in HCV29 and UROtsa cells, respectively. Immunofluorescence showed positive staining for CB1 in the HCV29 cells. Both cell lines expressed transcript levels for muscarinic receptors, but carbachol did not raise [Ca(2+)]i levels indicating a lack or low expression of G(q)-coupled muscarinic receptors. Transcripts for purinergic receptors were detected; ATP significantly increased [Ca(2+)]i in HCV29 and UROtsa cells by 395 ± 61 and 705 ± 100 nM (mean ± SEM, n = 6), respectively. ACEA did not alter ATP-induced [Ca(2+)]i or cAMP levels in HCV29 cells. Whilst HCV29 cells expressed CB1 and UROtsa cells expressed GPR55 receptors, these were not functionally coupled to the existing purinergic-driven increase in Ca2+ as such they do not represent a good model to study signalling interactions.
Collapse
Affiliation(s)
- Evangelia Bakali
- Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX, UK,
| | | | | | | | | | | |
Collapse
|
19
|
Mackay LS, Dodd S, Dougall IG, Tomlinson W, Lordan J, Fisher AJ, Corris PA. Isolation and characterisation of human pulmonary microvascular endothelial cells from patients with severe emphysema. Respir Res 2013; 14:23. [PMID: 23425195 PMCID: PMC3599007 DOI: 10.1186/1465-9921-14-23] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 02/15/2013] [Indexed: 11/17/2022] Open
Abstract
Background Loss of the pulmonary microvasculature in the pathogenesis of emphysema has been put forward as a credible alternative to the classical inflammatory cell driven proteolysis hypothesis. Mechanistic studies in this area have to date employed animal models, immortalised cell lines, primary endothelial cells isolated from large pulmonary arteries and non-pulmonary tissues and normal human pulmonary microvascular endothelial cells. Although these studies have increased our understanding of endothelial cell function, their relevance to mechanisms in emphysema is questionable. Here we report a successful technique to isolate and characterise primary cultures of pulmonary microvascular endothelial cells from individuals with severe emphysema. Methods A lobe of emphysematous lung tissue removed at the time of lung transplantation surgery was obtained from 14 patients with severe end-stage disease. The pleura, large airways and large blood vessels were excised and contaminating macrophages and neutrophils flushed from the peripheral lung tissue before digestion with collagenase. Endothelial cells were purified from the cell mixture via selection with CD31 and UEA-1 magnetic beads and characterised by confocal microscopy and flow cytometry. Results Successful isolation was achieved from 10 (71%) of 14 emphysematous lungs. Endothelial cells exhibited a classical cobblestone morphology with high expression of endothelial cell markers (CD31) and low expression of mesenchymal markers (CD90, αSMA and fibronectin). E-selectin (CD62E) was inducible in a proportion of the endothelial cells following stimulation with TNFα, confirming that these cells were of microvascular origin. Conclusions Emphysematous lungs removed at the time of transplantation can yield large numbers of pulmonary microvasculature endothelial cells of high purity. These cells provide a valuable research tool to investigate cellular mechanisms in the pulmonary microvasculature relevant to the pathogenesis of emphysema.
