1
|
High-Capacity Mesoporous Silica Nanocarriers of siRNA for Applications in Retinal Delivery. Int J Mol Sci 2023; 24:ijms24032753. [PMID: 36769075 PMCID: PMC9916966 DOI: 10.3390/ijms24032753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
The main cause of subretinal neovascularisation in wet age-related macular degeneration (AMD) is an abnormal expression in the retinal pigment epithelium (RPE) of the vascular endothelial growth factor (VEGF). Current approaches for the treatment of AMD present considerable issues that could be overcome by encapsulating anti-VEGF drugs in suitable nanocarriers, thus providing better penetration, higher retention times, and sustained release. In this work, the ability of large pore mesoporous silica nanoparticles (LP-MSNs) to transport and protect nucleic acid molecules is exploited to develop an innovative LP-MSN-based nanosystem for the topical administration of anti-VEGF siRNA molecules to RPE cells. siRNA is loaded into LP-MSN mesopores, while the external surface of the nanodevices is functionalised with polyethylenimine (PEI) chains that allow the controlled release of siRNA and promote endosomal escape to facilitate cytosolic delivery of the cargo. The successful results obtained for VEGF silencing in ARPE-19 RPE cells demonstrate that the designed nanodevice is suitable as an siRNA transporter.
Collapse
|
2
|
Nanotechnology for DNA and RNA delivery. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
3
|
Sapra R, Verma RP, Maurya GP, Dhawan S, Babu J, Haridas V. Designer Peptide and Protein Dendrimers: A Cross-Sectional Analysis. Chem Rev 2019; 119:11391-11441. [PMID: 31556597 DOI: 10.1021/acs.chemrev.9b00153] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dendrimers have attracted immense interest in science and technology due to their unique chemical structure that offers a myriad of opportunities for researchers. Dendritic design allows us to present peptides in a branched three-dimensional fashion that eventually leads to a globular shape, thus mimicking globular proteins. Peptide dendrimers, unlike other classes of dendrimers, have immense applications in biomedical research due to their biological origin. The diversity of potential building blocks and innumerable possibilities for design, along with the fact that the area is relatively underexplored, make peptide dendrimers sought-after candidates for various applications. This review summarizes the stepwise evolution of peptidic dendrimers along with their multifaceted applications in various fields. Further, the introduction of biomacromolecules such as proteins to a dendritic scaffold, resulting in complex macromolecules with discrete molecular weights, is an altogether new addition to the area of organic chemistry. The synthesis of highly complex and fully folded biomacromolecules on a dendritic scaffold requires expertise in synthetic organic chemistry and biology. Presently, there are only a handful of examples of protein dendrimers; we believe that these limited examples will fuel further research in this area.
Collapse
Affiliation(s)
- Rachit Sapra
- Department of Chemistry , Indian Institute of Technology Delhi , Hauz Khas , New Delhi 110016 , India
| | - Ram P Verma
- Department of Chemistry , Indian Institute of Technology Delhi , Hauz Khas , New Delhi 110016 , India
| | - Govind P Maurya
- Department of Chemistry , Indian Institute of Technology Delhi , Hauz Khas , New Delhi 110016 , India
| | - Sameer Dhawan
- Department of Chemistry , Indian Institute of Technology Delhi , Hauz Khas , New Delhi 110016 , India
| | - Jisha Babu
- Department of Chemistry , Indian Institute of Technology Delhi , Hauz Khas , New Delhi 110016 , India
| | - V Haridas
- Department of Chemistry , Indian Institute of Technology Delhi , Hauz Khas , New Delhi 110016 , India
| |
Collapse
|
4
|
Mignani S, Shi X, Zablocka M, Majoral JP. Dendrimer-Enabled Therapeutic Antisense Delivery Systems as Innovation in Medicine. Bioconjug Chem 2019; 30:1938-1950. [PMID: 31246431 DOI: 10.1021/acs.bioconjchem.9b00385] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Antisense oligonucleotide (AON)-based therapies concern the treatment for genetic disorders or infections such as a range of neurodegenerative and neuromuscular diseases and have shown benefits in animal models and patients. Nevertheless, successes in the clinic are still strongly limited by unfavorable biodistribution and poor cellular uptake of AONs. Dendrimer macromolecules are synthetically accessible and consist of a core with repeated iterations (named branches) surrounding this core, and on the periphery functional groups which can be modified for ligand attachment. The generations of these branched nanoparticles are based on the number of branches emanating from the core with layered architectures. Dendrimers show promise in several biomedical applications based on their tunable surface modifications allowing the adjustment of their in vivo behavior related to biocompatibility and pharmacokinetic parameters. Dendrimers can be used as nanocarriers of various types of drugs including AONs or nanodrugs. As nanocarriers, polycationic dendrimers can complex multiple negatively charged DNA oligonucleotides on their surface and form stable complexes to promote internalization into the cells based on a good cell membrane affinity. These nanocarriers complexing antisense oligonucleotides must be stable enough to reach the cellular target, but with adequate in vivo global clearance, and have good pharmacokinetic (PK) and pharmacodynamic (PD) profiles. This Review was designed to analyze the development of AONs carried by polycationic and polyanionic (few example) dendrimers. This Review strongly supports the idea that dendrimers, with adequate modulation of their terminal groups, could be used to carry AONs in cells.
Collapse
Affiliation(s)
- Serge Mignani
- Department of Pharmacy , Zhengzhou Railway Vocational & Technical College , Zhengzhou 450018 , China.,Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860 , Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique , 45, rue des Saints Peres , 75006 Paris , France.,CQM - Centro de Química da Madeira, MMRG , Universidade da Madeira , Campus da Penteada, 9020-105 Funchal , Portugal.,Glycovax Pharma , 424 Guy Street, Suite 202 , Montreal , Quebec H3J 1S6 , Canada
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , China
| | - Maria Zablocka
- Centre of Molecular and Macromolecular Studies , Polish Academy of Sciences , Sienkiewicza 112 , 90-363 Lodz , Poland
| | - Jean-Pierre Majoral
- Department of Pharmacy , Zhengzhou Railway Vocational & Technical College , Zhengzhou 450018 , China.,Laboratoire de Chimie de Coordination du CNRS , 205 route de Narbonne , 31077 , Toulouse Cedex 4, France.,Université Toulouse , 118 route de Narbonne , 31077 Toulouse Cedex 4, France
| |
Collapse
|
5
|
Pharmaceutical microscale and nanoscale approaches for efficient treatment of ocular diseases. Drug Deliv Transl Res 2017; 6:686-707. [PMID: 27766598 DOI: 10.1007/s13346-016-0336-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Efficient treatment of ocular diseases can be achieved thanks to the proper use of ophthalmic formulations based on emerging pharmaceutical approaches. Among them, microtechnology and nanotechnology strategies are of great interest in the development of novel drug delivery systems to be used for ocular therapy. The location of the target site in the eye as well as the ophthalmic disease will determine the route of administration (topical, intraocular, periocular, and suprachoroidal administration) and the most adequate device. In this review, we discuss the use of colloidal pharmaceutical systems (nanoparticles, liposomes, niosomes, dendrimers, and microemulsions), microparticles (microcapsules and microspheres), and hybrid systems (combination of different strategies) in the treatment of ophthalmic diseases. Emphasis has been placed in the therapeutic significance of each drug delivery system for clinical translation.
