1
|
Rabbani G, Ahn SN. Structure, enzymatic activities, glycation and therapeutic potential of human serum albumin: A natural cargo. Int J Biol Macromol 2019; 123:979-990. [DOI: 10.1016/j.ijbiomac.2018.11.053] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/07/2018] [Accepted: 11/11/2018] [Indexed: 12/26/2022]
|
2
|
Albumin in the Vitreous Body, Retina and Lens of Human Fetal Eye. Bull Exp Biol Med 2017; 162:629-631. [DOI: 10.1007/s10517-017-3673-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Indexed: 10/19/2022]
|
3
|
Awasthi S, Saraswathi NT. Non-enzymatic glycation mediated structure–function changes in proteins: case of serum albumin. RSC Adv 2016. [DOI: 10.1039/c6ra08283a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Albumin, a major plasma protein with extraordinary ligand binding properties, transports various ligands ranging from drugs, hormones, fatty acids, and toxins to different tissues and organs in the body.
Collapse
Affiliation(s)
- Saurabh Awasthi
- Molecular Biophysics Lab
- School of Chemical and Biotechnology
- SASTRA University
- Thanjavur-613401
- India
| | - N. T. Saraswathi
- Molecular Biophysics Lab
- School of Chemical and Biotechnology
- SASTRA University
- Thanjavur-613401
- India
| |
Collapse
|
4
|
Proteomic Analysis of the Vitreous following Experimental Retinal Detachment in Rabbits. J Ophthalmol 2015; 2015:583040. [PMID: 26664739 PMCID: PMC4667062 DOI: 10.1155/2015/583040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 10/17/2015] [Accepted: 10/19/2015] [Indexed: 01/04/2023] Open
Abstract
Purpose. The pathogenesis of rhegmatogenous retinal detachment (RRD) remains incompletely understood, with no clinically effective treatment for potentially severe complications such as photoreceptor cell death and proliferative vitreoretinopathy. Here we investigate the protein profile of the vitreous following experimental retinal detachment using a comparative proteomic based approach. Materials and Methods. Retinal detachment was created in the right eyes of six New Zealand red pigmented rabbits. Sham surgery was undertaken in five other rabbits that were used as controls. After seven days the eyes were enucleated and the vitreous was removed. The vitreous samples were evaluated with two-dimensional polyacrylamide gel electrophoresis and the differentially expressed proteins were identified with tandem mass spectrometry. Results. Ten protein spots were found to be at least twofold differentially expressed when comparing the vitreous samples of the sham and retinal detachment surgery groups. Protein spots that were upregulated in the vitreous following retinal detachment were identified as albumin fragments, and those downregulated were found to be peroxiredoxin 2, collagen-Iα1 fragment, and α-1-antiproteinase F. Conclusions. Proteomic investigation of the rabbit vitreous has identified a set of proteins that help further our understanding of the pathogenesis of rhegmatogenous retinal detachment and its complications.