Collapse
Affiliation(s)
- Laura S Mackay
- Institute of Cellular Medicine, Newcastle University, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | | | | | | | | | | | | |
Collapse
|
20
|
Lectin bioconjugates trigger urothelial cytoinvasion – A glycotargeted approach for improved intravesical drug delivery. Eur J Pharm Biopharm 2012; 82:367-75. [DOI: 10.1016/j.ejpb.2012.07.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 07/06/2012] [Accepted: 07/24/2012] [Indexed: 12/23/2022]
|
21
|
DeGraff DJ, Clark PE, Cates JM, Yamashita H, Robinson VL, Yu X, Smolkin ME, Chang SS, Cookson MS, Herrick MK, Shariat SF, Steinberg GD, Frierson HF, Wu XR, Theodorescu D, Matusik RJ. Loss of the urothelial differentiation marker FOXA1 is associated with high grade, late stage bladder cancer and increased tumor proliferation. PLoS One 2012; 7:e36669. [PMID: 22590586 PMCID: PMC3349679 DOI: 10.1371/journal.pone.0036669] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 04/09/2012] [Indexed: 12/31/2022] Open
Abstract
Approximately 50% of patients with muscle-invasive bladder cancer (MIBC) develop metastatic disease, which is almost invariably lethal. However, our understanding of pathways that drive aggressive behavior of MIBC is incomplete. Members of the FOXA subfamily of transcription factors are implicated in normal urogenital development and urologic malignancies. FOXA proteins are implicated in normal urothelial differentiation, but their role in bladder cancer is unknown. We examined FOXA expression in commonly used in vitro models of bladder cancer and in human bladder cancer specimens, and used a novel in vivo tissue recombination system to determine the functional significance of FOXA1 expression in bladder cancer. Logistic regression analysis showed decreased FOXA1 expression is associated with increasing tumor stage (p<0.001), and loss of FOXA1 is associated with high histologic grade (p<0.001). Also, we found that bladder urothelium that has undergone keratinizing squamous metaplasia, a precursor to the development of squamous cell carcinoma (SCC) exhibited loss of FOXA1 expression. Furthermore, 81% of cases of SCC of the bladder were negative for FOXA1 staining compared to only 40% of urothelial cell carcinomas. In addition, we showed that a subpopulation of FOXA1 negative urothelial tumor cells are highly proliferative. Knockdown of FOXA1 in RT4 bladder cancer cells resulted in increased expression of UPK1B, UPK2, UPK3A, and UPK3B, decreased E-cadherin expression and significantly increased cell proliferation, while overexpression of FOXA1 in T24 cells increased E-cadherin expression and significantly decreased cell growth and invasion. In vivo recombination of bladder cancer cells engineered to exhibit reduced FOXA1 expression with embryonic rat bladder mesenchyme and subsequent renal capsule engraftment resulted in enhanced tumor proliferation. These findings provide the first evidence linking loss of FOXA1 expression with histological subtypes of MIBC and urothelial cell proliferation, and suggest an important role for FOXA1 in the malignant phenotype of MIBC.
Collapse
Affiliation(s)
- David J DeGraff
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ochodnický P, Humphreys S, Eccles R, Poljakovic M, Wiklund P, Michel MC. Expression profiling of G-protein-coupled receptors in human urothelium and related cell lines. BJU Int 2012; 110:E293-300. [PMID: 22551294 DOI: 10.1111/j.1464-410x.2012.011145.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
UNLABELLED What's known on the subject? and What does the study add? Urothelium emerged as a crucial integrator of sensory inputs and outputs in the bladder wall, and urothelial G-protein-coupled receptors (GPCRs) may represent plausible targets for treatment of various bladder pathologies. Urothelial cell lines provide a useful tool to study urothelial receptor function, but their validity as models for native human urothelium remains unclear. We characterize the mRNA expression of genes coding for GPCRs in human freshly isolated urothelium and compare the expression pattern with those in human urothelial cell lines. OBJECTIVES To characterize the mRNA expression pattern of genes coding for G-protein-coupled receptors (GPCRs) in human freshly isolated urothelium. To compare GPCR expression in human urothelium-derived cell lines to explore the suitability of these cell lines as model systems to study urothelial function. MATERIALS AND METHODS Native human urothelium (commercially sourced) and human urothelium-derived non-cancer (UROtsa and TERT-NHUC) and cancer (J82) cell lines were used. For mRNA expression profiling we used custom-designed real-time polymerase chain reaction array for 40 receptors and several related genes. RESULTS Native urothelium expressed a wide variety of GPCRs, including α(1A), α(1D) and all subtypes of α(2) and β adrenoceptors. In addition, M(2) and M(3) cholinergic muscarinic receptors, angiotensin II AT(1) receptor, serotonin 5-HT(2A) receptor and all subtypes of bradykinin, endothelin, cannabinoid, tachykinin and sphingosine-1-phosphate receptors were detected. Nerve growth factor and both its low- and high-affinity receptors were also expressed in urothelium. In all cell lines expression of most GPCRs was markedly downregulated, with few exceptions. In UROtsa cells, but much less in other cell lines, the expression of β(2) adrenoceptors, M(3) muscarinic receptors, B(1) and B(2) bradykinin receptors, ET(B) endothelin receptors and several subtypes of sphingosine-1-phosphate receptors was largely retained. CONCLUSIONS Human urothelium expresses a wide range of receptors which enables sensing and integration of various extracellular signals. Human urothelium-derived cell lines, especially UROtsa cells, show comparable mRNA expression to native tissue for several physiologically relevant GPCRs, but lose expression of many other receptors. The use of cell lines as model systems of human urothelium requires careful validation of suitability for the genes of interest.