Collapse
|
6
|
Tai L, Liu C, Jiang K, Chen X, Feng L, Pan W, Wei G, Lu W. A novel penetratin-modified complex for noninvasive intraocular delivery of antisense oligonucleotides. Int J Pharm 2017; 529:347-356. [PMID: 28673859 DOI: 10.1016/j.ijpharm.2017.06.090] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/11/2017] [Accepted: 06/29/2017] [Indexed: 01/12/2023]
Abstract
Inhibition of gene expression by nucleic acids is a promising strategy in the treatment of ocular diseases. However, intraocular delivery of nucleic acids to the posterior ocular tissues remains a great challenge due to the presence of various biological barriers. To circumvent this problem, we established a novel penetratin (P) modified poly(amidoamine) dendrimer (D)/hyaluronic acid (H) complex to deliver antisense oligonucleotides (ASOs, O). Complexes (D/O, HD/O and PHD/O) were easily prepared and modification layers (hyaluronic acid and penetratin) were respectively absorbed on the surface via electrostatic interaction. Complexes with different outer layers were characterized as spherical particles with reversed charges. In vitro cellular uptake of ASOs in PHD/O complex was significantly increased than those in other formulations. In vivo studies were carried out after topical instillation of the complexes in the conjunctival sac of mice. Compared with D/O and HD/O, PHD/O exhibited much more distribution in the posterior segment of the eyes and prolonged retention time of ASOs in retina for more than 8h. Taken together, these results indicated that PHD/O complex possessed substantially improved ocular permeability and distribution in the posterior ocular tissues. This work provided a promising noninvasive intraocular delivery strategy for nucleic acids via topical administration.
Collapse
Affiliation(s)
- Lingyu Tai
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Chang Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Kuan Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xishan Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Linglin Feng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Weisan Pan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Gang Wei
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Weiyue Lu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
7
|
Joseph M, Trinh HM, Cholkar K, Pal D, Mitra AK. Recent perspectives on the delivery of biologics to back of the eye. Expert Opin Drug Deliv 2017; 14:631-645. [PMID: 27573097 PMCID: PMC5570518 DOI: 10.1080/17425247.2016.1227783] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Biologics are generally macromolecules, large in size with poor stability in biological environments. Delivery of biologics to tissues at the back of the eye remains a challenge. To overcome these challenges and treat posterior ocular diseases, several novel approaches have been developed. Nanotechnology-based delivery systems, like drug encapsulation technology, macromolecule implants and gene delivery are under investigation. We provide an overview of emerging technologies for biologics delivery to back of the eye tissues. Moreover, new biologic drugs currently in clinical trials for ocular neovascular diseases have been discussed. Areas covered: Anatomy of the eye, posterior segment disease and diagnosis, barriers to biologic delivery, ocular pharmacokinetic, novel biologic delivery system Expert opinion: Anti-VEGF therapy represents a significant advance in developing biologics for the treatment of ocular neovascular diseases. Various strategies for biologic delivery to posterior ocular tissues are under development with some in early or late stages of clinical trials. Despite significant progress in the delivery of biologics, there is unmet need to develop sustained delivery of biologics with nearly zero-order release kinetics to the back of the eye tissues. In addition, elevated intraocular pressure associated with frequent intravitreal injections of macromolecules is another concern that needs to be addressed.
Collapse
Affiliation(s)
- Mary Joseph
- Division of Pharmaceutical Sciences, School of Pharmacy, 5258 Health Science Building, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108 USA
| | - Hoang M. Trinh
- Division of Pharmaceutical Sciences, School of Pharmacy, 5258 Health Science Building, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108 USA
| | - Kishore Cholkar
- Division of Pharmaceutical Sciences, School of Pharmacy, 5258 Health Science Building, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108 USA
- RiconPharma LLC, 100 Ford Road, Suite 9, Denville, NJ, 07834 USA
| | - Dhananjay Pal
- Division of Pharmaceutical Sciences, School of Pharmacy, 5258 Health Science Building, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108 USA
| | - Ashim K. Mitra
- Division of Pharmaceutical Sciences, School of Pharmacy, 5258 Health Science Building, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108 USA
| |
Collapse
|
8
|
Bisht R, Mandal A, Jaiswal JK, Rupenthal ID. Nanocarrier mediated retinal drug delivery: overcoming ocular barriers to treat posterior eye diseases. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 10. [DOI: 10.1002/wnan.1473] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/05/2017] [Accepted: 03/11/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Rohit Bisht
- Buchanan Ocular Therapeutics Unit (BOTU), Department of Ophthalmology, New Zealand National Eye Center, Faculty of Medical and Health Sciences; University of Auckland; Auckland New Zealand
| | - Abhirup Mandal
- Division of Pharmaceutical Sciences, School of Pharmacy; University of Missouri-Kansas City; Kansas City MO USA
| | - Jagdish K. Jaiswal
- Auckland Cancer Society Research Center, Faculty of Medical and Health Sciences; University of Auckland; Auckland New Zealand
| | - Ilva D. Rupenthal
- Buchanan Ocular Therapeutics Unit (BOTU), Department of Ophthalmology, New Zealand National Eye Center, Faculty of Medical and Health Sciences; University of Auckland; Auckland New Zealand
| |
Collapse
|
9
|
Saraiva SM, Castro-López V, Pañeda C, Alonso MJ. Synthetic nanocarriers for the delivery of polynucleotides to the eye. Eur J Pharm Sci 2017; 103:5-18. [PMID: 28263915 DOI: 10.1016/j.ejps.2017.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 02/07/2023]
Abstract
This review is a comprehensive analysis of the progress made so far on the delivery of polynucleotide-based therapeutics to the eye, using synthetic nanocarriers. Attention has been addressed to the capacity of different nanocarriers for the specific delivery of polynucleotides to both, the anterior and posterior segments of the eye, with emphasis on their ability to (i) improve the transport of polynucleotides across the different eye barriers; (ii) promote their intracellular penetration into the target cells; (iii) protect them against degradation and, (iv) deliver them in a long-term fashion way. Overall, the conclusion is that despite the advantages that nanotechnology may offer to the area of ocular polynucleotide-based therapies (especially AS-ODN and siRNA delivery), the knowledge disclosed so far is still limited. This fact underlines the necessity of more fundamental and product-oriented research for making the way of the said nanotherapies towards clinical translation.
Collapse
Affiliation(s)
- Sofia M Saraiva
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Av. Barcelona s/n, Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Vanessa Castro-López
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Av. Barcelona s/n, Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Covadonga Pañeda
- Sylentis, R&D Department, c/Santiago Grisolía 2, 28760 Tres Cantos, Madrid, Spain
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Av. Barcelona s/n, Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain; Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.
| |
Collapse
|
10
|
Rodríguez Villanueva J, Navarro MG, Rodríguez Villanueva L. Dendrimers as a promising tool in ocular therapeutics: Latest advances and perspectives. Int J Pharm 2016; 511:359-366. [PMID: 27436708 DOI: 10.1016/j.ijpharm.2016.07.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/12/2016] [Accepted: 07/15/2016] [Indexed: 12/25/2022]
Abstract
Dendrimers have called the attention of scientists in the area of drug and gene delivery over the last two decades for their versatility, complexity and multibranching properties. Some strategies for optimizing drug pharmacokinetics and site-specific targeting using dendrimers have been proposed. Among them, those related to treating and managing ocular diseases are of special interest. Ocular therapies suffer from significant disadvantages, including frequent administration, poor penetration and/or rapid elimination. This review provides an overview of the recent and promising progress in the dendrimers field, focusing on both the anterior and posterior segments of the eye ocular targets, the use of dendrimers as a strategy for overcoming obstacles to the traditional treatment of ocular diseases and an outlook on future directions. Finally, a first approach to ocular safety with dendrimers is intended that accounts for the state-of-the-art science to date.
