1
|
Shang S, Zhang L, Liu K, Lv M, Zhang J, Ju D, Wei D, Sun Z, Wang P, Yuan J, Zhu Z. Landscape of targeted therapies for advanced urothelial carcinoma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:641-677. [PMID: 38966172 PMCID: PMC11220318 DOI: 10.37349/etat.2024.00240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/06/2024] [Indexed: 07/06/2024] Open
Abstract
Bladder cancer (BC) is the tenth most common malignancy globally. Urothelial carcinoma (UC) is a major type of BC, and advanced UC (aUC) is associated with poor clinical outcomes and limited survival rates. Current options for aUC treatment mainly include chemotherapy and immunotherapy. These options have moderate efficacy and modest impact on overall survival and thus highlight the need for novel therapeutic approaches. aUC patients harbor a high tumor mutation burden and abundant molecular alterations, which are the basis for targeted therapies. Erdafitinib is currently the only Food and Drug Administration (FDA)-approved targeted therapy for aUC. Many potential targeted therapeutics aiming at other molecular alterations are under investigation. This review summarizes the current understanding of molecular alterations associated with aUC targeted therapy. It also comprehensively discusses the related interventions for treatment in clinical research and the potential of using novel targeted drugs in combination therapy.
Collapse
Affiliation(s)
- Shihao Shang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Lei Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Kepu Liu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Maoxin Lv
- Department of Urology, First Affiliated Hospital of Kunming Medical University, Kunming 65000, Yunnan, China
| | - Jie Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
- College of Life Sciences, Northwest University, Xi’an 710068, Shaanxi, China
| | - Dongen Ju
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Di Wei
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Zelong Sun
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Pinxiao Wang
- School of Clinical Medicine, Xi’an Medical University, Xi’an 710021, Shaanxi, China
| | - Jianlin Yuan
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Zheng Zhu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| |
Collapse
|
2
|
Zhang P, Yue L, Leng Q, Chang C, Gan C, Ye T, Cao D. Targeting FGFR for cancer therapy. J Hematol Oncol 2024; 17:39. [PMID: 38831455 PMCID: PMC11149307 DOI: 10.1186/s13045-024-01558-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
The FGFR signaling pathway is integral to cellular activities, including proliferation, differentiation, and survival. Dysregulation of this pathway is implicated in numerous human cancers, positioning FGFR as a prominent therapeutic target. Here, we conduct a comprehensive review of the function, signaling pathways and abnormal alterations of FGFR, as well as its role in tumorigenesis and development. Additionally, we provide an in-depth analysis of pivotal phase 2 and 3 clinical trials evaluating the performance and safety of FGFR inhibitors in oncology, thereby shedding light on the current state of clinical research in this field. Then, we highlight four drugs that have been approved for marketing by the FDA, offering insights into their molecular mechanisms and clinical achievements. Our discussion encompasses the intricate landscape of FGFR-driven tumorigenesis, current techniques for pinpointing FGFR anomalies, and clinical experiences with FGFR inhibitor regimens. Furthermore, we discuss the inherent challenges of targeting the FGFR pathway, encompassing resistance mechanisms such as activation by gatekeeper mutations, alternative pathways, and potential adverse reactions. By synthesizing the current evidence, we underscore the potential of FGFR-centric therapies to enhance patient prognosis, while emphasizing the imperative need for continued research to surmount resistance and optimize treatment modalities.
Collapse
Affiliation(s)
- Pei Zhang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Lin Yue
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - QingQing Leng
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Chen Chang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Cailing Gan
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tinghong Ye
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Dan Cao
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
Jain NK, Tailang M, Thangavel N, Makeen HA, Albratty M, Najmi A, Alhazmi HA, Zoghebi K, Alagusundaram M, Jain HK, Chandrasekaran B. A comprehensive overview of selective and novel fibroblast growth factor receptor inhibitors as a potential anticancer modality. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2024; 74:1-36. [PMID: 38554385 DOI: 10.2478/acph-2024-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 04/01/2024]
Abstract
The arrival of comprehensive genome sequencing has accelerated the understanding of genetically aberrant advanced cancers and target identification for possible cancer treatment. Fibroblast growth factor receptor (FGFR) gene alterations are frequent findings in various rare and advanced cancers refractive to mainstay chemo-therapy or surgical interventions. Several FGFR inhibitors have been developed for addressing these genetically altered FGFR-harboring malignancies, and some have performed well in clinical trials. In contrast, others are still being investigated in different phases of clinical trials. FDA has approved four anticancer agents such as erdafitinib, pemigatinib, infigratinib, and futibatinib, for clinical use in oncogenic FGFR-driven malignancies. These include cholangiocarcinoma, urothelial carcinoma, and myeloid/lymphoid malignancies. Pemigatinib is the only FGFR inhibitor globally approved (USA, EU, and Japan) and available as a targeted therapy for two types of cancer, including FGFR2 fusion or other rearrangements harboring cholangiocarcinoma and relapsed/refractory myeloid/lymphoid neoplasms with FGFR1 rearrangements. Myeloid/lymphoid neoplasm is the latest area of application added to the therapeutic armamentarium of FGFR inhibitors. Furthermore, futibatinib is the first-in-class covalent or irreversible pan-FGFR inhibitor that has received FDA approval for locally advanced or metastatic intrahepatic cholangiocarcinoma harboring FGFR2 gene aberrations. This review highlights the current clinical progress concerning the safety and efficacy of all the approved FGFR-TKIs (tyrosine kinase inhibitors) and their ongoing investigations in clinical trials for other oncogenic FGFR-driven malignancies.
