1
|
Singh R, Kumawat M, Gogoi H, Madhyastha H, Lichtfouse E, Daima HK. Engineered Nanomaterials for Immunomodulation: A Review. ACS APPLIED BIO MATERIALS 2024; 7:727-751. [PMID: 38166376 DOI: 10.1021/acsabm.3c00940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The immune system usually provides a defense against invading pathogenic microorganisms and any other particulate contaminants. Nonetheless, it has been recently reported that nanomaterials can evade the immune system and modulate immunological responses due to their unique physicochemical characteristics. Consequently, nanomaterial-based activation of immune components, i.e., neutrophils, macrophages, and other effector cells, may induce inflammation and alter the immune response. Here, it is essential to distinguish the acute and chronic modulations triggered by nanomaterials to determine the possible risks to human health. Nanomaterials size, shape, composition, surface charge, and deformability are factors controlling their uptake by immune cells and the resulting immune responses. The exterior corona of molecules adsorbed over nanomaterials surfaces also influences their immunological effects. Here, we review current nanoengineering trends for targeted immunomodulation with an emphasis on the design, safety, and potential toxicity of nanomaterials. First, we describe the characteristics of engineered nanomaterials that trigger immune responses. Then, the biocompatibility and immunotoxicity of nanoengineered particles are debated, because these factors influence applications. Finally, future nanomaterial developments in terms of surface modifications, synergistic approaches, and biomimetics are discussed.
Collapse
Affiliation(s)
| | - Mamta Kumawat
- Department of Biotechnology, School of Sciences, JECRC University, Sitapura Extension, Jaipur 303905, Rajasthan, India
| | - Himanshu Gogoi
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, University of Miyazaki, Miyazaki 8891692, Japan
| | - Eric Lichtfouse
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University Xi'an, Shaanxi 710049, China
| | - Hemant Kumar Daima
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindari 305817, Ajmer, India
| |
Collapse
|
2
|
Dąbkowska M, Kosiorowska A, Machaliński B. The Impact of Serum Protein Adsorption on PEGylated NT3-BDNF Nanoparticles-Distribution, Protein Release, and Cytotoxicity in a Human Retinal Pigmented Epithelial Cell Model. Pharmaceutics 2023; 15:2236. [PMID: 37765206 PMCID: PMC10537189 DOI: 10.3390/pharmaceutics15092236] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
The adsorption of biomolecules on nanoparticles' surface ultimately depends on the intermolecular forces, which dictate the mutual interaction transforming their physical, chemical, and biological characteristics. Therefore, a better understanding of the adsorption of serum proteins and their impact on nanoparticle physicochemical properties is of utmost importance for developing nanoparticle-based therapies. We investigated the interactions between potentially therapeutic proteins, neurotrophin 3 (NT3), brain-derived neurotrophic factor (BDNF), and polyethylene glycol (PEG), in a cell-free system and a retinal pigmented epithelium cell line (ARPE-19). The variance in the physicochemical properties of PEGylated NT3-BDNF nanoparticles (NPs) in serum-abundant and serum-free systems was studied using transmission electron microscopy, atomic force microscopy, multi-angle dynamic, and electrophoretic light scattering. Next, we compared the cellular response of ARPE-19 cells after exposure to PEGylated NT3-BDNF NPs in either a serum-free or complex serum environment by investigating protein release and cell cytotoxicity using ultracentrifuge, fluorescence spectroscopy, and confocal microscopy. After serum exposure, the decrease in the aggregation of PEGylated NT3-BDNF NPs was accompanied by increased cell viability and BDNF/NT3 in vitro release. In contrast, in a serum-free environment, the appearance of positively charged NPs with hydrodynamic diameters up to 900 nm correlated with higher cytotoxicity and limited BDNF/NT3 release into the cell culture media. This work provides new insights into the role of protein corona when considering the PEGylated nano-bio interface with implications for cytotoxicity, NPs' distribution, and BDNF and NT3 release profiles in the in vitro setting.
Collapse
Affiliation(s)
- Maria Dąbkowska
- Independent Laboratory of Pharmacokinetic and Clinical Pharmacy, Rybacka 1, 70-204 Szczecin, Poland;
| | - Alicja Kosiorowska
- Independent Laboratory of Pharmacokinetic and Clinical Pharmacy, Rybacka 1, 70-204 Szczecin, Poland;
- Department of General Pathology, Pomeranian Medical University, Rybacka 1, 70-204 Szczecin, Poland;
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, Rybacka 1, 70-204 Szczecin, Poland;
| |
Collapse
|
3
|
Gabai A, Zeppieri M, Finocchio L, Salati C. Innovative Strategies for Drug Delivery to the Ocular Posterior Segment. Pharmaceutics 2023; 15:1862. [PMID: 37514050 PMCID: PMC10385847 DOI: 10.3390/pharmaceutics15071862] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2023] Open
Abstract
Innovative and new drug delivery systems (DDSs) have recently been developed to vehicle treatments and drugs to the ocular posterior segment and the retina. New formulations and technological developments, such as nanotechnology, novel matrices, and non-traditional treatment strategies, open new perspectives in this field. The aim of this mini-review is to highlight promising strategies reported in the current literature based on innovative routes to overcome the anatomical and physiological barriers of the vitreoretinal structures. The paper also describes the challenges in finding appropriate and pertinent treatments that provide safety and efficacy and the problems related to patient compliance, acceptability, effectiveness, and sustained drug delivery. The clinical application of these experimental approaches can help pave the way for standardizing the use of DDSs in developing enhanced treatment strategies and personalized therapeutic options for ocular pathologies.
Collapse
Affiliation(s)
- Andrea Gabai
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | - Lucia Finocchio
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
- Department of Ophthalmology, Nuovo Ospedale Santo Stefano, 59100 Prato, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
4
|
Tawfik M, Chen F, Goldberg JL, Sabel BA. Nanomedicine and drug delivery to the retina: current status and implications for gene therapy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:1477-1507. [PMID: 36107200 PMCID: PMC9630211 DOI: 10.1007/s00210-022-02287-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/31/2022] [Indexed: 10/14/2022]
Abstract
Blindness affects more than 60 million people worldwide. Retinal disorders, including age-related macular degeneration (AMD), diabetic retinopathy (DR), and glaucoma, are the leading causes of blindness. Finding means to optimize local and sustained delivery of drugs or genes to the eye and retina is one goal to advance the development of new therapeutics. Despite the ease of accessibility of delivering drugs via the ocular surface, the delivery of drugs to the retina is still challenging due to anatomic and physiologic barriers. Designing a suitable delivery platform to overcome these barriers should enhance drug bioavailability and provide a safe, controlled, and sustained release. Current inventions for posterior segment treatments include intravitreal implants and subretinal viral gene delivery that satisfy these criteria. Several other novel drug delivery technologies, including nanoparticles, micelles, dendrimers, microneedles, liposomes, and nanowires, are now being widely studied for posterior segment drug delivery, and extensive research on gene delivery using siRNA, mRNA, or aptamers is also on the rise. This review discusses the current state of retinal drug/gene delivery and highlights future therapeutic opportunities.