Collapse
|
5
|
Emoto Y, Yoshizawa K, Hamazaki K, Kinoshita Y, Yuki M, Yuri T, Kawashima H, Tsubura A. Mead acid supplementation does not rescue rats from cataract and retinal degeneration induced by N-methyl-N-nitrosourea. J Toxicol Pathol 2014; 28:11-20. [PMID: 26023256 PMCID: PMC4337494 DOI: 10.1293/tox.2014-0036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/26/2014] [Indexed: 01/12/2023] Open
Abstract
Fatty acids and their derivatives play a role in the response to ocular disease. Our current study investigated the effects of dietary mead acid (MA, 5,8,11-eicosatrienoic acid) supplementation on N-methyl-N-nitrosourea (MNU)-induced cataract and retinal degeneration in Sprague-Dawley rats. Experiment 1 was designed to inhibit cataract formation, with the dams fed a 2.4% MA or basal (<0.01% MA) diet during lactational periods. On postnatal day 7, male pups received a single intraperitoneal (ip) injection of 50 mg/kg MNU or vehicle. Lens opacity and morphology were examined 7 and 14 days after the MNU injection. Experiment 2 was designed to inhibit retinal degeneration and was performed with female postweaning rats. In this experiment, dams were fed the 2.4% MA or basal diet during the lactational periods. Thereafter, the female pups were continuously fed the same diets during their postweaning periods. On postnatal day 21 (at weaning), pups received a single ip injection of 50 mg/kg MNU. Retinal morphology was examined 7 days after the MNU injection. In experiment 3, six-week-old female rats were fed the 2.4% MA or basal diet starting at one week before the MNU injection and were then continuously fed the same diets until sacrifice. Rats at 7 weeks of age were given a single ip injection of 40 mg/kg MNU, and the retina was then examined morphologically one week after the MNU injection. In experiment 1, mature cataract was found in all of the MNU-treated groups, with or without MA supplementation. In experiments 2 and 3, atrophy of both the peripheral and central outer retina occurred in all rats exposed to MNU, with or without MA supplementation, respectively. The severities of the cataracts and retinal atrophy in the rats were similar regardless of MA supplementation. Dietary mead acid, which is used as a substitute in essential fatty acid deficiency in the body, does not modify MNU-induced cataract and retinal degeneration in rat models.
Collapse
Affiliation(s)
- Yuko Emoto
- Department of Pathology II, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan
| | - Katsuhiko Yoshizawa
- Department of Pathology II, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan
| | - Kei Hamazaki
- Department of Public Health, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yuichi Kinoshita
- Department of Pathology II, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan. ; Division of Pathology, Kansai Medical University Takii Hospital, 10-15 Fumizono, Moriguchi, Osaka 570-8507, Japan
| | - Michiko Yuki
- Department of Pathology II, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan
| | - Takashi Yuri
- Department of Pathology II, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan
| | - Hiroshi Kawashima
- Institute for Health Care Science, Suntory Wellness Ltd., 1-1-1 Wakayamadai, Shimamoto, Osaka 618-8503, Japan
| | - Airo Tsubura
- Department of Pathology II, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan
| |
Collapse
|
6
|
Andley UP, Malone JP, Townsend RR. In vivo substrates of the lens molecular chaperones αA-crystallin and αB-crystallin. PLoS One 2014; 9:e95507. [PMID: 24760011 PMCID: PMC3997384 DOI: 10.1371/journal.pone.0095507] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 03/26/2014] [Indexed: 12/11/2022] Open
Abstract
αA-crystallin and αB-crystallin are members of the small heat shock protein family and function as molecular chaperones and major lens structural proteins. Although numerous studies have examined their chaperone-like activities in vitro, little is known about the proteins they protect in vivo. To elucidate the relationships between chaperone function, substrate binding, and human cataract formation, we used proteomic and mass spectrometric methods to analyze the effect of mutations associated with hereditary human cataract formation on protein abundance in αA-R49C and αB-R120G knock-in mutant lenses. Compared with age-matched wild type lenses, 2-day-old αA-R49C heterozygous lenses demonstrated the following: increased crosslinking (15-fold) and degradation (2.6-fold) of αA-crystallin; increased association between αA-crystallin and filensin, actin, or creatine kinase B; increased acidification of βB1-crystallin; increased levels of grifin; and an association between βA3/A1-crystallin and αA-crystallin. Homozygous αA-R49C mutant lenses exhibited increased associations between αA-crystallin and βB3-, βA4-, βA2-crystallins, and grifin, whereas levels of βB1-crystallin, gelsolin, and calpain 3 decreased. The amount of degraded glutamate dehydrogenase, α-enolase, and cytochrome c increased more than 50-fold in homozygous αA-R49C mutant lenses. In αB-R120G mouse lenses, our analyses identified decreased abundance of phosphoglycerate mutase, several β- and γ-crystallins, and degradation of αA- and αB-crystallin early in cataract development. Changes in the abundance of hemoglobin and histones with the loss of normal α-crystallin chaperone function suggest that these proteins also play important roles in the biochemical mechanisms of hereditary cataracts. Together, these studies offer a novel insight into the putative in vivo substrates of αA- and αB-crystallin.