Collapse
Affiliation(s)
- Nem Kumar Jain
- School of Pharmacy, ITM University Gwalior 474001, Madhya Pradesh, India
- School of Studies in Pharmaceutical Sciences, Jiwaji University Gwalior 474001, Madhya Pradesh, India
| | - Mukul Tailang
- School of Studies in Pharmaceutical Sciences, Jiwaji University Gwalior 474001, Madhya Pradesh, India
| | - Neelaveni Thangavel
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 82912, Saudi Arabia
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit Department of Clinical Pharmacy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 82912, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 82912, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 82912, Saudi Arabia
| | - Hassan Ahmad Alhazmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 82912, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 82912, Saudi Arabia
| | | | - Hemant Kumar Jain
- Department of General Medicine Government Medical College Datia 475661, Madhya Pradesh, India
| | | |
Collapse
|
4
|
Subbiah V, Verstovsek S. Clinical development and management of adverse events associated with FGFR inhibitors. Cell Rep Med 2023; 4:101204. [PMID: 37757826 PMCID: PMC10591034 DOI: 10.1016/j.xcrm.2023.101204] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/02/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023]
Abstract
Approved fibroblast growth factor receptor (FGFR) inhibitors include erdafitinib, pemigatinib, and futibatinib. We review the most common toxicities associated with FGFR inhibitors and provide practical advice regarding their management. Hyperphosphatemia can be managed with careful monitoring, dose reduction or interruption, a prophylactic low-phosphate diet, and phosphate-lowering therapy. Ocular adverse events (AEs) are managed by withholding or adjusting the dose of the FGFR inhibitor. Dermatologic AEs include alopecia, which can be managed with minoxidil, and dry skin, which can be treated with moisturizers. Hand-foot syndrome can be prevented by lifestyle changes and managed with moisturizing creams, urea, or salicylic acid. Among gastrointestinal AEs, diarrhea may be managed with loperamide; stomatitis can be managed with baking soda rinses, mucosa-coating agents, and topical anesthetics; and dry mouth may be alleviated with salivary stimulants. Most FGFR inhibitor-associated toxicities are manageable with prophylactic measures and treatments; proactive monitoring is key to ensuring optimal clinical benefits.
Collapse
Affiliation(s)
- Vivek Subbiah
- Sarah Cannon Research Institute, Nashville, TN, USA.
| | - Srdan Verstovsek
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
5
|
Song Y, Peng Y, Qin C, Wang Y, Yang W, Du Y, Xu T. Fibroblast growth factor receptor 3 mutation attenuates response to immune checkpoint blockade in metastatic urothelial carcinoma by driving immunosuppressive microenvironment. J Immunother Cancer 2023; 11:e006643. [PMID: 37777251 PMCID: PMC10546120 DOI: 10.1136/jitc-2022-006643] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND Immune checkpoint blockade (ICB) therapy holds promise in metastatic urothelial carcinoma (UC). Fibroblast growth factor receptor 3 (FGFR3) mutation drives T-cell-depleted microenvironment in UC, which led to the hypothesis that FGFR3 mutation might attenuate response to ICB in patients with metastatic UC. The study aims to compare prognosis and response between patients with FGFR3-mutated and FGFR3-wildtype metastatic UC after ICB therapy, and decode the potential molecular mechanisms. METHODS Based on the single-arm, multicenter, phase 2 trial, IMvigor210, we conducted a propensity score matched (PSM) analysis. After a 1:1 ratio PSM method, 39 patients with FGFR3-mutated and 39 FGFR3-wildtype metastatic UC treated with atezolizumab were enrolled. A meta-analysis through systematical database retrieval was conducted for validation. In addition, we performed single-cell RNA sequencing on three FGFR3-mutated and three FGFR3-wildtype UC tumors and analyzed 58,069 single cells. RESULTS The PSM analysis indicated FGFR3-mutated patients had worse overall survival (OS) in comparison to FGFR3-wildtype patients (HR=2.11, 95% CI=(1.16 to 3.85), p=0.015) receiving atezolizumab. The median OS was 9.2 months (FGFR3-mutated) versus 21.0 months (FGFR3-wildtype). FGFR3-mutated patients had lower disease control rate than FGFR3-wildtype patients (41.0% vs 66.7%, p=0.023). The meta-analysis involving 938 patients with metastatic UC confirmed FGFR3 mutation was associated with worse OS after ICB (HR=1.28, 95% CI=(1.04 to 1.59), p=0.02). Single-cell RNA transcriptome analysis identified FGFR3-mutated UC carried a stronger immunosuppressive microenvironment compared with FGFR3-wildtype UC. FGFR3-mutated UC exhibited less immune infiltration, and lower T-cell cytotoxicity. Higher TREM2+ macrophage abundance in FGFR3-mutated UC can undermine and suppress the T cells, potentially contributing to the formation of an immunosuppressive microenvironment. Lower inflammatory-cancer-associated fibroblasts in FGFR3-mutated UC recruited less chemokines in antitumor immunity but expressed growth factors to promote FGFR3-mutated malignant cell development. FGFR3-mutated UC carried abundance of malignant cells characterized by high hypoxia/metabolism and low interferon response phenotype. CONCLUSIONS FGFR3 mutation can attenuate prognosis and response to ICB in patients with metastatic UC. FGFR3-mutated UC carries a stronger immunosuppressive microenvironment in comparison with FGFR3-wildtype UC. Inhibition of FGFR3 might activate the immune microenvironment, and the combination of FGFR inhibitor targeted therapy and ICB might be a promising therapeutic regimen in metastatic UC, providing important implications for UC clinical management.