Collapse
Affiliation(s)
- Mohamed Tawfik
- Institute of Medical Psychology, Medical Faculty, Otto-Von-Guericke University, Magdeburg, Germany
| | - Fang Chen
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Jeffrey L Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Bernhard A Sabel
- Institute of Medical Psychology, Medical Faculty, Otto-Von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
5
|
Kim J, Chun J, Ahn M, Jung K, Moon C, Shin T. Blood-retina barrier dysfunction in experimental autoimmune uveitis: the pathogenesis and therapeutic targets. Anat Cell Biol 2022; 55:20-27. [PMID: 35354673 PMCID: PMC8968224 DOI: 10.5115/acb.21.227] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 11/27/2022] Open
Abstract
Experimental autoimmune uveitis (EAU), an animal model of human uveitis, is characterized by infiltration of autoimmune T cells in the uvea as well as in the retina of susceptible animals. EAU is induced by the immunization of uveitogenic antigens, including either retinal soluble-antigen or interphotoreceptor retinoid-binding proteins, in Lewis rats. The pathogenesis of EAU in rats involves the proliferation of autoimmune T cells in peripheral lymphoid tissues and breakdown of the blood-retinal barrier, primarily in the uvea and retina, finally inducing visual dysfunction. In this review, we describe recent EAU studies to facilitate the design of a therapeutic strategy through the interruption of uveitogenic factors during the course of EAU, which will be helpful for controlling human uveitis.
Collapse
Affiliation(s)
- Jeongtae Kim
- Department of Anatomy, Kosin University College of Medicine, Busan, Korea
| | - Jiyoon Chun
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, Korea
| | - Meejung Ahn
- Department of Animal Science, College of Life Science, Sangji University, Wonju, Korea
| | - Kyungsook Jung
- Functional Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Korea
| | - Changjong Moon
- Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, Korea
| | - Taekyun Shin
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, Korea
| |
Collapse
|
6
|
Adamczyk K, Rusyan E, Franek E. Safety of Aesthetic Medicine Procedures in Patients with Autoimmune Thyroid Disease: A Literature Review. Medicina (B Aires) 2021; 58:medicina58010030. [PMID: 35056337 PMCID: PMC8779514 DOI: 10.3390/medicina58010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 11/29/2022] Open
Abstract
Autoimmune thyroid diseases are the most common organ-specific autoimmune diseases, affecting 2–5% of the world’s population. Due to the autoimmune background of thyroid diseases, we analyzed a wide range of cosmetic procedures, from minimally invasive cosmetic injections (mesotherapy) to highly invasive procedures, such as lifting threads. Out of the seven categories of treatments in aesthetic medicine analyzed by us—hyaluronic acid, botulinum toxin, autologous platelet-rich plasma, autologous fat grafting, lifting threads, IPL and laser treatment and mesotherapy—only two, mesotherapy and lifting threads, are not recommended. This is due to the lack of safety studies and the potential possibility of a higher frequency of side effects in patients with autoimmune thyroid diseases.
Collapse
Affiliation(s)
- Kamil Adamczyk
- Adamczyk Clinic, Żyzna 4, 03-613 Warsaw, Poland;
- Clinic of Anaesthesiology and Intensive Therapy, Central Clinical Hospital of the Ministry of Interior and Administration in Warsaw, Wołoska 137, 02-507 Warsaw, Poland
| | - Ewa Rusyan
- Department of Conservative Dentistry, Warsaw Medical University, Żwirki I Wigury 61, 02-091 Warsaw, Poland;
| | - Edward Franek
- Clinic of Internal Medicine, Endocrinology and Diabetology, Central Clinical Hospital of the Ministry of Interior and Administration in Warsaw, Wołoska 137, 02-507 Warsaw, Poland
- Correspondence: ; Tel.: +48-(47)-722-14-05
| |
Collapse
|
7
|
Yang Y, Santamaria P. Evolution of nanomedicines for the treatment of autoimmune disease: From vehicles for drug delivery to inducers of bystander immunoregulation. Adv Drug Deliv Rev 2021; 176:113898. [PMID: 34314782 DOI: 10.1016/j.addr.2021.113898] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/08/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022]
Abstract
Over the last two decades, the nanomedicine field has witnessed an explosive growth of research on the development of nanoparticle/microparticle (NP/MP)-based compounds for the treatment of autoimmune diseases. Studies have evaluated compounds generated with a broad range of materials with different shapes, sizes, surface chemistries and structures. A number of active pharmaceutical ingredients, including immunosuppressants, cytokines, nucleotides, peptides, proteins and immunomodulators of various types have been encapsulated into or incorporated onto the surface of these compounds, either individually or in combination, and delivered to animal models of autoimmune inflammation via different administration routes. These NP/MP-based compounds can be categorized into four different groups based on their intended mechanisms of action. Here, we review the engineering designs, the pharmacodynamic and therapeutic correlates and the disease specificity of nanomedicines belonging to each of these groups.
Collapse
Affiliation(s)
- Yang Yang
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1 Canada; Department of Biochemistry and Molecular Biology and Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada.
| | - Pere Santamaria
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1 Canada; Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona 08036, Spain.
| |
Collapse
|
8
|
Lejoyeux R, Benillouche J, Ong J, Errera MH, Rossi EA, Singh SR, Dansingani KK, da Silva S, Sinha D, Sahel JA, Freund KB, Sadda SR, Lutty GA, Chhablani J. Choriocapillaris: Fundamentals and advancements. Prog Retin Eye Res 2021; 87:100997. [PMID: 34293477 DOI: 10.1016/j.preteyeres.2021.100997] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/02/2021] [Accepted: 07/13/2021] [Indexed: 12/19/2022]
Abstract
The choriocapillaris is the innermost structure of the choroid that directly nourishes the retinal pigment epithelium and photoreceptors. This article provides an overview of its hemovasculogenesis development to achieve its final architecture as a lobular vasculature, and also summarizes the current histological and molecular knowledge about choriocapillaris and its dysfunction. After describing the existing state-of-the-art tools to image the choriocapillaris, we report the findings in the choriocapillaris encountered in the most frequent retinochoroidal diseases including vascular diseases, inflammatory diseases, myopia, pachychoroid disease spectrum disorders, and glaucoma. The final section focuses on the development of imaging technology to optimize visualization of the choriocapillaris as well as current treatments of retinochoroidal disorders that specifically target the choriocapillaris. We conclude the article with pertinent unanswered questions and future directions in research for the choriocapillaris.