Collapse
Affiliation(s)
- Javier Rodríguez Villanueva
- Biomedical Sciences Department, Pharmacy and Pharmaceutical Technology Unit, Faculty of Pharmacy, Ctra. Madrid-Barcelona (Autovía A-II) Km. 33,600, 28805, Alcalá de Henares, Madrid, Spain; Faculty of Pharmacy, University of Alcalá, Alcalá de Henares, Madrid, Spain.
| | - Manuel Guzmán Navarro
- Biomedical Sciences Department, Pharmacy and Pharmaceutical Technology Unit, Faculty of Pharmacy, Ctra. Madrid-Barcelona (Autovía A-II) Km. 33,600, 28805, Alcalá de Henares, Madrid, Spain; Faculty of Pharmacy, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | | |
Collapse
|
11
|
Mitra RN, Zheng M, Han Z. Nanoparticle-motivated gene delivery for ophthalmic application. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 8:160-74. [PMID: 26109528 PMCID: PMC4688250 DOI: 10.1002/wnan.1356] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/21/2015] [Accepted: 05/23/2015] [Indexed: 12/24/2022]
Abstract
Ophthalmic gene therapy is an intellectual and intentional manipulation of desired gene expression into the specific cells of an eye for the treatment of ophthalmic (ocular) genetic dystrophies and pathological conditions. Exogenous nucleic acids such as DNA, small interfering RNA, micro RNA, and so on, are used for the purpose of managing expression of the desired therapeutic proteins in ocular tissues. The delivery of unprotected nucleic acids into the cells is limited because of exogenous and endogenous degradation modalities. Nanotechnology, a promising and sophisticated cutting edge tool, works as a protective shelter for these therapeutic nucleic acids. They can be safely delivered to the required cells in order to modulate anticipated protein expression. To this end, nanotechnology is seen as a potential and promising strategy in the field of ocular gene delivery. This review focused on current nanotechnology modalities and other promising nonviral strategies being used to deliver therapeutic genes in order to treat various devastating ocular diseases.
Collapse
Affiliation(s)
| | - Min Zheng
- Department of Ophthalmology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Zongchao Han
- Department of Ophthalmology, University of North Carolina, Chapel Hill, NC 27599, USA
- Carolina Institute for NanoMedicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
12
|
Kalomiraki M, Thermos K, Chaniotakis NA. Dendrimers as tunable vectors of drug delivery systems and biomedical and ocular applications. Int J Nanomedicine 2015; 11:1-12. [PMID: 26730187 PMCID: PMC4694674 DOI: 10.2147/ijn.s93069] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dendrimers are large polymeric structures with nanosize dimensions (1-10 nm) and unique physicochemical properties. The major advantage of dendrimers compared with linear polymers is their spherical-shaped structure. During synthesis, the size and shape of the dendrimer can be customized and controlled, so the finished macromolecule will have a specific "architecture" and terminal groups. These characteristics will determine its suitability for drug delivery, diagnostic imaging, and as a genetic material carrier. This review will focus initially on the unique properties of dendrimers and their use in biomedical applications, as antibacterial, antitumor, and diagnostic agents. Subsequently, emphasis will be given to their use in drug delivery for ocular diseases.
Collapse
Affiliation(s)
- Marina Kalomiraki
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Crete Voutes, Heraklion, Greece
| | - Kyriaki Thermos
- Department of Pharmacology, School of Medicine, University of Crete Voutes, Heraklion, Greece
| | - Nikos A Chaniotakis
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Crete Voutes, Heraklion, Greece
| |
Collapse
|
13
|
Kambhampati SP, Clunies-Ross AJM, Bhutto I, Mishra MK, Edwards M, McLeod DS, Kannan RM, Lutty G. Systemic and Intravitreal Delivery of Dendrimers to Activated Microglia/Macrophage in Ischemia/Reperfusion Mouse Retina. Invest Ophthalmol Vis Sci 2015; 56:4413-24. [PMID: 26193917 DOI: 10.1167/iovs.14-16250] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
PURPOSE Microglial activation and associated neuroinflammation play a key role in the pathogenesis of many diseases of the retina, including viral infection, diabetes, and retinal degeneration. Strategies to target activated microglia and macrophages and attenuate inflammation may be valuable in treating these diseases. We seek to develop dendrimer-based formulations that target retinal microglia and macrophages in a pathology-dependent manner, and deliver drugs, either intravenously or intravitreally. METHODS Retinal uptake of cyanine dye (Cy5)-conjugated dendrimer (D-Cy5) was assessed in normal and ischemia/reperfusion (I/R) mouse eyes. Microglia/macrophage uptake of the dendrimer was assessed with immunofluorescence using rabbit Iba-1 antibody with Cy3-tagged secondary antibody (microglia/macrophage). Uptake in retina and other organs was quantified using fluorescence spectroscopy. RESULTS Clearance of D-Cy5 from normal eyes was almost complete by 72 hours after intravitreal injection and 24 hours after intravenous delivery. In eyes with activated microglia after I/R injury, D-Cy5 was retained by activated microglia/macrophage (Iba1+ cells) up to 21 days after intravitreal and intravenous administration. In I/R eyes, the relative retention of intravitreal and intravenous D-Cy5 was comparable, if a 30-fold higher intravenous dose was used. CONCLUSIONS Intravitreal and systemic dendrimers target activated microglia and show qualitatively similar retinal biodistribution when administered by either route. Results provide proof-of-concept insights for developing dendrimer drug formulations as treatment options for retinal diseases associated with microglia or macrophage activation such as age-related macular degeneration, diabetic retinopathy, and retinal degenerations.
Collapse
Affiliation(s)
- Siva P Kambhampati
- Department of Ophthalmology Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins Hospital, Baltimore, Maryland, United States 2Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, United States
| | - Alexander J M Clunies-Ross
- Department of Ophthalmology Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins Hospital, Baltimore, Maryland, United States
| | - Imran Bhutto
- Department of Ophthalmology Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins Hospital, Baltimore, Maryland, United States
| | - Manoj K Mishra
- Department of Ophthalmology Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins Hospital, Baltimore, Maryland, United States
| | - Malia Edwards
- Department of Ophthalmology Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins Hospital, Baltimore, Maryland, United States
| | - D Scott McLeod
- Department of Ophthalmology Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins Hospital, Baltimore, Maryland, United States
| | - Rangaramanujam M Kannan
- Department of Ophthalmology Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins Hospital, Baltimore, Maryland, United States
| | - Gerard Lutty
- Department of Ophthalmology Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins Hospital, Baltimore, Maryland, United States
| |
Collapse
|
14
|
Delplace V, Payne S, Shoichet M. Delivery strategies for treatment of age-related ocular diseases: From a biological understanding to biomaterial solutions. J Control Release 2015; 219:652-668. [PMID: 26435454 DOI: 10.1016/j.jconrel.2015.09.065] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 12/24/2022]
Abstract
Age-related ocular diseases, such as age-related macular degeneration (AMD), diabetic retinopathy, and glaucoma, result in life-long functional deficits and enormous global health care costs. As the worldwide population ages, vision loss has become a major concern for both economic and human health reasons. Due to recent research into biomaterials and nanotechnology major advances have been gained in the field of ocular delivery. This review provides a summary and discussion of the most recent strategies employed for the delivery of both drugs and cells to the eye to treat a variety of age-related diseases. It emphasizes the current challenges and limitations to ocular delivery and how the use of innovative materials can overcome these issues and ultimately provide treatment for age-related degeneration and regeneration of lost tissues. This review also provides critical considerations and an outlook for future studies in the field of ophthalmic delivery.