Collapse
Affiliation(s)
- Usha P. Andley
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| | - James P. Malone
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - R. Reid Townsend
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
7
|
Nealon JR, Blanksby SJ, Donaldson PJ, Truscott RJW, Mitchell TW. Fatty Acid uptake and incorporation into phospholipids in the rat lens. Invest Ophthalmol Vis Sci 2011; 52:804-9. [PMID: 20926811 DOI: 10.1167/iovs.10-5830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Phospholipids are a major component of lens fiber cells and influence the activity of membrane proteins. Previous investigations of fatty acid uptake by the lens are limited. The purpose of the present study was thus to determine whether exogenous fatty acids could be taken up by the rat lens and incorporated into molecular phospholipids. METHODS Lenses were incubated with fluorescently labeled palmitic acid and then analyzed by confocal microscopy. Concurrently, lenses incubated with either fluorescently labeled palmitic acid or the more physiologically relevant (13)C(18)-oleic acid were sectioned into nuclear and cortical regions and analyzed by highly sensitive and structurally selective electrospray ionization tandem mass spectrometry techniques. RESULTS The detection of fluorescently labeled palmitic acid, even after 16 hours of incubation, was limited to approximately the outer 25% to 30% of the rat lens. Mass spectrometry also revealed the presence of free (13)C(18)-oleic acid in the cortex but not the nucleus. No evidence could be found for incorporation of fluorescently labeled palmitic acid into phospholipids; however, a low level of (13)C(18)-oleic acid incorporation into phosphatidylethanolamine (PE), specifically PE (PE 16:0/(13)C(18) 18:1) was detected in the lens cortex after 16 hours. CONCLUSIONS These data demonstrate that uptake of exogenous (e.g., dietary fatty acids) by the lens and their incorporation into phospholipids is minimal, most likely occurring only during de novo synthesis in the outermost region of the lens. This finding adds support to the hypothesis that once synthesized there is no active remodeling or turnover of fiber cell phospholipids.
Collapse
Affiliation(s)
- Jessica R Nealon
- School of Chemistry, University of Wollongong, Wollongong, New South Wales, Australia
| | | | | | | | | |
Collapse
|
8
|
Borchman D, Yappert MC. Lipids and the ocular lens. J Lipid Res 2010; 51:2473-88. [PMID: 20407021 PMCID: PMC2918433 DOI: 10.1194/jlr.r004119] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 01/29/2010] [Indexed: 11/20/2022] Open
Abstract
The unusually high levels of saturation and thus order contribute to the uniqueness of human lens membranes. In addition, and unlike in most biomembranes, most of the lens lipids are associated with proteins, thus reducing their mobility. The major phospholipid of the human lens is dihydrosphingomyelin. Found in significant quantities only in primate lenses, particularly human ones, this lipid is so extremely stable that it was reported to be the only lipid remaining in a frozen mammoth 40,000 years after its death. Unusually high levels of cholesterol add peculiarity to the composition of lens membranes. Beyond the lateral segregation of lipids into dynamic domains known as rafts, the high abundance of cholesterol in the human lens leads to the formation of patches of pure cholesterol. Changes in human lens lipid composition with age and disease as well as differences among species are greater than those observed for any other biomembrane. The relationships among lens membrane composition, structure, and lipid conformation reviewed in this article are unique to the mammalian lens and offer exciting insights into lens membrane function. This review focuses on findings reported over the last two decades that demonstrate the uniqueness of mammalian lens membranes regarding their morphology and composition. Because the membranes of human lenses do undergo the most dramatic changes with age and cataractogenesis, the final sections of this review address our current knowledge of the unusual composition and organization of adult human lens membranes with and without opacification. Finally, the questions that still remain to be answered are presented.