Collapse
Affiliation(s)
| | | | - Joshua Ong
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Marie-Hélène Errera
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ethan A Rossi
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA 15213, USA
| | - Sumit R Singh
- Jacobs Retina Center, Shiley Eye Institute, University of California San Diego, San Diego, CA, USA
| | - Kunal K Dansingani
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Susana da Silva
- Department of Ophthalmology and Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Debasish Sinha
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Cell Biology and Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - José-Alain Sahel
- Rothschild Foundation, 75019, Paris, France; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France
| | - K Bailey Freund
- LuEsther T. Mertz Retinal Research Center, Manhattan Eye, Ear, and Throat Hospital, New York, NY, USA; Vitreous Retina Macula Consultants of New York, New York, NY, USA; Department of Ophthalmology, New York University of Medicine, New York, NY, USA; Edward S. Harkness Eye Institute, Columbia University Medical Center, New York, NY, USA
| | - SriniVas R Sadda
- Doheny Image Reading Center, Doheny Eye Institute, Los Angeles, CA, 90033, USA; Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Gerard A Lutty
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, MD, 21287, USA
| | - Jay Chhablani
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
9
|
Muhammad Q, Jang Y, Kang SH, Moon J, Kim WJ, Park H. Modulation of immune responses with nanoparticles and reduction of their immunotoxicity. Biomater Sci 2020; 8:1490-1501. [PMID: 31994542 DOI: 10.1039/c9bm01643k] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Particles with a size range of 1-100 nm used in various fields of life sciences are called nanoparticles (NPs). Currently, nanotechnology has a wide range of applications in biomedical research, industries and in almost all types of modern technology. The growing applications of nanotechnology in medicine urge scientists to analyze the impact of NPs on human body tissues and the immune system. Easy surface modifications of the NPs enable the modulation of the immune system either by evading the immune system to prevent allergic reactions or by enhancing the immunogenic response. In this review, we discussed the various possible theories and practical implications reported to date for the applications of nanotechnology in immunostimulation and immunosuppression for favorable immune response, such as vaccine delivery and cancer treatments. In the last part of this paper, we also discussed the biocompatibility and unfavorable immunotoxicity of NPs and methods for lowering their toxicity.
Collapse
Affiliation(s)
- Qasim Muhammad
- School of Integrative Engineering, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul 06974, Republic of Korea.
| | - Yeonwoo Jang
- School of Integrative Engineering, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul 06974, Republic of Korea.
| | - Shin Hyuk Kang
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - James Moon
- Pharmaceutical Sciences and Biomedical Engineering, University of Michigan, 500 S. State Street, Ann Arbor, MI 48109, USA
| | - Won Jong Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul 06974, Republic of Korea.
| |
Collapse
|
10
|
Recent advances in the management of non-infectious posterior uveitis. Int Ophthalmol 2020; 40:3187-3207. [PMID: 32617804 DOI: 10.1007/s10792-020-01496-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE To review the current regimens and novel therapeutic modalities in various stages of research and development for the management of non-infectious posterior uveitis (NIPU). METHODS We performed a thorough review of current literature using PubMed, Google Scholar and Clinicaltrials.gov to identify the published literature about the available therapeutics and novel drugs/therapies in different stages of clinical trials. RESULTS The current management regimen for non-infectious posterior uveitis includes corticosteroids, immunomodulatory therapies and anti-metabolites. However, NIPU requires long-term management for efficacious remission of the disease and to prevent disease relapse. Long-term safety issues associated with steroids have led to efforts to develop novel therapeutic agents including biological response modulators and immunosuppressants. The current therapeutic agents in various stages of development include calcineurin inhibitors, biologic response modifiers and a more a comprehensive modalities like ocular gene therapy as well as novel drug delivery mechanisms for higher bioavailability to the target tissues, with minimal systemic effects. CONCLUSION Novel efficacious therapeutic modalities under development will help overcome the challenges associated with the traditional therapeutic agents.
Collapse
|
11
|
Yan L, Zhao F, Wang J, Zu Y, Gu Z, Zhao Y. A Safe-by-Design Strategy towards Safer Nanomaterials in Nanomedicines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805391. [PMID: 30701603 DOI: 10.1002/adma.201805391] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/13/2018] [Indexed: 05/25/2023]
Abstract
The marriage of nanotechnology and medicine offers new opportunities to fight against human diseases. Benefiting from their unique optical, thermal, magnetic, or redox properties, a wide range of nanomaterials have shown potential in applications such as diagnosis, drug delivery, or tissue repair and regeneration. Despite the considerable success achieved over the past decades, the newly emerging nanomedicines still suffer from an incomplete understanding of their safety risks, and of the relationships between their physicochemical characteristics and safety profiles. Herein, the most important categories of nanomaterials with clinical potential and their toxicological mechanisms are summarized, and then, based on this available information, an overview of the principles in developing safe-by-design nanomaterials for medical applications and of the recent progress in this field is provided. These principles may serve as a starting point to guide the development of more effective safe-by-design strategies and to help identify the major knowledge and skill gaps.
Collapse
Affiliation(s)
- Liang Yan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Nanoscience National Center for Nanoscience and Technology of China, Beijing, 100190, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Nanoscience National Center for Nanoscience and Technology of China, Beijing, 100190, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Nanoscience National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Yan Zu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Nanoscience National Center for Nanoscience and Technology of China, Beijing, 100190, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Nanoscience National Center for Nanoscience and Technology of China, Beijing, 100190, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Nanoscience National Center for Nanoscience and Technology of China, Beijing, 100190, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China, Beijing, 100190, China
| |
Collapse
|
12
|
Durymanov M, Kamaletdinova T, Lehmann SE, Reineke J. Exploiting passive nanomedicine accumulation at sites of enhanced vascular permeability for non-cancerous applications. J Control Release 2017. [DOI: 10.1016/j.jconrel.2017.06.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Ganugula R, Arora M, Kumar MNVR. Ex Vivo Rat Eye Model for Investigating Transport of Next Generation Precision-Polyester Nanosystems. ACS APPLIED MATERIALS & INTERFACES 2017; 9:25668-25671. [PMID: 28737886 DOI: 10.1021/acsami.7b07896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present for the first time a robust ex vivo rat eye model for investigating the transport of precision-polyester nanosystems (P2Ns) across the blood-retinal barrier, intended for systemic administration. The P2Ns-GA actively transport exploiting transferrin receptors present in the inner retinal barrier and colocalize in ganglion cells. Such delivery approaches have the potential to deliver drugs to posterior segments of the eye, which is still a major challenge in treating posterior ocular disorders.