Collapse
Affiliation(s)
- Vianney Delplace
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada; Institute of Biomaterials and Biomedical Engineering, 164 College Street, Toronto, ON M5S 3G9, Canada
| | - Samantha Payne
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada; Institute of Biomaterials and Biomedical Engineering, 164 College Street, Toronto, ON M5S 3G9, Canada
| | - Molly Shoichet
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada; Institute of Biomaterials and Biomedical Engineering, 164 College Street, Toronto, ON M5S 3G9, Canada.
| |
Collapse
|
15
|
Hennig R, Goepferich A. Nanoparticles for the treatment of ocular neovascularizations. Eur J Pharm Biopharm 2015; 95:294-306. [DOI: 10.1016/j.ejpb.2015.02.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/13/2015] [Accepted: 02/27/2015] [Indexed: 12/27/2022]
|
16
|
Treatment of ocular disorders by gene therapy. Eur J Pharm Biopharm 2014; 95:331-42. [PMID: 25536112 DOI: 10.1016/j.ejpb.2014.12.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/08/2014] [Accepted: 12/15/2014] [Indexed: 12/27/2022]
Abstract
Gene therapy to treat ocular disorders is still starting, and current therapies are primarily experimental, with most human clinical trials still in research state, although beginning to show encouraging results. Currently 33 clinical trials have been approved, are in progress, or have been completed. The most promising results have been obtained in clinical trials of ocular gene therapy for Leber Congenital Amaurosis, which have prompted the study of several ocular diseases that are good candidates to be treated with gene therapy: glaucoma, age-related macular degeneration, retinitis pigmentosa, or choroideremia. The success of gene therapy relies on the efficient delivery of the genetic material to target cells, achieving optimum long-term gene expression. Although viral vectors have been widely used, their potential risk associated mainly with immunogenicity and mutagenesis has promoted the design of non-viral vectors. In this review, the main administration routes and the most studied delivery systems, viral and non-viral, for ocular gene therapy are presented. The primary ocular disease candidates to be treated with gene therapy have been also reviewed, including the genetic basis and the most relevant preclinical and clinical studies.
Collapse
|
17
|
Tschiche A, Malhotra S, Haag R. Nonviral gene delivery with dendritic self-assembling architectures. Nanomedicine (Lond) 2014; 9:667-93. [DOI: 10.2217/nnm.14.32] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In this review, we outline the concept and applicability of self-assembling dendrimers for gene-delivery applications. Low-molecular-weight, well-defined cationic dendritic arrays which have been modified with hydrophobic domains can form self-organized multivalent systems that have significant advantages over nonassembling, high-molecular-weight/polymeric gene vectors. Particular structural variations have been highlighted with respect to the individual components of the displayed dendritic amphiphiles, namely, the employed amine termini, the hydrophobic segment, the size of the dendritic array, and the integration of special features such as targeting ability and cleavability/degradability, which can all have a crucial effect on gene-transfection efficiencies. Accordingly, the scientific efforts to create new synthetic gene-delivery vectors to act as promising in vivo transfection agents in the future will be presented and discussed here.
Collapse
Affiliation(s)
- Ariane Tschiche
- Institute of Chemistry & Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Shashwat Malhotra
- Institute of Chemistry & Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | | |
Collapse
|
18
|
Bao T, Wang H, Zhang W, Xia X, Zhou J, Weng W, Yu D. APPLICATION OF DENDRIMER/PLASMID hBMP-2 COMPLEXES LOADED INTO β-TCP/COLLAGEN SCAFFOLD IN THE TREATMENT OF FEMORAL DEFECTS IN RATS. BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS 2014. [DOI: 10.4015/s1016237214500057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Purpose: Plasmid loading into scaffolds to enhance sustained release of growth factors is an important focus of regenerative medicine. The aim of this study was to build gene-activated matrices (GAMs) and examine the bone augmentation properties. Methods: Generation 5 polyamidoamine dendrimers (G5 dPAMAM)/plasmid recombinant human bone morphogenetic protein-2 (rhBMP-2) complexes were immobilized into beta-tricalcium phosphate (β-TCP)/type I collagen porous scaffolds. After cultured with rat mesenchymal stem cells (rMSCs), transfection efficiencies were examined. The secretion of rhBMP-2 and alkaline phosphatase (ALP) were detected to evaluate the osteogenic properties. Scanning electron microscopy (SEM) was used to observe attachment and proliferation. Moreover, we applied these GAMs directly into freshly created segmental bone defects in rat femurs, and their osteogenic efficiencies were evaluated. Results: Released plasmid complexes were transfected into stem cells and were expressed, which caused osteogenic differentiations of rat mesenchymal stem cells (rMSCs). SEM analysis showed excellent cell attachment. Bioactivity of plasmid rhBMP-2 was maintained in vivo, and the X-ray observation, histological analysis and immunohistochemistry (IHC) of bone tissue demonstrated that the bone healing in segmental femoral defects was enhanced by implantation of GAMs. Conclusions: Such biomaterials offer therapeutic opportunities in critical-sized bone defects.
Collapse
Affiliation(s)
- Tingwei Bao
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Faculty of Dentistry, Zhejiang University, Hangzhou 310003, China
| | - Huiming Wang
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Faculty of Dentistry, Zhejiang University, Hangzhou 310003, China
| | - Wentao Zhang
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Faculty of Dentistry, Zhejiang University, Hangzhou 310003, China
| | - Xuefeng Xia
- Department of Hepatobiliary Surgery, Key Laboratory of Multi-Organ Transplantation of Ministry of Public Health, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jiabei Zhou
- State Key Laboratory of Silicon Materials and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wenjian Weng
- State Key Laboratory of Silicon Materials and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Dan Yu
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Faculty of Dentistry, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
19
|
Expand classical drug administration ways by emerging routes using dendrimer drug delivery systems: a concise overview. Adv Drug Deliv Rev 2013; 65:1316-30. [PMID: 23415951 DOI: 10.1016/j.addr.2013.01.001] [Citation(s) in RCA: 238] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/08/2012] [Accepted: 01/30/2013] [Indexed: 12/21/2022]
Abstract
Drugs are introduced into the body by numerous routes such as enteral (oral, sublingual and rectum administration), parenteral (intravascular, intramuscular, subcutaneous and inhalation administration), or topical (skin and mucosal membranes). Each route has specific purposes, advantages and disadvantages. Today, the oral route remains the preferred one for different reasons such as ease and compliance by patients. Several nanoformulated drugs have been already approved by the FDA, such as Abelcet®, Doxil®, Abraxane® or Vivagel®(Starpharma) which is an anionic G4-poly(L-lysine)-type dendrimer showing potent topical vaginal microbicide activity. Numerous biochemical studies, as well as biological and pharmacological applications of both dendrimer based products (dendrimers as therapeutic compounds per se, like Vivagel®) and dendrimers as drug carriers (covalent conjugation or noncovalent encapsulation of drugs) were described. It is widely known that due to their outstanding physical and chemical properties, dendrimers afforded improvement of corresponding carried-drugs as dendrimer-drug complexes or conjugates (versus plain drug) such as biodistribution and pharmacokinetic behaviors. The purpose of this manuscript is to review the recent progresses of dendrimers as nanoscale drug delivery systems for the delivery of drugs using enteral, parenteral and topical routes. In particular, we focus our attention on the emerging and promising routes such as oral, transdermal, ocular and transmucosal routes using dendrimers as delivery systems.
Collapse
|
20
|
Souza JG, Dias K, Pereira TA, Bernardi DS, Lopez RFV. Topical delivery of ocular therapeutics: carrier systems and physical methods. ACTA ACUST UNITED AC 2013; 66:507-30. [PMID: 24635555 DOI: 10.1111/jphp.12132] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 07/23/2013] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The basic concepts, major mechanisms, technological developments and advantages of the topical application of lipid-based systems (microemulsions, nanoemulsions, liposomes and solid lipid nanoparticles), polymeric systems (hydrogels, contact lenses, polymeric nanoparticles and dendrimers) and physical methods (iontophoresis and sonophoresis) will be reviewed. KEY FINDINGS Although very convenient for patients, topical administration of conventional drug formulations for the treatment of eye diseases requires high drug doses, frequent administration and rarely provides high drug bioavailability. Thus, strategies to improve the efficacy of topical treatments have been extensively investigated. In general, the majority of the successful delivery systems are present on the ocular surface over an extended period of time, and these systems typically improve drug bioavailability in the anterior chamber whereas the physical methods facilitate drug penetration over a very short period of time through ocular barriers, such as the cornea and sclera. SUMMARY Although in the early stages, the combination of these delivery systems with physical methods would appear to be a promising tool to decrease the dose and frequency of administration; thereby, patient compliance and treatment efficacy will be improved.