Collapse
Affiliation(s)
- Yuxuan Song
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Yun Peng
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Caipeng Qin
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Yulong Wang
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Wenbo Yang
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Yiqing Du
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Tao Xu
- Department of Urology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
6
|
Benjamin DJ, Hsu R. Treatment approaches for FGFR-altered urothelial carcinoma: targeted therapies and immunotherapy. Front Immunol 2023; 14:1258388. [PMID: 37675102 PMCID: PMC10477976 DOI: 10.3389/fimmu.2023.1258388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023] Open
Abstract
The treatment of metastatic urothelial carcinoma has dramatically changed over the past decade with the approval of several therapies from multiple drug classes including immune checkpoint inhibitors, targeted therapies, and antibody drug conjugates. Although next generation sequencing of urothelial carcinoma has revealed multiple recurring mutations, only one targeted therapy has been developed and approved to date. Erdafitinib, a pan-fibroblast growth factor receptor (FGFR) inhibitor, has been approved for treating patients with select FGFR2 and FGFR3 alterations and fusions since 2019. Since then, emerging data has demonstrated efficacy of combining erdafitinib with immunotherapy in treating FGFR-altered urothelial carcinoma. Ongoing trials are evaluating the use of erdafitinib in non-muscle invasive urothelial carcinoma as well as in combination with enfortumab vedotin in the metastatic setting, while other FGFR targeted agents such as infigratinib, AZD4547, rogaratinib and pemigatinib continue to be in development. Future challenges will include strategies to overcome FGFR acquired resistance and efficacy and safety of combination therapies with erdafitinib and other FGFR targeted agents.
Collapse
Affiliation(s)
| | - Robert Hsu
- Department of Internal Medicine, Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
7
|
Zhang Y, Ran L, Liang Y, Zhang Y, An Z. Safety analysis of pemigatinib leveraging the US Food and Drug administration adverse event reporting system. Front Pharmacol 2023; 14:1194545. [PMID: 37554985 PMCID: PMC10405447 DOI: 10.3389/fphar.2023.1194545] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023] Open
Abstract
Background: Cholangiocarcinoma (CCA) is a highly lethal and aggressive epithelial tumor of the hepatobiliary system. A poor prognosis, propensity for relapse, low chance of cure and survival are some of its hallmarks. Pemigatinib, the first targeted treatment for CCA in the United States, has been demonstrated to have a significant response rate and encouraging survival data in early-phase trials. The adverse events (AEs) of pemigatinib must also be determined. Objective: To understand more deeply the safety of pemigatinib in the real world through data-mining of the US Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS). Methods: Disproportionality analysis was employed in a retrospective pharmacovigilance investigation to identify the AEs linked to pemigatinib use as signals. Data were collected between 1 January 2020 to 30 June 2022. Four data-mining methods (proportional reporting odds ratio; proportional reporting ratio; Bayesian confidence propagation neural networks of information components; empirical Bayes geometric means) were used to calculate disproportionality. Results: A total of 203 cases using pemigatinib as the prime-suspect medication were found in our search, which involved 99 preferred terms (PTs). Thirteen signals of pemigatinib-induced AEs in seven System Organ Classes were detected after confirming the four algorithms simultaneously. Nephrolithiasis was an unexpected significant AE not listed on the drug label found in our data-mining. Comparison of the differences between pemigatinib and platinum drugs in terms of 33 PTs revealed that 13 PTs also met the criteria of the four algorithms. Ten of these PTs were identical to those compared with all other drugs, in which (excluding a reduction in phosphorus in blood) other PT signal values were higher than those of all other drugs tested. However, comparison of the differences between pemigatinib and infigratinib in terms of the 33 PTs revealed no significant signals in each algorithm method. Conclusion: Some significant signals were detected between pemigatinib use and AEs. PTs with apparently strong signals and PTs not mentioned in the label should be taken seriously.
Collapse
Affiliation(s)
| | | | | | | | - Zhuoling An
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Dardenne E, Ishiyama N, Lin TA, Lucas MC. Current and emerging therapies for Achondroplasia: The dawn of precision medicine. Bioorg Med Chem 2023; 87:117275. [PMID: 37156065 DOI: 10.1016/j.bmc.2023.117275] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/29/2023] [Indexed: 05/10/2023]
Abstract
Achondroplasia is a rare disease affecting bone growth and is caused by a missense mutation in the fibroblast growth factor receptor 3 (FGFR3) gene. In the past few years, there were multiple experimental drugs entering into clinical trials for treating achondroplasia including vosoritide, the first precision medicine approved for this indication. This perspective presents the mechanism of action, benefit, and potential mechanistic limitation of the drugs currently being evaluated in clinical trials for achondroplasia. This article also discusses the potential impact of those drugs not only in increasing the growth of individuals living with achondroplasia but also in improving their quality of life.