Collapse
Affiliation(s)
- Raghu Ganugula
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University , Reynolds Medical Building, TAMU Mailstop 1114, College Station, Texas 77843, United States
| | - Meenakshi Arora
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University , Reynolds Medical Building, TAMU Mailstop 1114, College Station, Texas 77843, United States
| | - Majeti N V Ravi Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University , Reynolds Medical Building, TAMU Mailstop 1114, College Station, Texas 77843, United States
| |
Collapse
|
14
|
Nano-ophthalmology: Applications and considerations. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1459-1472. [DOI: 10.1016/j.nano.2017.02.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/11/2017] [Accepted: 02/01/2017] [Indexed: 02/03/2023]
|
15
|
Bisht R, Mandal A, Jaiswal JK, Rupenthal ID. Nanocarrier mediated retinal drug delivery: overcoming ocular barriers to treat posterior eye diseases. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 10. [DOI: 10.1002/wnan.1473] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/05/2017] [Accepted: 03/11/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Rohit Bisht
- Buchanan Ocular Therapeutics Unit (BOTU), Department of Ophthalmology, New Zealand National Eye Center, Faculty of Medical and Health Sciences; University of Auckland; Auckland New Zealand
| | - Abhirup Mandal
- Division of Pharmaceutical Sciences, School of Pharmacy; University of Missouri-Kansas City; Kansas City MO USA
| | - Jagdish K. Jaiswal
- Auckland Cancer Society Research Center, Faculty of Medical and Health Sciences; University of Auckland; Auckland New Zealand
| | - Ilva D. Rupenthal
- Buchanan Ocular Therapeutics Unit (BOTU), Department of Ophthalmology, New Zealand National Eye Center, Faculty of Medical and Health Sciences; University of Auckland; Auckland New Zealand
| |
Collapse
|
16
|
Li J, Ding J, Liu T, Liu JF, Yan L, Chen X. Poly(lactic acid) Controlled Drug Delivery. INDUSTRIAL APPLICATIONS OF POLY(LACTIC ACID) 2017. [DOI: 10.1007/12_2017_11] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Lakkireddy HR, Bazile D. Building the design, translation and development principles of polymeric nanomedicines using the case of clinically advanced poly(lactide(glycolide))-poly(ethylene glycol) nanotechnology as a model: An industrial viewpoint. Adv Drug Deliv Rev 2016; 107:289-332. [PMID: 27593265 DOI: 10.1016/j.addr.2016.08.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 08/19/2016] [Accepted: 08/27/2016] [Indexed: 12/16/2022]
Abstract
The design of the first polymeric nanoparticles could be traced back to the 1970s, and has thereafter received considerable attention, as evidenced by the significant increase of the number of articles and patents in this area. This review article is an attempt to take advantage of the existing literature on the clinically tested and commercialized biodegradable PLA(G)A-PEG nanotechnology as a model to propose quality building and outline translation and development principles for polymeric nano-medicines. We built such an approach from various building blocks including material design, nano-assembly - i.e. physicochemistry of drug/nano-object association in the pharmaceutical process, and release in relevant biological environment - characterization and identification of the quality attributes related to the biopharmaceutical properties. More specifically, as envisaged in a translational approach, the reported data on PLA(G)A-PEG nanotechnology have been structured into packages to evidence the links between the structure, physicochemical properties, and the in vitro and in vivo performances of the nanoparticles. The integration of these bodies of knowledge to build the CMC (Chemistry Manufacturing and Controls) quality management strategy and finally support the translation to proof of concept in human, and anticipation of the industrialization takes into account the specific requirements and biopharmaceutical features attached to the administration route. From this approach, some gaps are identified for the industrial development of such nanotechnology-based products, and the expected improvements are discussed. The viewpoint provided in this article is expected to shed light on design, translation and pharmaceutical development to realize their full potential for future clinical applications.
Collapse
|
18
|
Wu W, He Z, Zhang Z, Yu X, Song Z, Li X. Intravitreal injection of rapamycin-loaded polymeric micelles for inhibition of ocular inflammation in rat model. Int J Pharm 2016; 513:238-246. [DOI: 10.1016/j.ijpharm.2016.09.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/26/2016] [Accepted: 09/04/2016] [Indexed: 11/16/2022]
|
19
|
Groynom R, Shoffstall E, Wu LS, Kramer RH, Lavik EB. Controlled release of photoswitch drugs by degradable polymer microspheres. J Drug Target 2016; 23:710-5. [PMID: 26453166 DOI: 10.3109/1061186x.2015.1060978] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND QAQ (quaternary ammonium-azobenzene-quaternary ammonium) and DENAQ (diethylamine-azobenzene-quaternary ammonium) are synthetic photoswitch compounds that change conformation in response to light, altering current flow through voltage-gated ion channels in neurons. These compounds are drug candidates for restoring light sensitivity in degenerative blinding diseases, such as age-related macular degeneration (AMD). PURPOSE However, these photoswitch compounds are cleared from the eye within several days, they must be administered through repeated intravitreal injections. Therefore, we are investigating local, sustained delivery formulations to constantly replenish these molecules and have the potential to restore sight. METHODS Here, we encapsulate QAQ and DENAQ into several molecular weights of poly(lactic-co-glycolic) acid (PLGA) through an emulsion technique to assess the viability of delivering the compounds in their therapeutic window over many weeks. We characterize the loading efficiency, release profile and bioactivity of the compounds after encapsulation. RESULTS A very small burst release was observed for all of the formulations with the majority being delivered over the following two months. The lowest molecular weight PLGA led to the highest loading and most linear delivery for both QAQ and DENAQ. Bioactivity was retained for both compounds across the polymers. CONCLUSION These results present encapsulation into polymers by emulsion as a viable option for controlled release of QAQ and DENAQ.