Collapse
Affiliation(s)
- Joel G Souza
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
21
|
Chaplot SP, Rupenthal ID. Dendrimers for gene delivery – a potential approach for ocular therapy? J Pharm Pharmacol 2013; 66:542-56. [DOI: 10.1111/jphp.12104] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 06/15/2013] [Indexed: 12/12/2022]
Abstract
Abstract
Objectives
A vast number of blinding diseases have genetic aetiologies and may be treated by molecular based therapies such as antisense oligonucleotides or short interfering RNA. However, treatment success of ocular gene therapy is highly dependent on efficient delivery of such molecules.
Key findings
The majority of clinical studies for ocular gene therapy utilize viral vectors. While these have proven highly efficient, they show limited loading capacity and pose significant safety risks owing to their oncogenic and immunogenic effects. Non-viral gene carriers have emerged as a promising alternative with dendrimers providing great potential for gene therapy because of their size, shape and high density of modifiable surface groups. However, while dendrimers have been used extensively for drug and gene delivery to other organs, only a few studies have been reported on the eye.
Summary
This review focuses on the development of dendrimers for gene delivery with special emphasis on ocular gene therapy. Different synthesis approaches and types of dendrimers are discussed. Ocular gene therapy targets are highlighted with an overview of current clinical studies. The use of dendrimers in ocular gene delivery in comparison to liposomes and nanoparticles is also discussed. Finally, future prospects of tailored multifunctional dendrimers for ocular gene therapy are highlighted.
Collapse
Affiliation(s)
- Sahil P Chaplot
- Drug Delivery Research Unit, School of Pharmacy, The University of Auckland, Auckland, New Zealand
| | - Ilva D Rupenthal
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
22
|
Kambhampati SP, Kannan RM. Dendrimer nanoparticles for ocular drug delivery. J Ocul Pharmacol Ther 2013; 29:151-65. [PMID: 23410062 DOI: 10.1089/jop.2012.0232] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Eye is a unique organ of perfection and complexity, and is a microcosm of the body in many ways. It represents a great opportunity for nanomedicine, since it is readily accessible-allowing for direct drug/gene delivery to maximize the therapeutic effect and minimize side effects. The development of appropriate delivery systems that can sustain and deliver therapeutics to the target tissues is a key challenge that can be addressed by nanotechnology. Dendrimers are tree-like, nanostructured polymers that have received significant attention as ocular drug delivery systems, due to their well-defined size, tailorable structure, and potentially favorable ocular biodistribution. In this review, we highlight recent developments in dendrimer-based ocular therapies for both anterior and posterior segment diseases.
Collapse
Affiliation(s)
- Siva P Kambhampati
- Department of Ophthalmology, Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | |
Collapse
|
23
|
Honda M, Asai T, Oku N, Araki Y, Tanaka M, Ebihara N. Liposomes and nanotechnology in drug development: focus on ocular targets. Int J Nanomedicine 2013; 8:495-503. [PMID: 23439842 PMCID: PMC3576887 DOI: 10.2147/ijn.s30725] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Poor drug delivery to lesions in patients’ eyes is a major obstacle to the treatment of ocular diseases. The accessibility of these areas to drugs is highly restricted by the presence of barriers, including the corneal barrier, aqueous barrier, and the inner and outer blood–retinal barriers. In particular, the posterior segment is difficult to reach for drugs because of its structural peculiarities. This review discusses various barriers to drug delivery and provides comprehensive information for designing nanoparticle-mediated drug delivery systems for the treatment of ocular diseases. Nanoparticles can be designed to improve penetration, controlled release, and drug targeting. As highlighted in this review, the therapeutic efficacy of drugs in ocular diseases has been reported to be enhanced by the use of nanoparticles such as liposomes, micro/nanospheres, microemulsions, and dendrimers. Our recent data show that intravitreal injection of targeted liposomes encapsulating an angiogenesis inhibitor caused significantly greater suppression of choroidal neovascularization than did the injection of free drug. Recent progress in ocular drug delivery systems research has provided new insights into drug development, and the use of nanoparticles for drug delivery is thus a promising approach for advanced therapy of ocular diseases.
Collapse
Affiliation(s)
- Miki Honda
- Department of Ophthalmology, Juntendo University Urayasu Hospital, Chiba, Japan.
| | | | | | | | | | | |
Collapse
|
24
|
Herrero-Vanrell R, Vicario de la Torre M, Andrés-Guerrero V, Barbosa-Alfaro D, Molina-Martínez I, Bravo-Osuna I. Nano and microtechnologies for ophthalmic administration, an overview. J Drug Deliv Sci Technol 2013. [DOI: 10.1016/s1773-2247(13)50016-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
|
26
|
Jain GK, Warsi MH, Nirmal J, Garg V, Pathan SA, Ahmad FJ, Khar RK. Therapeutic stratagems for vascular degenerative disorders of the posterior eye. Drug Discov Today 2012; 17:748-59. [DOI: 10.1016/j.drudis.2012.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 01/27/2012] [Accepted: 03/20/2012] [Indexed: 12/23/2022]
|
27
|
Thakur A, Fitzpatrick S, Zaman A, Kugathasan K, Muirhead B, Hortelano G, Sheardown H. Strategies for ocular siRNA delivery: Potential and limitations of non-viral nanocarriers. J Biol Eng 2012; 6:7. [PMID: 22686441 PMCID: PMC3533807 DOI: 10.1186/1754-1611-6-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 04/26/2012] [Indexed: 02/07/2023] Open
Abstract
Controlling gene expression via small interfering RNA (siRNA) has opened the doors to a plethora of therapeutic possibilities, with many currently in the pipelines of drug development for various ocular diseases. Despite the potential of siRNA technologies, barriers to intracellular delivery significantly limit their clinical efficacy. However, recent progress in the field of drug delivery strongly suggests that targeted manipulation of gene expression via siRNA delivered through nanocarriers can have an enormous impact on improving therapeutic outcomes for ophthalmic applications. Particularly, synthetic nanocarriers have demonstrated their suitability as a customizable multifunctional platform for the targeted intracellular delivery of siRNA and other hydrophilic and hydrophobic drugs in ocular applications. We predict that synthetic nanocarriers will simultaneously increase drug bioavailability, while reducing side effects and the need for repeated intraocular injections. This review will discuss the recent advances in ocular siRNA delivery via non-viral nanocarriers and the potential and limitations of various strategies for the development of a ‘universal’ siRNA delivery system for clinical applications.
Collapse
Affiliation(s)
- Ajit Thakur
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
| | | | | | | | | | | | | |
Collapse
|
28
|
Yang H, Kao WJ. Dendrimers for pharmaceutical and biomedical applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 17:3-19. [PMID: 16411595 DOI: 10.1163/156856206774879171] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dendrimers are a unique class of synthetic macromolecules having a highly branched, three-dimensional, nanoscale architecture with very low polydispersity and high functionality. Structural advantages allow dendrimers to play an important role in the fields of nanotechnology, pharmaceutical and medicinal chemistry. This review discusses several aspects of dendrimers, including preparation, dendrimer-drug coupling chemistry, structural models of dendrimer-based drug delivery systems, and physicochemical and toxicological properties.