Collapse
Affiliation(s)
| | | | - Tai-An Lin
- Black Diamond Therapeutics, New York, NY, USA
| | | |
Collapse
|
9
|
Siefker-Radtke AO, Necchi A, Park SH, García-Donas J, Huddart RA, Burgess EF, Fleming MT, Rezazadeh Kalebasty A, Mellado B, Varlamov S, Joshi M, Duran I, Tagawa ST, Zakharia Y, Qi K, Akapame S, Triantos S, O'Hagan A, Loriot Y. Management of Fibroblast Growth Factor Inhibitor Treatment-emergent Adverse Events of Interest in Patients with Locally Advanced or Metastatic Urothelial Carcinoma. EUR UROL SUPPL 2023; 50:1-9. [PMID: 37101768 PMCID: PMC10123440 DOI: 10.1016/j.euros.2022.12.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2022] [Indexed: 02/18/2023] Open
Abstract
Background Erdafitinib is indicated for the treatment of adults with locally advanced/metastatic urothelial carcinoma and susceptible FGFR3/2 alterations progressing on/after one or more lines of prior platinum-based chemotherapy. Objective To better understand the frequency and management of select treatment-emergent adverse events (TEAEs) to enable optimal fibroblast growth factor receptor inhibitor (FGFRi) treatment. Design setting and participants Longer-term efficacy and safety results of the BLC2001 (NCT02365597) trial in patients with locally advanced and unresectable or metastatic urothelial carcinoma were studied. Intervention Erdafitinib schedule of 8 mg/d continuous in 28-d cycles, with uptitration to 9 mg/d if serum phosphate level was <5.5 mg/dl and no significant TEAEs occurred. Outcome measurements and statistical analysis Adverse events were graded using National Cancer Institute Common Terminology Criteria for Adverse Events version 4.0. The Kaplan-Meier methodology was used for the cumulative incidence of the first onset of TEAEs by grade. Time to resolution of TEAEs was summarized descriptively. Results and limitations At data cutoff, the median treatment duration was 5.4 mo among 101 patients receiving erdafitinib. Select TEAEs (total; grade 3) were hyperphosphatemia (78%; 2.0%), stomatitis (59%; 14%), nail events (59%; 15%), non-central serous retinopathy (non-CSR) eye disorders (56%; 5.0%), skin events (55%; 7.9%), diarrhea (55%; 4.0%), and CSR (27%; 4.0%). Select TEAEs were mostly of grade 1 or 2, and were managed effectively with dose modifications, including dose reductions or interruptions, and/or supportive concomitant therapies, resulting in few events leading to treatment discontinuation. Further work is needed to determine whether management is generalizable to the nonprotocol/general population. Conclusions Identification of select TEAEs and appropriate management with dose modification and/or concomitant therapies resulted in improvement or resolution of most TEAEs in patients, allowing for continuation of FGFRi treatment to ensure maximum benefit. Patient summary Early identification and proactive management are warranted to mitigate or possibly prevent erdafitinib side effects to allow for maximum drug benefit in patients with locally advanced or metastatic bladder cancer.
Collapse
Affiliation(s)
- Arlene O. Siefker-Radtke
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrea Necchi
- Department of Medical Oncology, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | - Se Hoon Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | | - Robert A. Huddart
- Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, London, UK
| | | | - Mark T. Fleming
- Virginia Oncology Associates, US Oncology Research, Norfolk, VA, USA
| | | | - Begoña Mellado
- Hosptial Clinic Insitut d’Investigacions Biomèdiques August Pi I Sunyer, University of Barcelona, Barcelona, Spain
| | | | | | - Ignacio Duran
- Department of Medical Oncology, Hospital Universitario Marqués de Valdecilla, IDIVAL, Santander, Spain
| | | | | | - Keqin Qi
- Janssen Research & Development, Titusville, NJ, USA
| | | | | | - Anne O'Hagan
- Janssen Research & Development, Spring House, PA, USA
| | | |
Collapse
|
10
|
Ascione CM, Napolitano F, Esposito D, Servetto A, Belli S, Santaniello A, Scagliarini S, Crocetto F, Bianco R, Formisano L. Role of FGFR3 in bladder cancer: Treatment landscape and future challenges. Cancer Treat Rev 2023; 115:102530. [PMID: 36898352 DOI: 10.1016/j.ctrv.2023.102530] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/02/2023]
Abstract
Bladder cancer is a heterogeneous malignancy and is responsible for approximately 3.2% of new diagnoses of cancer per year (Sung et al., 2021). Fibroblast Growth Factor Receptors (FGFRs) have recently emerged as a novel therapeutic target in cancer. In particular, FGFR3 genomic alterations are potent oncogenic drivers in bladder cancer and represent predictive biomarkers of response to FGFR inhibitors. Indeed, overall ∼50% of bladder cancers have somatic mutations in the FGFR3 -coding sequence (Cappellen et al., 1999; Turner and Grose, 2010). FGFR3 gene rearrangements are typical alterations in bladder cancer (Nelson et al., 2016; Parker et al., 2014). In this review, we summarize the most relevant evidence on the role of FGFR3 and the state-of-art of anti-FGFR3 treatment in bladder cancer. Furthermore, we interrogated the AACR Project GENIE to investigate clinical and molecular features of FGFR3-altered bladder cancers. We found that FGFR3 rearrangements and missense mutations were associated with a lower fraction of mutated genome, compared to the FGFR3 wild-type tumors, as also observed in other oncogene-addicted cancers. Moreover, we observed that FGFR3 genomic alterations are mutually exclusive with other genomic aberrations of canonical bladder cancer oncogenes, such as TP53 and RB1. Finally, we provide an overview of the treatment landscape of FGFR3-altered bladder cancer, discussing future perspectives for the management of this disease.