Collapse
Affiliation(s)
- Rebecca Groynom
- a Department of Biomedical Engineering , Case Western Reserve University , Cleveland , OH , USA and
| | - Erin Shoffstall
- a Department of Biomedical Engineering , Case Western Reserve University , Cleveland , OH , USA and
| | - Larry S Wu
- a Department of Biomedical Engineering , Case Western Reserve University , Cleveland , OH , USA and
| | - Richard H Kramer
- b Department of Molecular and Cell Biology , University of California , Berkeley , CA , USA
| | - Erin B Lavik
- a Department of Biomedical Engineering , Case Western Reserve University , Cleveland , OH , USA and
| |
Collapse
|
20
|
Sharma AK, Arya A, Sahoo PK, Majumdar DK. Overview of biopolymers as carriers of antiphlogistic agents for treatment of diverse ocular inflammations. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:779-791. [PMID: 27287177 DOI: 10.1016/j.msec.2016.05.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 05/04/2016] [Accepted: 05/15/2016] [Indexed: 01/19/2023]
Abstract
Inflammation of the eye is a usual clinical condition that can implicate any part of the eye. The nomenclature of variety of such inflammations is based on the ocular part involved. These diseases may jeopardize normal functioning of the eye on progression. In general, corticosteroids, antihistamines, mast cell stabilizers and non-steroidal anti-inflammatory drugs (NSAIDs) are used to treat inflammatory diseases/disorders of the eye. There have been several attempts via different approaches of drug delivery to overcome the low ocular bioavailability resulting from shorter ocular residence time. The features like safety, ease of elimination and ability to sustain drug release have led to application of biopolymers in ocular therapeutics. Numerous polymers of natural origin such as gelatin, collagen, chitosan, albumin, hyaluronic acid, alginates etc. have been successfully employed for preparation of different ocular dosage forms. Chitosan is the most explored biopolymer amongst natural biopolymers because of its inherent characteristics. The emergence of synthetic biopolymers (like PVP, PACA, PCL, POE, polyanhydrides, PLA, PGA and PLGA) has also added new dimensions to the drug delivery strategies meant for treatment of ophthalmic inflammations. The current review is an endeavor to describe the utility of a variety of biomaterials/polymers based drug delivery systems as carrier for anti-inflammatory drugs in ophthalmic therapeutics.
Collapse
Affiliation(s)
- Anil Kumar Sharma
- Delhi Institute of Pharmaceutical Sciences and Research, Formerly College of Pharmacy, University of Delhi, Pushp Vihar, Sector III, New Delhi 110017,India.
| | - Amit Arya
- Delhi Institute of Pharmaceutical Sciences and Research, Formerly College of Pharmacy, University of Delhi, Pushp Vihar, Sector III, New Delhi 110017,India
| | - Pravat Kumar Sahoo
- Delhi Institute of Pharmaceutical Sciences and Research, Formerly College of Pharmacy, University of Delhi, Pushp Vihar, Sector III, New Delhi 110017,India
| | - Dipak Kanti Majumdar
- School of Pharmaceutical Sciences, Apeejay Stya University, Sohna-Palwal Road, Gurgaon 122103, India
| |
Collapse
|
21
|
Salazar-Méndez R, Yilmaz T, Cordero-Coma M. Moving forward in uveitis therapy: preclinical to phase II clinical trial drug development. Expert Opin Investig Drugs 2015; 25:195-214. [DOI: 10.1517/13543784.2016.1128893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
|
23
|
Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1603-11. [PMID: 25989200 DOI: 10.1016/j.nano.2015.04.015] [Citation(s) in RCA: 240] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 03/26/2015] [Accepted: 04/29/2015] [Indexed: 12/12/2022]
Abstract
UNLABELLED Nanoparticles can be valuable therapeutic options to overcome physical barriers to reach central nervous system. Systemically administered nanoparticles can pass through blood-neural barriers; whereas, locally injected nanoparticles directly reach neuronal and perineuronal cells. In this review, we highlight the importance of size, surface charge, and shape of nanoparticles in determining therapeutic effects on brain and retinal diseases. These features affect overall processes of delivery of nanoparticles: in vivo stability in blood and other body fluids, clearance via mononuclear phagocyte system, attachment with target cells, and penetration into target cells. Furthermore, they are also determinants of nano-bio interfaces: they determine corona formation with proteins in body fluids. Taken together, we emphasize the importance of considerations on characteristics of nanoparticles more suitable for the treatment of brain and retinal diseases in the development of nanoparticle-based therapeutics. FROM THE CLINICAL EDITOR The central nervous system (CNS) remains an area where drug access and delivery are difficult clinically due to the blood brain barrier. With advances in nanotechnology, many researchers have designed and produced nanoparticle-based systems in an attempt to solve this problem. In this concise review, the authors described the current status of drug delivery to the CNS, based on particle size and shape. This article should stimulate more research to be done on future drug design.
Collapse
|
24
|
Nanotherapy for posterior eye diseases. J Control Release 2014; 193:100-12. [PMID: 24862316 DOI: 10.1016/j.jconrel.2014.05.031] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/12/2014] [Accepted: 05/17/2014] [Indexed: 12/11/2022]
Abstract
It is assumed that more than 50% of the most enfeebling ocular diseases have their origin in the posterior segment. Furthermore, most of these diseases lead to partial or complete blindness, if left untreated. After cancer, blindness is the second most dreaded disease world over. However, treatment of posterior eye diseases is more challenging than the anterior segment ailments due to a series of anatomical barriers and physiological constraints confronted for delivery to this segment. In this regard, nanostructured drug delivery systems are proposed to defy ocular barriers, target retina, and act as permeation enhancers in addition to providing a controlled release. Since an important step towards developing effective treatment strategies is to understand the course or a route a drug molecule needs to follow to reach the target site, the first part of the present review discusses various pathways available for effective delivery to and clearance from the posterior eye. Promise held by nanocarrier systems, viz. liposomes, nanoparticles, and nanoemulsion, for effective delivery and selective targeting is also discussed with illustrative examples, tables, and flowcharts. However, the applicability of these nanocarrier systems as self-administration ocular drops is still an unrealized dream which is in itself a huge technological challenge.
Collapse
|
25
|
Nehoff H, Parayath NN, Domanovitch L, Taurin S, Greish K. Nanomedicine for drug targeting: strategies beyond the enhanced permeability and retention effect. Int J Nanomedicine 2014; 9:2539-55. [PMID: 24904213 PMCID: PMC4039421 DOI: 10.2147/ijn.s47129] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The growing research interest in nanomedicine for the treatment of cancer and inflammatory-related pathologies is yielding encouraging results. Unfortunately, enthusiasm is tempered by the limited specificity of the enhanced permeability and retention effect. Factors such as lack of cellular specificity, low vascular density, and early release of active agents prior to reaching their target contribute to the limitations of the enhanced permeability and retention effect. However, improved nanomedicine designs are creating opportunities to overcome these problems. In this review, we present examples of the advances made in this field and endeavor to highlight the potential of these emerging technologies to improve targeting of nanomedicine to specific pathological cells and tissues.