Collapse
Affiliation(s)
- Hu Yang
- School of Pharmacy, University of Wisconsin-Madison, WI 53705, USA
| | | |
Collapse
|
29
|
Khar RK, Jain GK, Warsi MH, Mallick N, Akhter S, Pathan SA, Ahmad FJ. Nano-vectors for the Ocular Delivery of Nucleic Acid-based Therapeutics. Indian J Pharm Sci 2011; 72:675-88. [PMID: 21969738 PMCID: PMC3178967 DOI: 10.4103/0250-474x.84575] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 10/10/2010] [Indexed: 12/31/2022] Open
Abstract
Nucleic acid-based therapeutics have gained a lot of interest for the treatment of diverse ophthalmic pathologies. The first to enter in clinic has been an oligonucleotide, Vitravene® for the treatment of cytomegalovirus infection. More recently, research on aptamers for the treatment of age related macular degeneration has led to the development of Macugen®. Despite intense potential, effective ocular delivery of nucleic acids is a major challenge since therapeutic targets for nucleic acid-based drugs are mainly located in the posterior eye segment, requiring repeated invasive administration. Of late, nanotechnology-based nano-vectors have been developed in order to overcome the drawbacks of viral and other non-viral vectors. The diversity of nano-vectors allows for ease of use, flexibility in application, low-cost of production, higher transfection efficiency and enhanced genomic safety. Using nano-vector strategies, nucleic acids can be delivered either encapsulated or complexed with cationic lipids, polymers or peptides forming sustained release systems, which can be tailored according to the ocular tissue being targeted. The present review focuses on developments and advances in various nano-vectors for the ocular delivery of nucleic acid-based therapeutics, the barriers that such delivery systems face and methods to overcome them.
Collapse
Affiliation(s)
- R K Khar
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, New Delhi - 110 062, India
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Working at the nanoscale means to completely rethink how to approach engineering in the body in general and in the eye in particular. In nanomedicine, tissue engineering is the ability to influence an environment either by adding, subtracting or manipulating that environment to allow it to be more conducive for its purpose. The goal is to function at the optimum state, or to return to that optimum state. Additive tissue engineering replaces cells or tissue, or tries to get something to grow that is no longer there. Arrestive tissue engineering tries to stop aberrant growth which, if left uncontrolled, would result in a decrease in function. Nano delivery of therapeutics can perform both additive and arrestive functions influencing the environment either way, depending on the targeting. By manipulating the environment at the nanoscale, the rate and distribution of healing can be controlled. It infers that potential applications of nanomedicine in ophthalmology include procedures, such as corneal endothelial cell transplantation, single retinal ganglion cell repair, check of retinal ganglion cell viability, building of nanofibre scaffolds, such as self-assembling peptides, to create a scaffold-like tissue-bridging structure to provide a framework for axonal regeneration in the case of optic nerve reconnection or eye transplantation, and ocular drug delivery. Examples of potential arrestive therapies include gene-related treatment modalities to inhibit intraocular neovascularization and to block retinal cell apoptosis. Looking towards the future, this review focuses on how nanoscale tissue engineering can be and is being used to influence that local environment.
Collapse
Affiliation(s)
- Rutledge Ellis-Behnke
- Department of Anatomy, State Key Lab of Brain & Cognitive Sciences, Research Centre for Heart, Brain and Healthy Aging, University of Hong Kong Li Ka Shing Faculty of Medicine, Hong Kong SAR, China.
| | | |
Collapse
|
31
|
Coles DJ, Esposito A, Chuah HT, Toth I. The synthesis and characterization of lipophilic peptide-based carriers for gene delivery. Tetrahedron 2010. [DOI: 10.1016/j.tet.2010.05.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
32
|
Systemic antiangiogenic activity of cationic poly-L-lysine dendrimer delays tumor growth. Proc Natl Acad Sci U S A 2010; 107:3966-71. [PMID: 20150514 DOI: 10.1073/pnas.0908401107] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study describes the previously unreported intrinsic capacity of poly-L-lysine (PLL) sixth generation (G(6)) dendrimer molecules to exhibit systemic antiangiogenic activity that could lead to solid tumor growth arrest. The PLL-dendrimer-inhibited tubule formation of SVEC4-10 murine endothelial cells and neovascularization in the chick embryo chick chorioallantoic membrane (CAM) assay. Intravenous administration of the PLL-dendrimer molecules into C57BL/6 mice inhibited vascularisation in Matrigel plugs implanted subcutaneously. Antiangiogenic activity was further evidenced using intravital microscopy of tumors grown within dorsal skinfold window chambers. Reduced vascularization of P22 rat sarcoma implanted in the dorsal window chamber of SCID mice was observed following tail vein administration (i.v.) of the PLL dendrimers. Also, the in vivo toxicological profile of the PLL-dendrimer molecules was shown to be safe at the dose regime studied. The antiangiogenic activity of the PLL dendrimer was further shown to be associated with significant suppression of B16F10 solid tumor volume and delayed tumor growth. Enhanced apoptosis/necrosis within tumors of PLL-dendrimer-treated animals only and reduction in the number of CD31 positive cells were observed in comparison to protamine treatment. This study suggests that PLL-dendrimer molecules can exhibit a systemic antiangiogenic activity that may be used for therapy of solid tumors, and in combination with their capacity to carry other therapeutic or diagnostic agents may potentially offer capabilities for the design of theranostic systems.
Collapse
|
33
|
Keeney M, van den Beucken JJJP, van der Kraan PM, Jansen JA, Pandit A. The ability of a collagen/calcium phosphate scaffold to act as its own vector for gene delivery and to promote bone formation via transfection with VEGF(165). Biomaterials 2009; 31:2893-902. [PMID: 20044134 DOI: 10.1016/j.biomaterials.2009.12.041] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 12/14/2009] [Indexed: 01/24/2023]
Abstract
Collagen/calcium phosphate scaffolds have been used for bone reconstruction due to their inherent similarities to the bone extracellular matrix. Calcium phosphate alone has also been used as a non-viral vector for gene delivery. The aim of this study was to determine the capability of a collagen/calcium phosphate scaffold to deliver naked plasmid DNA and mediate transfection in vivo. The second goal of the study was to deliver a plasmid encoding vascular endothelial growth factor(165) (pVEGF(165)) to promote angiogenesis, and hence bone formation, in a mouse intra-femoral model. The delivery of naked plasmid DNA resulted in a 7.6-fold increase in mRNA levels of beta-Galactosidase compared to the delivery of plasmid DNA complexed with a partially degraded PAMAM dendrimer (dPAMAM) in a subcutaneous murine model. When implanted in a muirne intra-femoral model, the delivery of pVEGF(165) resulted in a 2-fold increase in bone volume at the defect site relative to control scaffolds without pVEGF(165). It was concluded that a collagen/calcium phosphate scaffold can mediate transfection without the use of additional transfection vectors and can promote bone formation in a mouse model via the delivery of pVEGF(165).
Collapse
Affiliation(s)
- Michael Keeney
- Network of Excellence for Functional Biomaterials, National University of Ireland Galway, NFB Building, IDA Business Park, Newcastle Road, Dangan, Ireland
| | | | | | | | | |
Collapse
|
34
|
Simerska P, Moyle PM, Toth I. Modern lipid-, carbohydrate-, and peptide-based delivery systems for peptide, vaccine, and gene products. Med Res Rev 2009; 31:520-47. [DOI: 10.1002/med.20191] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
Hamilton PD, Jacobs DZ, Rapp B, Ravi N. Surface Hydrophobic Modification of Fifth-Generation Hydroxyl-Terminated Poly(amidoamine) Dendrimers and Its Effect on Biocompatibility and Rheology. MATERIALS 2009. [PMCID: PMC5445743 DOI: 10.3390/ma2030883] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Water-soluble, commercially-available poly(amidoamine) (PAMAM) dendrimers are highly-branched, well-defined, monodisperse macromolecules having an ethylenediamine core and varying surface functional groups. Dendrimers are being employed in an increasing number of biomedical applications. In this study, commercially obtained generation 5 hydroxyl-terminated (G5OH) PAMAM dendrimers were studied as potential proteomimetics for ophthalmic uses. To this end, the surface of G5OH PAMAM dendrimers were hydrophobically modified with varying amounts of dodecyl moieties, (flexible long aliphatic chains), or cholesteryl moieties (rigid lipid found in abundance in biological systems). Dendrimers were characterized by 1H-NMR, DLS, DSC and HPLC. The hydrophobic modification caused aggregation and molecular interactions between dendrimers that is absent in unmodified dendrimers. In vitro tissue culture showed that increasing the amount of dodecyl modification gave a proportional increase in toxicity of the dendrimers, while with increasing cholesteryl modification there was no corresponding increase in toxicity. Storage and loss modulus were measured for selected formulations. The hydrophobic modification caused an increase in loss modulus, while the effect on storage modulus was more complex. Rheological properties of the dendrimer solutions were comparable to those of porcine lens crystallins.