Collapse
Affiliation(s)
- Claudia Maria Ascione
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy
| | - Fabiana Napolitano
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy
| | - Daniela Esposito
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy
| | - Alberto Servetto
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy
| | - Stefania Belli
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy
| | - Antonio Santaniello
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy
| | - Sarah Scagliarini
- Division of Oncology, Azienda Ospedaliera di Rilievo Nazionale A. Cardarelli, Italy
| | - Felice Crocetto
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80131 Naples, Italy
| | - Roberto Bianco
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy
| | - Luigi Formisano
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy.
| |
Collapse
|
11
|
Benjamin DJ, Mar N, Rezazadeh Kalebasty A. Immunotherapy With Checkpoint Inhibitors in FGFR-Altered Urothelial Carcinoma. Clin Med Insights Oncol 2022; 16:11795549221126252. [PMID: 36186672 PMCID: PMC9520173 DOI: 10.1177/11795549221126252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/29/2022] [Indexed: 11/15/2022] Open
Abstract
The treatment landscape of metastatic urothelial cancer (mUC) remained unchanged for over 30 years until the approval of immune checkpoint inhibitors (ICIs) in 2016. Since then, several ICIs have been approved for the treatment of mUC. In addition, recent molecular characterization of bladder cancer has revealed several subtypes, including those harboring fibroblast growth factor receptor (FGFR) mutations and fusion proteins. Erdafitinib, a pan-FGFR inhibitor, was approved for the treatment of metastatic/advanced UC in 2019. Some available evidence suggests ICI may have inferior response in advanced FGFR+ UC for unclear reasons, but may possibly be related to the tumor microenvironment. Several ongoing trials are evaluating erdafitinib in metastatic/advanced UC including the ongoing phase IB/II NORSE trial combining erdafitinib plus ICI, which may prove to offer a more robust and durable response in patients with FGFR+ metastatic/advanced UC.
Collapse
Affiliation(s)
- David J Benjamin
- Medical Oncology, Hoag Family Cancer Institute, Newport Beach, CA, USA
| | - Nataliya Mar
- Division of Hematology and Oncology, Department of Medicine, Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, CA, USA
| | - Arash Rezazadeh Kalebasty
- Division of Hematology and Oncology, Department of Medicine, Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, CA, USA
| |
Collapse
|
12
|
Turcotte A, Achi S, Mamlouk O, Mandayam S. Electrolytes disturbances in cancer patients. Curr Opin Nephrol Hypertens 2022; 31:425-434. [PMID: 35894276 DOI: 10.1097/mnh.0000000000000819] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Hypernatremia, hyperphosphatemia, hypocalcaemia, hyperkalaemia and hypermagnesemia are electrolytes disturbances that can arise in cancer patients in relation to unique causes that are related to the cancer itself or its treatment and can lead to delay or interruption of cancer therapy. This article summarizes these main causes, the proposed pathophysiology and the recommended management for these disturbances. RECENT FINDINGS There have been many cancer drugs approved in the field of oncology over the past several years and a subset of these drugs have been associated with electrolytes disturbances. This includes, for example, immune checkpoint inhibitor related hyperkalemia, fibroblast growth factor 23 inhibitor associated hyperphosphatemia and epidermal growth factor receptor inhibitor associated hypomagnesemia and hypocalcaemia. SUMMARY This article provides an updated review of certain electrolytes disturbance in cancer patients and allows clinicians to have a greater awareness and knowledge of these electrolyte abnormalities in efforts to early recognition and timely management.
Collapse
Affiliation(s)
- Anna Turcotte
- Section of Nephrology, The University of Texas MD Anderson Cancer Center
| | - Sai Achi
- Department of Nephrology, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Omar Mamlouk
- Section of Nephrology, The University of Texas MD Anderson Cancer Center
| | - Sreedhar Mandayam
- Section of Nephrology, The University of Texas MD Anderson Cancer Center
| |
Collapse
|
13
|
Pal SK, Somford DM, Grivas P, Sridhar SS, Gupta S, Bellmunt J, Sonpavde G, Fleming MT, Lerner SP, Loriot Y, Hoffman-Censits J, Valderrama BP, Andresen C, Schnabel MJ, Cole S, Daneshmand S. Targeting FGFR3 alterations with adjuvant infigratinib in invasive urothelial carcinoma: the phase III PROOF 302 trial. Future Oncol 2022; 18:2599-2614. [PMID: 35608106 DOI: 10.2217/fon-2021-1629] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
PROOF 302 is an ongoing randomized, double-blind, placebo-controlled, adjuvant phase III trial (NCT04197986) in approximately 218 patients from 120 centers worldwide. Eligibility criteria include post-surgical high-risk muscle-invasive upper tract urothelial cancer (85% of patients) or urothelial bladder cancer (15%), susceptible FGFR3 alterations (activating mutations, gene fusions or rearrangements), ≤120 days following radical surgery and ineligible for/or refusing cisplatin-based (neo)adjuvant chemotherapy. Patients receive either oral infigratinib 125 mg or placebo daily on days 1-21 of a 28-day cycle for up to 52 weeks or until recurrence, unacceptable toxicity or death. Primary end point: centrally determined disease-free survival (DFS); secondary end points: investigator-assessed DFS, metastasis-free survival, overall survival and safety/tolerability; exploratory end points: correlative biomarker analysis, quality-of-life and infigratinib pharmacokinetics.