Collapse
Affiliation(s)
- Douglas Borchman
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY 40202, USA.
| | | |
Collapse
|
9
|
Danysh BP, Patel TP, Czymmek KJ, Edwards DA, Wang L, Pande J, Duncan MK. Characterizing molecular diffusion in the lens capsule. Matrix Biol 2009; 29:228-36. [PMID: 20026402 DOI: 10.1016/j.matbio.2009.12.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 12/14/2009] [Accepted: 12/14/2009] [Indexed: 11/28/2022]
Abstract
The lens capsule compartmentalizes the cells of the avascular lens from other ocular tissues. Small molecules required for lens cell metabolism, such as glucose, salts, and waste products, freely pass through the capsule. However, the lens capsule is selectively permeable to proteins such as growth hormones and substrate carriers which are required for proper lens growth and development. We used fluorescence recovery after photobleaching (FRAP) to characterize the diffusional behavior of various sized dextrans (3, 10, 40, 150, and 250 kDa) and proteins endogenous to the lens environment (EGF, gammaD-crystallin, BSA, transferrin, ceruloplasmin, and IgG) within the capsules of whole living lenses. We found that proteins had dramatically different diffusion and partition coefficients as well as capsule matrix binding affinities than similar sized dextrans, but they had comparable permeabilities. We also found ionic interactions between proteins and the capsule matrix significantly influence permeability and binding affinity, while hydrophobic interactions had less of an effect. The removal of a single anionic residue from the surface of a protein, gammaD-crystallin [E107A], significantly altered its permeability and matrix binding affinity in the capsule. Our data indicated that permeabilities and binding affinities in the lens capsule varied between individual proteins and cannot be predicted by isoelectric points or molecular size alone.
Collapse
Affiliation(s)
- Brian P Danysh
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Sandoval A, Chokshi A, Jesch ED, Black PN, Dirusso CC. Identification and characterization of small compound inhibitors of human FATP2. Biochem Pharmacol 2009; 79:990-9. [PMID: 19913517 DOI: 10.1016/j.bcp.2009.11.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 11/05/2009] [Accepted: 11/06/2009] [Indexed: 01/08/2023]
Abstract
Fatty acid transport proteins (FATPs) are bifunctional proteins, which transport long chain fatty acids into cells and activate very long chain fatty acids by esterification with coenzyme A. In an effort to understand the linkage between cellular fatty acid transport and the pathology associated with excessive accumulation of exogenous fatty acids, we targeted FATP-mediated fatty acid transport in a high throughput screen of more than 100,000 small diverse chemical compounds in yeast expressing human FATP2 (hsFATP2). Compounds were selected for their ability to depress the transport of the fluorescent long chain fatty acid analogue, C(1)-BODIPY-C(12). Among 234 hits identified in the primary screen, 5 compounds, each representative of a structural class, were further characterized in the human Caco-2 and HepG2 cell lines, each of which normally expresses FATP2, and in 3T3-L1 adipocytes, which do not. These compounds were effective in inhibiting uptake with IC(50)s in the low micromolar range in both Caco-2 and HepG2 cells. Inhibition of transport was highly specific for fatty acids and there were no effects of these compounds on cell viability, trans-epithelial electrical resistance, glucose transport, or long chain acyl-CoA synthetase activity. The compounds were less effective when tested in 3T3-L1 adipocytes suggesting selectivity of inhibition. These results suggest fatty acid transport can be inhibited in a FATP-specific manner without causing cellular toxicity.