Collapse
Affiliation(s)
- Paul D. Hamilton
- Research Branch, Department of Veterans Affairs Medical Center JC 151, 915 N. Grand Blvd. St. Louis, MO 63106, USA; E-Mail: (P.H.)
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Box 8096, 660 S. Euclid, St. Louis, MO 63110, USA; E-Mails: (D.J.); (B.R.)
| | - Donghui Z. Jacobs
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Box 8096, 660 S. Euclid, St. Louis, MO 63110, USA; E-Mails: (D.J.); (B.R.)
| | - Brian Rapp
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Box 8096, 660 S. Euclid, St. Louis, MO 63110, USA; E-Mails: (D.J.); (B.R.)
| | - Nathan Ravi
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Box 8096, 660 S. Euclid, St. Louis, MO 63110, USA; E-Mails: (D.J.); (B.R.)
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, MO 63130, USA
- Executive Branch, Department of Veterans Affairs Medical Center JC 151, 915 N. Grand Blvd. St. Louis, MO 63106, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel. +1-314 747-4464; Fax: +1-314 289-7009
| |
Collapse
|
36
|
Qi R, Gao Y, Tang Y, He RR, Liu TL, He Y, Sun S, Li BY, Li YB, Liu G. PEG-conjugated PAMAM dendrimers mediate efficient intramuscular gene expression. AAPS JOURNAL 2009; 11:395-405. [PMID: 19479387 DOI: 10.1208/s12248-009-9116-1] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 05/07/2009] [Indexed: 11/30/2022]
Abstract
Generations 5 and 6 (G5 and G6) poly(amidoamine) (PAMAM) dendrimers have been shown to be highly efficient nonviral carriers in in vitro gene delivery. However, their high toxicity and unsatisfied in vivo efficacy limit their applications. In this study, to improve their characteristics as gene delivery carriers, polyethylene glycol (PEG, molecular weight 5,000) was conjugated to G5 and G6 PAMAM dendrimers (PEG-PAMAM) at three different molar ratios of 4%, 8%, and 15% (PEG to surface amine per PAMAM dendrimer molecular). Compared with unconjugated PAMAM dendrimers, PEG conjugation significantly decreased the in vitro and in vivo cytotoxicities and hemolysis of G5 and G6 dendrimers, especially at higher PEG molar ratios. Among all of the PEG-PAMAM dendrimers, 8% PEG-conjugated G5 and G6 dendrimers (G5-8% PEG, G6-8% PEG) resulted in the most efficient muscular gene expression when polyplexes were injected intramuscularly to the quadriceps of neonatal mice. Consistent with the in vivo results, these two 8% PEG-conjugated PAMAM dendrimers could also mediate the highest in vitro transfection in 293A cells. Therefore, G5-8% PEG and G6-8% PEG possess a great potential for gene delivery both in vivo and in vitro.
Collapse
Affiliation(s)
- Rong Qi
- Peking University Institute of Cardiovascular Sciences, Peking University Health Science Center, Peking University, Beijing, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Naik R, Mukhopadhyay A, Ganguli M. Gene delivery to the retina: focus on non-viral approaches. Drug Discov Today 2009; 14:306-15. [DOI: 10.1016/j.drudis.2008.09.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 09/11/2008] [Accepted: 09/29/2008] [Indexed: 01/23/2023]
|
38
|
Zhong W, Skwarczynski M, Toth I. Lipid Core Peptide System for Gene, Drug, and Vaccine Delivery. Aust J Chem 2009. [DOI: 10.1071/ch09149] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A vast number of biologically active compounds await efficient delivery to become therapeutic agents. Lipidation has been demonstrated to be a convenient and useful approach to improve the stability and transport across biological membranes of potential drug molecules. The lipid core peptide (LCP) system has emerged as a promising lipidation tool because of its versatile features. This review discusses the progress in the development of the LCP system to improve cell permeability of nucleotides, physicochemical properties of potential drugs, and vaccine immunogenicity. Emphasis was put on the application of the LCP system to deliver antigens for the prevention of group A streptococcus infection, novel techniques of conjugation of target molecules to the LCP, and new alterations of the LCP system itself.
Collapse
|
39
|
Cheng Y, Xu Z, Ma M, Xu T. Dendrimers as Drug Carriers: Applications in Different Routes of Drug Administration. J Pharm Sci 2008; 97:123-43. [PMID: 17721949 DOI: 10.1002/jps.21079] [Citation(s) in RCA: 249] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Dendrimers have successfully proved themselves as useful additives in different routes of drug administration because they can render drugs greater water-solubility, bioavailability, and biocompatibility. This review demonstrated the potential of dendrimers to be applied in these detailed routes with particular reference to intravenous, oral, transdermal, and ocular delivery systems. As a necessary introduction, the structures, synthesis, and properties of dendrimers were presented. Furthermore, the interaction mechanisms between dendrimers and drug molecules, including simple encapsulation, electrostatic interaction, and covalent conjugation, were elaborated.
Collapse
Affiliation(s)
- Yiyun Cheng
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | | | | | | |
Collapse
|
40
|
|
41
|
Yang H, Lopina ST. Stealth dendrimers for antiarrhythmic quinidine delivery. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2007; 18:2061-5. [PMID: 17558476 DOI: 10.1007/s10856-007-3144-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Accepted: 07/31/2006] [Indexed: 05/15/2023]
Abstract
Dendrimers have been attracting growing attention because of their unique well-defined globular nanoscale architecture and numerous functional groups on the surface. Attachment of PEG to the dendrimer generates stealth dendrimers, which have promising structural advantages for drug delivery. In this study, synthetic methods were explored to deliver antiarrhythmic quinidine by stealth dendrimers. In particular, quinidine was covalently attached to anionic G2.5 and cationic G3.0 polyamidoamine (PAMAM) dendrimers via a glycine spacer, respectively. The resulting quinidine-PAMAM-PEG conjugates were characterized and confirmed by FT-IR and (1)H-NMR. In vitro hydrolysis was carried out in pH 7.4 PBS buffer at 37 degrees C to confirm the bioavailability of the conjugated quinidine.
Collapse
Affiliation(s)
- Hu Yang
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284-3067, USA.
| | | |
Collapse
|
42
|
Abstract
Nanocarriers, such as nanoparticles, liposomes and dendrimers, are used to enhance ocular drug delivery. Easily administered as eye drops, these systems provide a prolonged residence time at the ocular surface after instillation, thus avoiding the clearance mechanisms of the eye. In combination with a controlled drug delivery, it should be possible to develop ocular formulations that provide therapeutic concentrations for a long period of time at the site of action, thereby reducing the dose administered as well as the instillation frequency. In intraocular drug delivery, the same systems can be used to protect and release the drug in a controlled way, reducing the number of injections required. Another potential advantage is the targeting of the drug to the site of action, leading to a decrease in the dose required and a decrease in side effects.