Collapse
Affiliation(s)
- Sumanta K Pal
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | | | - Petros Grivas
- Fred Hutchinson Cancer Research Center, Seattle Cancer Care Alliance, University of Washington, Seattle, WA 98195, USA
| | | | - Shilpa Gupta
- Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH 44106, USA
| | - Joaquim Bellmunt
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- PSMAR-IMIM Laboratory, Boston, MA 02215, USA
| | | | | | | | | | - Jean Hoffman-Censits
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21287, USA
| | | | | | | | - Suzanne Cole
- UT Southwestern Simmons Comprehensive Cancer Center, University of Texas, Dallas, TX 75390, USA
| | - Siamak Daneshmand
- Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
14
|
Hartley IR, Roszko KL, Li X, Pozo K, Streit J, del Rivero J, Magone MT, Vold R, Dambkowski CL, Collins MT, Gafni RI. Infigratinib Reduces
FGF23
and Increases Blood Phosphate in
Tumor‐Induced
Osteomalacia. JBMR Plus 2022; 6:e10661. [PMID: 35991529 PMCID: PMC9382865 DOI: 10.1002/jbm4.10661] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/03/2022] [Indexed: 11/09/2022] Open
Abstract
Tumor‐induced osteomalacia (TIO) is a rare paraneoplastic syndrome caused by ectopic production of fibroblast growth factor 23 (FGF23) by phosphaturic mesenchymal tumors (PMTs). Acting on renal tubule cells, excess FGF23 decreases phosphate reabsorption and 1,25‐dihydroxy‐vitamin D (1,25D) production, leading to hypophosphatemia, impaired bone mineralization, pain, and fractures. Fibronectin 1‐fibroblast growth factor receptor 1 (FN1‐FGFR1) gene fusions have been identified as possible drivers in up to 40% of resected PMTs. Based on the presumptive role of FGFR1 signaling by chimeric FN1‐FGFR1 proteins, the effectiveness of infigratinib, a FGFR1‐3 tyrosine kinase inhibitor, was studied in an open‐label, single‐center, phase 2 trial. The primary endpoint was persistent normalization of blood phosphate and FGF23 after discontinuation. Four adults with TIO (two nonlocalized, two nonresectable PMTs) were treated with daily infigratinib for up to 24 weeks. All patients had a favorable biochemical response that included reduction in intact FGF23, and normalization of blood phosphate and 1,25D. However, these effects disappeared after drug discontinuation with biochemistries returning to baseline; no patients entered biochemical remission. In the two patients with identifiable tumors, 68Gallium (68Ga)‐DOTATATE and 18Fluoride (18F)‐Fluorodeoxyglucose (FDG) PET/CT scans showed a decrease in PMT activity without change in tumor size. Patients experienced mild to moderate, treatment‐related, dose‐limiting adverse events (AEs), but no serious AEs. Three patients had dose interruptions due to AEs; one patient continued on a low dose for the entire 24 weeks and one patient stopped therapy at 17 weeks due to an AE. The study closed early due to a failure to meet the primary endpoint and a higher‐than‐expected incidence of ocular AEs. Infigratinib treatment lowered FGF23, increased blood phosphate, and suppressed PMT activity, confirming the role of FGFR signaling in PMT pathogenesis. However, treatment‐related AEs at efficacy doses and disease persistence on discontinuation support restricting the use of infigratinib to patients with life‐limiting metastatic PMTs. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
| | | | - Xiaobai Li
- Biostatistics and Clinical Epidemiology, Clinical Center NIH
| | - Karen Pozo
- National Institute of Dental and Craniofacial Research NIH
| | - Jamie Streit
- National Institute of Dental and Craniofacial Research NIH
| | | | - M. Teresa Magone
- Ophthalmology Consult Services Section National Eye Institute (NEI)
| | | | | | | | | |
Collapse
|
15
|
Chakrabarti S, Finnes HD, Mahipal A. Fibroblast growth factor receptor (FGFR) inhibitors in cholangiocarcinoma: current status, insight on resistance mechanisms and toxicity management. Expert Opin Drug Metab Toxicol 2022; 18:85-98. [DOI: 10.1080/17425255.2022.2039118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sakti Chakrabarti
- Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Heidi D. Finnes
- Pharmacy Cancer Research, Division of Medical Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905
| | - Amit Mahipal
- Division of Medical Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905
| |
Collapse
|
16
|
Zengin ZB, Chehrazi-Raffle A, Salgia NJ, Muddasani R, Ali S, Meza L, Pal SK. Targeted therapies: Expanding the role of FGFR3 inhibition in urothelial carcinoma. Urol Oncol 2021; 40:25-36. [PMID: 34840077 DOI: 10.1016/j.urolonc.2021.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/13/2021] [Accepted: 10/12/2021] [Indexed: 12/24/2022]
Abstract
The management of urothelial carcinoma (UC) has rapidly advanced in recent years with new approvals for immune checkpoint inhibitors and antibody-drug conjugates. However, while many UC tumors contain potentially actionable mutations, the role for targeted small molecule inhibitors has been limited. One such target is the fibroblast growth factor receptor (FGFR) family of proteins. Activating mutations and amplifications of FGFR3 are common in UC with higher incidences seen in upper tract as compared to lower tract disease. Consequently, multiple FGFR-directed targeted therapies have been developed and trialed in both UC and other solid tumors harboring FGFR mutations. At current, erdafitinib, an inhibitor of FGFR1-4, is the only approved targeted therapy in metastatic UC following the BLC2001 study, which demonstrated a 49% overall response rate in patients with UC harboring an FGFR3 mutation. Additional FGFR-directed agents also continue to be investigated across multiple disease stages in FGFR-mutated UC including infigratinib, rogaratinib, and AZD4547, among others. Ongoing trials are combining these agents with immune checkpoint inhibitors and chemotherapy regimens. The precision medicine revolution has begun in UC, and FGFR3 inhibitors are leading the charge toward a more personalized, biomarker-driven treatment paradigm.