Collapse
Affiliation(s)
- Hayley Nehoff
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Neha N Parayath
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Laura Domanovitch
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Sebastien Taurin
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Khaled Greish
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand ; Department of Oncology, Faculty of Medicine, Suez Canal University, Egypt
| |
Collapse
|
26
|
Shah SS, Denham LV, Elison JR, Bhattacharjee PS, Clement C, Huq T, Hill JM. Drug delivery to the posterior segment of the eye for pharmacologic therapy. EXPERT REVIEW OF OPHTHALMOLOGY 2014; 5:75-93. [PMID: 20305803 DOI: 10.1586/eop.09.70] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Treatment of diseases of the posterior segment of the eye, such as age-related macular degeneration, cytomegalovirus retinitis, diabetic retinopathy, posterior uveitis and retinitis pigmentosa, requires novel drug delivery systems that can overcome the many barriers for efficacious delivery of therapeutic drug concentrations. This challenge has prompted the development of biodegradable and nonbiodegradable sustained-release systems for injection or transplantation into the vitreous as well as drug-loaded nanoparticles, microspheres and liposomes. These drug delivery systems utilize topical, systemic, subconjunctival, intravitreal, transscleral and iontophoretic routes of administration. The focus of research has been the development of methods that will increase the efficacy of spatiotemporal drug application, resulting in more successful therapy for patients with posterior segment diseases. This article summarizes recent advances in the research and development of drug delivery methods of the posterior chamber of the eye, with an emphasis on the use of implantable devices as well as micro- and nanoparticles.
Collapse
Affiliation(s)
- Shalin S Shah
- Department of Ophthalmology, Louisiana State University Health Sciences Center (LSUHSC), 2020 Gravier St. Suite B, Room 3E6, New Orleans, LA 70112-2234, USA, Tel.: +1 678 296 2334, ,
| | | | | | | | | | | | | |
Collapse
|
27
|
Zhou HY, Hao JL, Wang S, Zheng Y, Zhang WS. Nanoparticles in the ocular drug delivery. Int J Ophthalmol 2013; 6:390-6. [PMID: 23826539 DOI: 10.3980/j.issn.2222-3959.2013.03.25] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/29/2013] [Indexed: 02/01/2023] Open
Abstract
Ocular drug transport barriers pose a challenge for drug delivery comprising the ocular surface epithelium, the tear film and internal barriers of the blood-aqueous and blood-retina barriers. Ocular drug delivery efficiency depends on the barriers and the clearance from the choroidal, conjunctival vessels and lymphatic. Traditional drug administration reduces the clinical efficacy especially for poor water soluble molecules and for the posterior segment of the eye. Nanoparticles (NPs) have been designed to overcome the barriers, increase the drug penetration at the target site and prolong the drug levels by few internals of drug administrations in lower doses without any toxicity compared to the conventional eye drops. With the aid of high specificity and multifunctionality, DNA NPs can be resulted in higher transfection efficiency for gene therapy. NPs could target at cornea, retina and choroid by surficial applications and intravitreal injection. This review is concerned with recent findings and applications of NPs drug delivery systems for the treatment of different eye diseases.
Collapse
Affiliation(s)
- Hong-Yan Zhou
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | | | | | | | | |
Collapse
|
28
|
Jo DH, Kim JH, Lee TG, Kim JH. Nanoparticles in the Treatment of Angiogenesis-Related Blindness. J Ocul Pharmacol Ther 2013; 29:135-42. [DOI: 10.1089/jop.2012.0113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Dong Hyun Jo
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Ophthalmology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Tumor Microenvironment Research Center, Global Core Research Center, Seoul National University, Seoul, Republic of Korea
| | - Jin Hyoung Kim
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Ophthalmology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Tumor Microenvironment Research Center, Global Core Research Center, Seoul National University, Seoul, Republic of Korea
| | - Tae Geol Lee
- World Class Laboratory, Center for Nano-Bio Convergence, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
- Department of Nano and Bio Surface Science, University of Science and Technology, Daejeon, Republic of Korea
| | - Jeong Hun Kim
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Ophthalmology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Tumor Microenvironment Research Center, Global Core Research Center, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
29
|
Kambhampati SP, Kannan RM. Dendrimer nanoparticles for ocular drug delivery. J Ocul Pharmacol Ther 2013; 29:151-65. [PMID: 23410062 DOI: 10.1089/jop.2012.0232] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Eye is a unique organ of perfection and complexity, and is a microcosm of the body in many ways. It represents a great opportunity for nanomedicine, since it is readily accessible-allowing for direct drug/gene delivery to maximize the therapeutic effect and minimize side effects. The development of appropriate delivery systems that can sustain and deliver therapeutics to the target tissues is a key challenge that can be addressed by nanotechnology. Dendrimers are tree-like, nanostructured polymers that have received significant attention as ocular drug delivery systems, due to their well-defined size, tailorable structure, and potentially favorable ocular biodistribution. In this review, we highlight recent developments in dendrimer-based ocular therapies for both anterior and posterior segment diseases.
Collapse
Affiliation(s)
- Siva P Kambhampati
- Department of Ophthalmology, Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | |
Collapse
|
30
|
|
31
|
Zarbin MA, Montemagno C, Leary JF, Ritch R. Regenerative nanomedicine and the treatment of degenerative retinal diseases. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2011; 4:113-37. [DOI: 10.1002/wnan.167] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Marco A. Zarbin
- Institute of Ophthalmology and Visual Science, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | - Carlo Montemagno
- College of Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - James F. Leary
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN Purdue University, School of Veterinary Medicine, West Lafayette, IN, USA
| | - Robert Ritch
- Einhorn Clinical Research Center, New York Eye & Ear Infirmary, New York, NY, USA
| |
Collapse
|
32
|
Nanotechnology and nanotoxicology in retinopathy. Int J Mol Sci 2011; 12:8288-301. [PMID: 22174664 PMCID: PMC3233470 DOI: 10.3390/ijms12118288] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 11/21/2011] [Accepted: 11/21/2011] [Indexed: 12/23/2022] Open
Abstract
Nanoparticles are nanometer-scaled particles, and can be utilized in the form of nanocapsules, nanoconjugates, or nanoparticles themselves for the treatment of retinopathy, including angiogensis-related blindness, retinal degeneration, and uveitis. They are thought to improve the bioavailability in the retina and the permeability of therapeutic molecules across the barriers of the eye, such as the cornea, conjunctiva, and especially, blood-retinal barriers (BRBs). However, consisting of multiple neuronal cells, the retina can be the target of neuronal toxicity of nanoparticles, in common with the central and peripheral nervous system. Furthermore, the ability of nanoparticles to pass through the BRBs might increase the possibility of toxicity, simultaneously promoting distribution in the retinal layers. In this regard, we discussed nanotechnology and nanotoxicology in the treatment of retinopathy.