Collapse
Affiliation(s)
- Jo Vandervoort
- Laboratory of Pharmaceutical Technology and Biopharmacy, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | | |
Collapse
|
43
|
Marano RJ, Rakoczy PE. Controlling vascular endothelial growth factor: therapies for ocular diseases associated with neovascularization. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 572:303-7. [PMID: 17249588 DOI: 10.1007/0-387-32442-9_42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Affiliation(s)
- Robert J Marano
- Department of Molecular Ophthalmology, Lions Eye institute, Australia
| | | |
Collapse
|
44
|
Abstract
Neovascular age-related macular degeneration (AMD) is becoming an increasing socio-medical problem as the proportion of the aged population is continuously increasing. However, new insights in the pathogenesis of the disease offer the opportunity to develop targeted therapies that attack the disease process more successfully than ever. This review article will focus on summarizing the actual options in the management of neovascular AMD and provide a short overview about recent therapeutic options in clinical and preclinical evaluation. The recent development of anti-VEGF substances for use in clinical routine has markedly improved the prognosis of patients with neovascular AMD. Intravitreal treatment with substances targeting all isotypes of vascular endothelial growth factor (VEGF), for the first time in the history of AMD treatments, results in a significant increase in visual acuity in patients with neovascular AMD. Overall, anti-angiogenic approaches provide vision maintenance in over 90% and substantial improvement in 25-40% of patients. The combination with occlusive therapies like photodynamic therapy (PDT) potentially offers a reduction of re-treatment frequency and long-term maintenance of the treatment benefit. Further developments interacting with various steps in the angiogenic cascade are under clinical or preclinical evaluation and may soon become available. Nevertheless, the growing number of novel therapeutic options will have to provide proof of concept in randomized controlled clinical trials, a major challenge in view of the rapidly evolving field. For those therapies, which are already in clinical use, reasonable diagnostic tools for follow-up need to be developed, as the burden of continuous clinical monitoring of all patients and all indications is significant for patients and doctors. Ultimately, economic issues will be the limiting factor for the clinical availability of different treatment options.
Collapse
Affiliation(s)
- Ursula M Schmidt-Erfurth
- Department of Ophthalmology, Medical University of Vienna, Waehringer Guertel 18-20, A 1090 Vienna, Austria.
| | | |
Collapse
|
45
|
|
46
|
Fattal E, Bochot A. Ocular delivery of nucleic acids: antisense oligonucleotides, aptamers and siRNA. Adv Drug Deliv Rev 2006; 58:1203-23. [PMID: 17097190 DOI: 10.1016/j.addr.2006.07.020] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Accepted: 07/31/2006] [Indexed: 12/22/2022]
Abstract
Nucleic acids have gained a lot of interest for the treatment of ocular diseases. The first to enter in clinic has been Vitravene an antisense oligonucleotide for the treatment of cytomegalovirus (CMV) infection and more recently, research on aptamers have led to the marketing of anti-vascular endothelial growth factor (VEGF) inhibitor (Macugen) for the treatment of age-related macular degeneration (AMD). The siRNAs appear very promising as they are very potent inhibitors of protein expression. Despite their potential, nucleic acids therapeutic targets of nucleic acid-based drugs are mainly located in the posterior segment of the eye requiring invasive administration which can be harmful if repeated. Their intracellular penetration in some cases needs to be enhanced. This is the reason why adequate delivery systems were designed either to insure cellular penetration, protection against degradation or to allow long-term delivery. A combination of both effects was also developed for an implantable system. In conclusion, the intraocular administration of nucleic acids offers interesting perspectives for the treatment of ocular diseases.
Collapse
Affiliation(s)
- Elias Fattal
- UMR CNRS 8612, School of Pharmacy, Université Paris Sud, Châtenay-Malabry, France.
| | | |
Collapse
|
47
|
Kim YS, Gil ES, Lowe TL. Synthesis and Characterization of Thermoresponsive-co-Biodegradable Linear−Dendritic Copolymers. Macromolecules 2006. [DOI: 10.1021/ma0602730] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Young Shin Kim
- Departments of Surgery, Bioengineering, and Materials Science and Engineering, The Pennsylvania State University, 500 University Drive, Hershey, Pennsylvania 17033
| | - Eun Seok Gil
- Departments of Surgery, Bioengineering, and Materials Science and Engineering, The Pennsylvania State University, 500 University Drive, Hershey, Pennsylvania 17033
| | - Tao Lu Lowe
- Departments of Surgery, Bioengineering, and Materials Science and Engineering, The Pennsylvania State University, 500 University Drive, Hershey, Pennsylvania 17033
| |
Collapse
|
48
|
Marano RJ, Toth I, Wimmer N, Brankov M, Rakoczy PE. Dendrimer delivery of an anti-VEGF oligonucleotide into the eye: a long-term study into inhibition of laser-induced CNV, distribution, uptake and toxicity. Gene Ther 2006; 12:1544-50. [PMID: 16034458 DOI: 10.1038/sj.gt.3302579] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have performed a long-term study into the use of a lipophilic amino-acid dendrimer to deliver an anti-vascular endothelial growth factor (VEGF) oligonucleotide (ODN-1) into the eyes of rats and inhibit laser-induced choroidal neovascularization (CNV). In addition, the uptake, distribution and retinal tolerance of the dendrimer plus oligonucleotide conjugates were examined. Analysis of fluorescein angiograms of laser photocoagulated eyes revealed that dendrimer plus ODN-1 significantly inhibited (P<0.05) the development of CNV for 4-6 months by up to 95% in the initial stages. Eyes similarly injected with ODN-1 alone showed no significant difference (P>0.05) in mean severity score at 2 months (2.86+/-0.09), 4 months (2.15+/-0.17) or 6 months (2.7+/-0.12) compared to the vehicle-injected controls. Furthermore, we showed that intravitreally injected ODN-1 tagged with 6-fam was absorbed by a wide area of the retina and penetrated all of the retinal cell layers to the retinal pigment epithelium. Ophthalmological examinations indicated that the dendrimers plus ODN-1 conjugates were well tolerated in vivo, which was later confirmed using immunohistochemistry, which showed no observable increase in antigens associated with inflammation. We conclude that the use of such dendrimers may provide a viable mechanism for the delivery of therapeutic oligonucleotides for the treatment of angiogenic eye diseases.
Collapse
Affiliation(s)
- R J Marano
- Department of Molecular Ophthalmology, Lions Eye Institute, Nedlands, WA, Australia
| | | | | | | | | |
Collapse
|
49
|
Tong JP, Yao YF. Contribution of VEGF and PEDF to choroidal angiogenesis: a need for balanced expressions. Clin Biochem 2006; 39:267-76. [PMID: 16409998 DOI: 10.1016/j.clinbiochem.2005.11.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Revised: 11/05/2005] [Accepted: 11/24/2005] [Indexed: 01/21/2023]
Abstract
Ocular angiogenesis may lead to visual impairment and even irreversible blindness in people of all ages worldwide. Choroidal neovascularization (CNV), a major clinical complication of ocular angiogenesis, is an important cause of vision loss that affects a large number of people. Physiological angiogenesis is tightly controlled by a balance in the expression of angiogenic and anti-angiogenic factors. While the underlying mechanism of CNV is complex, it is attributed to an upset in this balance. The vascular endothelial growth factor (VEGF) is essential in the development of CNV as one of the most potent angiogenic stimulators and vascular permeability factors. Pigment epithelium derived factor (PEDF) is a strong inhibitor of angiogenesis with high neuroprotective effects. VEGF and PEDF both possess multiple biological activities and functions that affect a large variety of tissue cells of the eye and other organs. Inappropriate expression levels are associated with many diseases involving neovascularization. This paper describes the unbalanced expressions of VEGF and PEDF as a cause of CNV. Based on the respective angiogenic and anti-angiogenic properties of VEGF and PEDF, experimental models have been devised to genetically reduce VEGF or enhance PEDF to achieve therapeutic effects. Gene therapy for CNV is promising and is under intensive research.
Collapse
Affiliation(s)
- Jian-Ping Tong
- Zheyi Eye Center, The First Affiliated Hospital, Medical College, Zhejiang University, Hangzhou, 310003 Zhejiang, PR China.
| | | |
Collapse
|
50
|
Crespo L, Sanclimens G, Pons M, Giralt E, Royo M, Albericio F. Peptide and Amide Bond-Containing Dendrimers. Chem Rev 2005; 105:1663-81. [PMID: 15884786 DOI: 10.1021/cr030449l] [Citation(s) in RCA: 275] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Laia Crespo
- Department of Organic Chemistry, University of Barcelona, 08028-Barcelona, Spain
| | | | | | | | | | | |
Collapse
|