Collapse
Affiliation(s)
- Angel Sandoval
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0664, United States
| | | | | | | | | |
Collapse
|
11
|
Carter-Dawson L, Zhang Y, Harwerth RS, Rojas R, Dash P, Zhao XC, WoldeMussie E, Ruiz G, Chuang A, Dubinsky WP, Redell JB. Elevated albumin in retinas of monkeys with experimental glaucoma. Invest Ophthalmol Vis Sci 2009; 51:952-9. [PMID: 19797225 DOI: 10.1167/iovs.09-4331] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To establish the identity of a prominent protein, approximately 70 kDa, that is markedly increased in the retina of monkeys with experimental glaucoma compared with the fellow control retina, the relationship to glaucoma severity, and its localization in the retina. METHODS Retinal extracts were subjected to 2-D gel electrophoresis to identify differentially expressed proteins. Purified peptides from the abundant 70 kDa protein were analyzed and identified by liquid chromatography/mass spectrometry/mass spectrometry (LC/MS/MS) separation, and collision-induced dissociation sequencing. Protein identity was performed on MASCOT (Matrix Science, Boston, MA) and confirmed by Western blot. The relationship between the increase in this protein and glaucoma severity was investigated by regression analyses. Protein localization in retina was evaluated by immunohistochemistry with confocal imaging. RESULTS The abundant protein was identified as Macaca mulatta serum albumin precursor (67 kDa) from eight non-overlapping proteolytic fragments, and the identity was confirmed by Western blot. The average increase in retinal albumin content was 2.3 fold (P = 0.015). In glaucoma eyes, albumin was localized to some neurons of the inner nuclear layer, in the inner plexiform layer, and along the vitreal surface, but it was only found in blood vessels in control retinas. CONCLUSIONS Albumin is the abundant protein found in the glaucomatous monkey retinas. The increased albumin is primarily localized to the inner retina where oxidative damage associated with experimental glaucoma is known to be prominent. Since albumin is a major antioxidant, the increase of albumin in the retinas of eyes with experimental glaucoma may serve to protect the retina against oxidative damage.
Collapse
Affiliation(s)
- Louvenia Carter-Dawson
- Richard S. Ruiz Department of Ophthalmology and Visual Science, University of Texas Medical School at Houston, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Yang J, Klassen H, Pries M, Wang W, Nissen MH. Vitreous humor and albumin augment the proliferation of cultured retinal precursor cells. J Neurosci Res 2009; 87:495-502. [PMID: 18803297 DOI: 10.1002/jnr.21873] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Intravitreal injection is an important delivery route for studies involving the transplantation of various types of precursor cells to the retina; however, the effect on these cells of exposure to the vitreous microenvironment has not been specifically investigated. Here vitreous humor was evaluated for the potential to influence the proliferation of rat retinal precursor cells in vitro. Cells were isolated at embryonic day 19 and plated in standard proliferation medium in the presence or absence of fluid expressed from porcine vitreous humor. Cellular proliferation at different concentrations of vitreous fluid supplementation was quantified by using a (3)H-thymidine incorporation assay. Active components of vitreous fluid were partially characterized by gel filtration chromatography (GFC) and UV spectral analysis. The effect of each vitreous fraction on proliferation was determined as well. Results showed that addition of 20% vitreous fluid to primary rat retinal cultures significantly increased (3)H-thymidine incorporation compared with growth medium without vitreous supplementation. A vitreous fraction showing growth-promoting activity was localized to a molecular mass range <1000 Da, consistent with ascorbic acid. Ascorbic acid was confirmed in vitreous fluid by UV spectral analysis. Growth-augmenting activity was present in higher molecular mass vitreous fractions, consistent with protein components. Albumin, the major protein in vitreous fluid, was found to augment proliferation. Because vitreous-associated augmentation of retinal precursor proliferation remains an epidermal growth factor-dependent phenomenon, the proliferative status of transplanted cells in the vitreous cavity is likely determined by a combination of factors.
Collapse
Affiliation(s)
- Jing Yang
- Department of Ophthalmology, University of California, Irvine, California 92868, USA.
| | | | | | | | | |
Collapse
|
13
|
Danysh BP, Czymmek KJ, Olurin PT, Sivak JG, Duncan MK. Contributions of mouse genetic background and age on anterior lens capsule thickness. Anat Rec (Hoboken) 2009; 291:1619-27. [PMID: 18951502 DOI: 10.1002/ar.20753] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Accurate lens capsule thickness measurements are necessary for studies investigating mechanical characteristics of the capsule. Confocal Z-axis imaging was used to measure the anterior lens capsule thickness of living intact lenses with minimal tissue manipulation. Measurements of the anterior capsule thickness is reported for the first time in young and old mice from four inbred strains, BALB/c, FVB/N, C57BL/6, and 129X1, and the outbred strain ICR. Our data demonstrates that the mouse anterior lens capsule continues to grow postnatally similar to that described in other mammals. It is also shown there is a significant difference in anterior lens capsule thickness between unrelated mouse strains, suggesting that capsule thickness is a quantitative trait shared by strains with common ancestry. Measurements, taken from other regions of FVB/N capsules revealed the anterior pole to be the thickest, followed by the equatorial region and posterior pole. In addition to mouse, anterior capsule measurements taken from intact cattle, rabbit, rat lenses, and human capsulotomy specimens correlated with the overall size of the animal.