Collapse
|
33
|
|
34
|
Ring-opening metathesis polymerization of steroid-conjugated norbornenes and gradual release of estrone from a polymer film. REACT FUNCT POLYM 2010. [DOI: 10.1016/j.reactfunctpolym.2010.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Jătariu AN, Popa M, Peptu CA. Different particulate systems--bypass the biological barriers? J Drug Target 2010; 18:243-53. [PMID: 19883240 DOI: 10.3109/10611860903398099] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The human body has adapted to defend against the aggressive biological or chemical agents. As a result, the defence mechanisms of the human body became barriers for the drug delivery. Theoretically, any problem that prevents a drug from reaching its site of action is considered to be a barrier to drug delivery. The aim of this article is to discuss the possibility of three types of nanocarriers (nanoparticles, liposomes, and solid lipid nanoparticles) to help the drugs to pass some important biological barriers (blood-brain barriers, skin, eye, and tumors) using different strategies/designs of drug delivery systems.
Collapse
Affiliation(s)
- Anca N Jătariu
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environmental Protection, Technical University Gheorghe Asachi from Iasi, Iasi, Romania
| | | | | |
Collapse
|
36
|
Zolnik BS, González-Fernández A, Sadrieh N, Dobrovolskaia MA. Nanoparticles and the immune system. Endocrinology 2010; 151:458-65. [PMID: 20016026 PMCID: PMC2817614 DOI: 10.1210/en.2009-1082] [Citation(s) in RCA: 565] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 11/19/2009] [Indexed: 11/19/2022]
Abstract
Today nanotechnology is finding growing applications in industry, biology, and medicine. The clear benefits of using nanosized products in various biological and medical applications are often challenged by concerns about the lack of adequate data regarding their toxicity. One area of interest involves the interactions between nanoparticles and the components of the immune system. Nanoparticles can be engineered to either avoid immune system recognition or specifically inhibit or enhance the immune responses. We review herein reported observations on nanoparticle-mediated immunostimulation and immunosuppression, focusing on possible theories regarding how manipulation of particle physicochemical properties can influence their interaction with immune cells to attain desirable immunomodulation and avoid undesirable immunotoxicity.
Collapse
Affiliation(s)
- Banu S Zolnik
- Center for Drug Evaluation and Research, Office of Pharmaceutical Science, Food and Drug Administration, Silver Spring, Maryland 20993, USA
| | | | | | | |
Collapse
|
37
|
Prow TW. Toxicity of nanomaterials to the eye. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2009; 2:317-33. [DOI: 10.1002/wnan.65] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
38
|
Ulbrich W, Lamprecht A. Targeted drug-delivery approaches by nanoparticulate carriers in the therapy of inflammatory diseases. J R Soc Interface 2009; 7 Suppl 1:S55-66. [PMID: 19940000 DOI: 10.1098/rsif.2009.0285.focus] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Limitations in therapy induced by adverse effects due to unselective drug availability and therefore the use of potentially too high doses are a common problem. One prominent example for this dilemma are inflammatory diseases. Colloidal carriers allow one to improve delivery of drugs to the site of action and appear promising to overcome this general therapeutic drawback. Specific uptake of nanoparticles by immune-related cells in inflamed barriers offers selective drug targeting to the inflamed tissue. Here we focus on nanocarrier-based drug delivery strategies for the treatment of common inflammatory disorders like rheumatoid arthritis, multiple sclerosis, uveitis or inflammatory bowel disease.
Collapse
Affiliation(s)
- Wiebke Ulbrich
- Laboratory of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Bonn, Germany
| | | |
Collapse
|
39
|
Matsuo Y, Ishihara T, Ishizaki J, Miyamoto KI, Higaki M, Yamashita N. Effect of betamethasone phosphate loaded polymeric nanoparticles on a murine asthma model. Cell Immunol 2009; 260:33-8. [PMID: 19716124 DOI: 10.1016/j.cellimm.2009.07.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 07/29/2009] [Accepted: 07/30/2009] [Indexed: 10/20/2022]
Abstract
Although inhaled steroids are the treatment of first choice to control asthma, administration of systemic steroids is required for treatment of asthmatic exacerbation and intractable asthma. To improve efficacy and reduce side effects, we examine the effects of betamethasone disodium phosphate (BP) encapsulated in biocompatible, biodegradable blended nanoparticles (stealth nanosteroids) on a murine model of asthma. These stealth nanosteroids were found to accumulate at the site of airway inflammation and exhibit anti-inflammatory activity. Significant decreases in BALF eosinophil number were maintained for 7 days with a single injection of nanosteroids containing 40 microg BP. Airway responsiveness was also attenuated by the injection of stealth nanosteroids. A single injection of 40 microg of free BP and 8 microg of free BP once daily for 5 days did not show any significant effects. We conclude that stealth nanosteroids achieve prolonged and higher benefits at the site of airway inflammation compared to free steroids.
Collapse
Affiliation(s)
- Yukiko Matsuo
- Graduate School of Natural Science and Technology, Kanazawa University, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Kohno H, Sakai T, Tsuneoka H, Imanishi K, Saito S. Staphylococcal enterotoxin B is involved in aggravation and recurrence of murine experimental autoimmune uveoretinitis via Vbeta8+CD4+ T cells. Exp Eye Res 2009; 89:486-93. [PMID: 19523946 DOI: 10.1016/j.exer.2009.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 04/25/2009] [Accepted: 05/11/2009] [Indexed: 10/20/2022]
Abstract
Endogenous uveitis is a common cause of visual disability and blindness. The etiology of uveitis remains largely unknown but reasonable etiologic factors include infections. Superantigens are regarded as one of the leading causes of infectious etiology in autoimmune disease. However, the role of superantigens in uveitis remains unclear. In the present study, we investigated the effect of Staphylococcal enterotoxin B (SEB), a member of the superantigens, using an experimental model of autoimmune uveoretinitis (EAU). C57BL/6 mice were immunized with human interphotoreceptor retinoid binding protein (IRBP) peptide, and the severity of EAU disease was scored. Vehicle (PBS) alone or SEB dissolved in PBS was administered by intravenous injection on post-immunization day 10 or on post-immunization day 24. In addition, a systemic immune response study was performed to address the effects of SEB on systemic immunity. EAU was aggravated significantly by the injection of SEB at post-immunization day 10. Furthermore, relapse was induced by the injection of SEB at day 24. On the other hand, SEB injection without IRBP peptide immunization elicited no inflammatory changes in the uvea or retina. Furthermore, SEB enhanced not only the IRBP-specific T-cell proliferative responses but also IFN-gamma and IL-17 production. Moreover, the intraocular expression levels of these cytokines was also enhanced by SEB injection. Both anti-CD4 and -Vbeta8 Ab administration suppressed disease aggravation and the enhancement of IRBP-specific T-cell responses caused by SEB. These results suggest that SEB is involved significantly in the aggravation or recurrence of endogenous uveitis through activation of autoreactive uveitogenic T cells.