Collapse
Affiliation(s)
- Zeynep B Zengin
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Alex Chehrazi-Raffle
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Nicholas J Salgia
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Ramya Muddasani
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Sana Ali
- Department of Internal Medicine, Harbor-UCLA Medical Center, Torrance, CA
| | - Luis Meza
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Sumanta K Pal
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA.
| |
Collapse
|
17
|
Lyou Y, Rosenberg JE, Hoffman-Censits J, Quinn DI, Petrylak D, Galsky M, Vaishampayan U, De Giorgi U, Gupta S, Burris H, Rearden J, Li A, Xu C, Andresen C, Moran S, Daneshmand S, Bajorin D, Pal SK, Grivas P. Infigratinib in Early-Line and Salvage Therapy for FGFR3-Altered Metastatic Urothelial Carcinoma. Clin Genitourin Cancer 2021; 20:35-42. [PMID: 34782263 PMCID: PMC9460895 DOI: 10.1016/j.clgc.2021.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 11/30/2022]
Abstract
The optimal sequencing of systemic treatments for metastatic urothelial cancer (mUC) is unknown. We assessed the efficacy of infigratinib, a fibroblast growth factor receptor (FGFR) 1 to 3 inhibitor, in 67 patients with FGFR3-altered mUC by line of therapy. Objective response rates were 31% (early-line setting) and 24% (≥2nd-line setting). Infigratinib has notable activity in mUC regardless of line of therapy.
Collapse
Affiliation(s)
- Yung Lyou
- City of Hope Comprehensive Cancer Center, Duarte, CA
| | | | | | - David I Quinn
- USC Norris Comprehensive Cancer Center, Los Angeles, CA
| | | | | | | | - Ugo De Giorgi
- lstituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Meldola, Italy
| | - Sumati Gupta
- Huntsman Cancer Institute - University of Utah Health Care, Salt Lake City, UT
| | | | | | - Ai Li
- QED Therapeutics, Inc., San Francisco, CA
| | - Cindy Xu
- QED Therapeutics, Inc., San Francisco, CA
| | | | | | - Siamak Daneshmand
- USC/Norris Comprehensive Cancer Center Institute of Urology, Los Angeles, CA
| | - Dean Bajorin
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sumanta K Pal
- City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Petros Grivas
- University of Washington, Seattle Cancer Care Alliance, Fred Hutchinson Cancer Research Center, Seattle, WA.
| |
Collapse
|
18
|
Aleksakhina SN, Imyanitov EN. Cancer Therapy Guided by Mutation Tests: Current Status and Perspectives. Int J Mol Sci 2021; 22:ijms222010931. [PMID: 34681592 PMCID: PMC8536080 DOI: 10.3390/ijms222010931] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/11/2022] Open
Abstract
The administration of many cancer drugs is tailored to genetic tests. Some genomic events, e.g., alterations of EGFR or BRAF oncogenes, result in the conformational change of the corresponding proteins and call for the use of mutation-specific compounds. Other genetic perturbations, e.g., HER2 amplifications, ALK translocations or MET exon 14 skipping mutations, cause overproduction of the entire protein or its kinase domain. There are multilocus assays that provide integrative characteristics of the tumor genome, such as the analysis of tumor mutation burden or deficiency of DNA repair. Treatment planning for non-small cell lung cancer requires testing for EGFR, ALK, ROS1, BRAF, MET, RET and KRAS gene alterations. Colorectal cancer patients need to undergo KRAS, NRAS, BRAF, HER2 and microsatellite instability analysis. The genomic examination of breast cancer includes testing for HER2 amplification and PIK3CA activation. Melanomas are currently subjected to BRAF and, in some instances, KIT genetic analysis. Predictive DNA assays have also been developed for thyroid cancers, cholangiocarcinomas and urinary bladder tumors. There is an increasing utilization of agnostic testing which involves the analysis of all potentially actionable genes across all tumor types. The invention of genomically tailored treatment has resulted in a spectacular improvement in disease outcomes for a significant portion of cancer patients.