Collapse
Affiliation(s)
- Peter Ochodnický
- Department of Pharmacology and Pharmacotherapy, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
23
|
Zhang Y, Liu G, Kropp BP. Re-epithelialization of demucosalized stomach patch with tissue-engineered urothelial mucosa combined with Botox A in bladder augmentation. BJU Int 2012; 110:E106-12. [PMID: 22288946 DOI: 10.1111/j.1464-410x.2011.10845.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
UNLABELLED Re-epithelialization demucosa stomach patch is important to prevent the patch being exposed to urine that might cause patch shrinkage and fibrosis formation due to urine-derived chemical irritation. Additionally, Botox A acts by blocking the transmission of nerve impulses to smooth muscles and so paralysing the muscles, which is commonly used to relax muscle for treatment of oesophageal achalasia due to overactive smooth muscle and sphincters of gastrointestinal tract. We fabricated in vitro tissue engineered urothelial mucosa with multi-layers of urothelium and smooth muscle layers seeded on SIS scaffold and then used this cell-scaffold construct to cover nuke gastro patch combining with Botox A for gastrocystoplasty in a canine model. OBJECTIVE To evaluate the demucosalized stomach patch covered with tissue-engineered urothelium for gastrocystoplasty and to determine whether or not injections of Botox A into the re-epithelialized stomach patch can protect the graft from contraction in a canine bladder reconstruction model. MATERIALS AND METHODS Gastrocystoplasty was performed in 10 adult beagles after hemi-cystectomy using five types of stomach patch (n = 2 per group): entire stomach patches (group I); demucosalized patches (group II); demucosalized patches covered with cell-free small intestinal submucosa (SIS) (group III); demucosalized patches with urothelial and smooth muscle cell-seeded SIS (group IV); and demucosalized patches with the cell-seeded SIS combined with injections of Botox A (group V). The bladder volume/pressure and the graft sizes were measured before surgery and again 10 weeks after bladder augmentation. The graft tissues were examined both histologically and using immunohistochemistry. RESULTS All dogs survived and their gastric grafts were all vital with a good blood supply. Gastric metaplasia of urothelium appeared on the top of stomach mucosa patches in two animals in group I. There was calcification formation at the centre of the graft in one animal in group II. As compared with urothelium that was partially covered over with stomach patches in groups II and III, stratified urothelium completely covered the demucosalized gastric patches in groups IV and V. There was less shrinkage of the stomach grafts in groups I and V, which shrank to half of their original size, than of the stomach grafts in groups II, III, and IV, which shrank significantly to one-quarter of their original sizes. CONCLUSIONS Botox A injections appear to protect the graft contraction in the re-epithelialized stomach flaps. The gastrocystoplasty using demucosalized patches covered with tissue-engineered urothelial mucosa combined with an injection of Botox A could have clinical potential for use in bladder reconstruction.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA.
| | | | | |
Collapse
|