Collapse
Affiliation(s)
- Brian P Danysh
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, USA
| | | | | | | | | |
Collapse
|
14
|
Nealon JR, Blanksby SJ, Abbott SK, Hulbert A, Mitchell TW, Truscott RJ. Phospholipid composition of the rat lens is independent of diet. Exp Eye Res 2008; 87:502-14. [DOI: 10.1016/j.exer.2008.08.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 08/06/2008] [Accepted: 08/07/2008] [Indexed: 11/16/2022]
|
15
|
Danysh BP, Duncan MK. The lens capsule. Exp Eye Res 2008; 88:151-64. [PMID: 18773892 DOI: 10.1016/j.exer.2008.08.002] [Citation(s) in RCA: 196] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 07/24/2008] [Accepted: 08/01/2008] [Indexed: 01/28/2023]
Abstract
The lens capsule is a modified basement membrane that completely surrounds the ocular lens. It is known that this extracellular matrix is important for both the structure and biomechanics of the lens in addition to providing informational cues to maintain lens cell phenotype. This review covers the development and structure of the lens capsule, lens diseases associated with mutations in extracellular matrix genes and the role of the capsule in lens function including those proposed for visual accommodation, selective permeability to infectious agents, and cell signaling.
Collapse
Affiliation(s)
- Brian P Danysh
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | | |
Collapse
|
16
|
Li H, Black PN, Chokshi A, Sandoval-Alvarez A, Vatsyayan R, Sealls W, DiRusso CC. High-throughput screening for fatty acid uptake inhibitors in humanized yeast identifies atypical antipsychotic drugs that cause dyslipidemias. J Lipid Res 2007; 49:230-44. [PMID: 17928635 DOI: 10.1194/jlr.d700015-jlr200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fatty acids are implicated in the development of dyslipidemias, leading to type 2 diabetes and cardiovascular disease. We used a standardized small compound library to screen humanized yeast to identify compounds that inhibit fatty acid transport protein (FATP)-mediated fatty acid uptake into cells. This screening procedure used live yeast cells expressing human FATP2 to identify small compounds that reduced the import of a fluorescent fatty acid analog, 4,4-difluoro-5-methyl-4-bora-3a,4a-diaza-s-indacene-3-dodecanoic acid (C(1)-BODIPY-C(12)). The library used consisted of 2,080 compounds with known biological activities. Of these, approximately 1.8% reduced cell-associated C(1)-BODIPY-C(12) fluorescence and were selected as potential inhibitors of human FATP2-mediated fatty acid uptake. Based on secondary screens, 28 compounds were selected as potential fatty acid uptake inhibitors. Some compounds fell into four groups with similar structural features. The largest group was structurally related to a family of tricyclic, phenothiazine-derived drugs used to treat schizophrenia and related psychiatric disorders, which are also known to cause metabolic side effects, including hypertriglyceridemia. Potential hit compounds were studied for specificity of interaction with human FATP and efficacy in human Caco-2 cells. This study validates this screening system as useful to assess the impact of drugs in preclinical screening for fatty acid uptake.
Collapse
Affiliation(s)
- Hong Li
- Center for Metabolic Disease, Ordway Research Institute, Inc., Albany Medical College, Albany, NY 12208, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Yakovleva MA, Panova IG, Fel’dman TB, Zak PP, Tatikolov AS, Sukhikh GT, Ostrovsky MA. Finding of carotenoids in the vitreous body of human eye during prenatal development. Russ J Dev Biol 2007. [DOI: 10.1134/s1062360407050062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|