Collapse
Affiliation(s)
- Svetlana N. Aleksakhina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 Saint-Petersburg, Russia;
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, 194100 Saint-Petersburg, Russia
| | - Evgeny N. Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 Saint-Petersburg, Russia;
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, 194100 Saint-Petersburg, Russia
- Correspondence: ; Tel.: +7-812-439-95-28
| |
Collapse
|
19
|
Javle M, Roychowdhury S, Kelley RK, Sadeghi S, Macarulla T, Weiss KH, Waldschmidt DT, Goyal L, Borbath I, El-Khoueiry A, Borad MJ, Yong WP, Philip PA, Bitzer M, Tanasanvimon S, Li A, Pande A, Soifer HS, Shepherd SP, Moran S, Zhu AX, Bekaii-Saab TS, Abou-Alfa GK. Infigratinib (BGJ398) in previously treated patients with advanced or metastatic cholangiocarcinoma with FGFR2 fusions or rearrangements: mature results from a multicentre, open-label, single-arm, phase 2 study. Lancet Gastroenterol Hepatol 2021; 6:803-815. [PMID: 34358484 DOI: 10.1016/s2468-1253(21)00196-5] [Citation(s) in RCA: 221] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Treatment options are sparse for patients with advanced cholangiocarcinoma after progression on first-line gemcitabine-based therapy. FGFR2 fusions or rearrangements occur in 10-16% of patients with intrahepatic cholangiocarcinoma. Infigratinib is a selective, ATP-competitive inhibitor of fibroblast growth factor receptors. We aimed to evaluate the antitumour activity of infigratinib in patients with locally advanced or metastatic cholangiocarcinoma, FGFR2 alterations, and previous gemcitabine-based treatment. METHODS This multicentre, open-label, single-arm, phase 2 study recruited patients from 18 academic centres and hospitals in the USA, Belgium, Spain, Germany, Singapore, Taiwan, and Thailand. Eligible participants were aged 18 years or older, had histologically or cytologically confirmed, locally advanced or metastatic cholangiocarcinoma and FGFR2 fusions or rearrangements, and were previously treated with at least one gemcitabine-containing regimen. Patients received 125 mg of oral infigratinib once daily for 21 days of 28-day cycles until disease progression, intolerance, withdrawal of consent, or death. Radiological tumour evaluation was done at baseline and every 8 weeks until disease progression via CT or MRI of the chest, abdomen, and pelvis. The primary endpoint was objective response rate, defined as the proportion of patients with a best overall response of a confirmed complete or partial response, as assessed by blinded independent central review (BICR) according to Response Evaluation Criteria in Solid Tumors, version 1.1. The primary outcome and safety were analysed in the full analysis set, which comprised all patients who received at least one dose of infigratinib. This trial is registered with ClinicalTrials.gov, NCT02150967, and is ongoing. FINDINGS Between June 23, 2014, and March 31, 2020, 122 patients were enrolled into our study, of whom 108 with FGFR2 fusions or rearrangements received at least one dose of infigratinib and comprised the full analysis set. After a median follow-up of 10·6 months (IQR 6·2-15·6), the BICR-assessed objective response rate was 23·1% (95% CI 15·6-32·2; 25 of 108 patients), with one confirmed complete response in a patient who only had non-target lesions identified at baseline and 24 partial responses. The most common treatment-emergent adverse events of any grade were hyperphosphataemia (n=83), stomatitis (n=59), fatigue (n=43), and alopecia (n=41). The most common ocular toxicity was dry eyes (n=37). Central serous retinopathy-like and retinal pigment epithelial detachment-like events occurred in 18 (17%) patients, of which ten (9%) were grade 1, seven (6%) were grade 2, and one (1%) was grade 3. There were no treatment-related deaths. INTERPRETATION Infigratinib has promising clinical activity and a manageable adverse event profile in previously treated patients with locally advanced or metastatic cholangiocarcinoma harbouring FGFR2 gene fusions or rearrangements, and so represents a potential new therapeutic option in this setting. FUNDING QED Therapeutics and Novartis.
Collapse
Affiliation(s)
- Milind Javle
- Department of Gastrointestinal Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA.
| | - Sameek Roychowdhury
- James Cancer Hospital, Ohio State University Comprehensive Cancer Center, Columbus, OH, USA; Department of Internal Medicine, Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Robin Kate Kelley
- Department of Medicine, Division of Hematology/Oncology, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - Saeed Sadeghi
- Division of Hematology and Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Teresa Macarulla
- Department of Medical Oncology, Hospital Vall d'Hebron, Barcelona, Spain
| | - Karl Heinz Weiss
- Internal Medicine, Salem Medical Center, Heidelberg, Germany; Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Dirk-Thomas Waldschmidt
- Clinic for Gastroenterologie and Hepatologie, Klinikum der Universität zu Köln, Cologne, Germany
| | - Lipika Goyal
- Hematology/Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Ivan Borbath
- Department of Hepato-gastroenterology, Cliniques Universitaires St Luc, Brussels, Belgium
| | - Anthony El-Khoueiry
- Division of Medical Oncology, USC Norris Comprehensive Cancer Center, Keck School of Medicine, Los Angeles, CA, USA
| | - Mitesh J Borad
- Department of Internal Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Wei Peng Yong
- National University Cancer Institute Singapore, National University Health System, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | - Michael Bitzer
- Department of Internal Medicine I, Eberhard-Karls University, Tübingen, Germany; Center for Personalized Medicine, Eberhard-Karls University, Tübingen, Germany
| | | | - Ai Li
- Biostatistics and Data Management, QED Therapeutics, San Francisco, CA, USA
| | - Amit Pande
- Clinical Development, QED Therapeutics, San Francisco, CA, USA
| | - Harris S Soifer
- Translational Medicine, QED Therapeutics, San Francisco, CA, USA
| | | | - Susan Moran
- Clinical Development, QED Therapeutics, San Francisco, CA, USA
| | - Andrew X Zhu
- Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA; Jiahui International Cancer Center, Jiahui Health, Shanghai, China
| | | | - Ghassan K Abou-Alfa
- Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Medical College at Cornell University, New York, NY, USA
| |
Collapse
|
20
|
Abstract
Infigratinib (TRUSELTIQTM), a fibroblast growth factor receptor (FGFR)-specific tyrosine kinase inhibitor, is being co-developed by QED Therapeutics and Helsinn for the treatment of cholangiocarcinoma, urothelial carcinoma and other FGFR-driven conditions. Infigratinib was recently approved in the USA for the treatment of previously treated, unresectable locally advanced or metastatic cholangiocarcinoma with a FGFR2 fusion or other rearrangement as detected by a test approved by the US Food and Drug Administration. This article summarizes the milestones in the development of infigratinib leading to this first approval for advanced cholangiocarcinoma.
Collapse
Affiliation(s)
- Connie Kang
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|