Collapse
Affiliation(s)
- Hideo Kohno
- Department of Ophthalmology, Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | | | | | | | | |
Collapse
|
41
|
Ishihara T, Kubota T, Choi T, Takahashi M, Ayano E, Kanazawa H, Higaki M. Polymeric nanoparticles encapsulating betamethasone phosphate with different release profiles and stealthiness. Int J Pharm 2009; 375:148-54. [PMID: 19481700 DOI: 10.1016/j.ijpharm.2009.04.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 03/18/2009] [Accepted: 04/02/2009] [Indexed: 10/20/2022]
Abstract
The purpose of this study was to engineer nanoparticles with various sustained profiles of drug release and prolonged circulation by blending poly(D,L-lactic acid)/poly(D,L-lactic/glycolic acid) (PLA/PLGA) homopolymers and poly(ethylene glycol) (PEG)-block-PLA/PLGA copolymers encapsulating betamethasone disodium 21-phosphate (BP). Nanoparticles of different sizes, drug encapsulation/release profiles, and cellular uptake levels were obtained by mixing homopolymers and block copolymers with different compositions/molecular weights at various blend ratios by an oil-in-water solvent diffusion method. The in vitro release of BP increased with nanoparticles of smaller size or of PLGA homopolymers instead of PLA homopolymers. Furthermore, the uptake of nanoparticles by macrophage-like cells decreased with nanoparticles of higher PEG content, and nanoparticles of PEG-PLGA block copolymers were taken up earlier than those of PEG-PLA block copolymers after incubation with serum. In addition, prolonged blood circulation was observed with nanoparticles of smaller size with higher PEG content, and nanoparticles of PEG-PLA block copolymers remained longer in circulation than those of PEG-PLGA block copolymers. Analysis of BP concentration in organs revealed reduced liver distribution of blended nanoparticles compared with PLA nanoparticles. This is the first study to systematically design and characterize biodegradable PLA/PLGA and PEG-PLA/PLGA-blended nanoparticles encapsulating BP with different release profiles and stealthiness.
Collapse
Affiliation(s)
- Tsutomu Ishihara
- Institute of Drug Delivery Systems, Research Center for Medical Sciences, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Ishihara T, Kubota T, Choi T, Higaki M. Treatment of Experimental Arthritis with Stealth-Type Polymeric Nanoparticles Encapsulating Betamethasone Phosphate. J Pharmacol Exp Ther 2009; 329:412-7. [DOI: 10.1124/jpet.108.150276] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
43
|
Higaki M. Recent development of nanomedicine for the treatment of inflammatory diseases. Inflamm Regen 2009. [DOI: 10.2492/inflammregen.29.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
44
|
Kohno H, Sakai T, Saito S, Okano K, Kitahara K. Treatment of experimental autoimmune uveoretinitis with atorvastatin and lovastatin. Exp Eye Res 2007; 84:569-76. [PMID: 17208229 DOI: 10.1016/j.exer.2006.11.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 11/13/2006] [Accepted: 11/20/2006] [Indexed: 10/23/2022]
Abstract
Statins, which are 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, are approved for cholesterol reduction and are commonly used to treat atherosclerosis and coronary artery disease. Statins may also be potent immunomodulatory agents and may be beneficial in the treatment of autoimmune diseases. In this study, we investigated therapeutic effects of atorvastatin and lovastatin on experimental autoimmune uveoretinitis (EAU). EAU was induced in Lewis rats using bovine S-antigen (S-Ag) peptide. Atorvastatin was suspended in 0.5% aqueous methylcellulose and was administered orally at a dose of 10 mg/kg and at a low-dose of 1 mg/kg. Lovastatin was dissolved in DMSO:PBS (1:1) and was administered by intraperitoneal (i.p.) injection at a dose of 2 mg/kg. Both statin treatments were initiated after the clinical onset once daily for 14 days. The rats were examined every other day for clinical signs of EAU. The histological scores and delayed-type hypersensitivity (DTH) were evaluated on day 28 post-immunization. Morphologic and immunohistochemical examinations were performed with light and confocal microscopy, respectively. Lymphocyte proliferation was measured by [(3)H]thymidine incorporation into antigen-stimulated T cells from inguinal lymph nodes. After 72 h, supernatants were collected and assayed for IFN-gamma by ELISA. Clinical and histological scores of EAU were decreased in both the atorvastatin (10 mg/kg)- and lovastatin (2 mg/kg)-treated groups. The invasion of T cells and macrophages, and Müller cell proliferation, were inhibited in both atorvastatin- and lovastatin-treated groups. DTH was significantly inhibited in both groups, compared with vehicle-treated groups (controls). Lymphocyte proliferation assay demonstrated decreased proliferation in the presence of 25 microg/ml S-Ag peptide in both groups, compared with controls. In the supernatants of lymph node cells stimulated with S-Ag peptide (5 microg/ml), 77 or 87% inhibition of IFN-gamma production was observed in rats treated with atorvastatin or lovastatin, respectively, compared with controls. The current results indicate that atorvastatin administrated orally following the clinical onset has therapeutic effect in EAU as well as lovastatin administrated intraperitoneally. Statins may be useful for treating intraocular inflammation.
Collapse
Affiliation(s)
- Hideo Kohno
- Department of Ophthalmology, Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| | | | | | | | | |
Collapse
|
45
|
Abstract
Sensorineural hearing loss is one of the most common disabilities in our society. Experimentally, many candidates for therapeutic molecules have been discovered. However, the lack of safe and effective methods for drug delivery to the cochlea has been a considerable obstacle to clinical application. Local application of therapeutic molecules into the cochlea has been used in clinic and in animal experiments. Advances in pharmacological technology provide various drug delivery systems via biomaterials, which can be utilized for local drug delivery to the cochlea. Recent studies in the field of otology have demonstrated the potential of synthetic and natural biomaterials for local drug delivery to the cochlea. Although problems still remain to be resolved for clinical application, introduction into clinical practice of these controlled-release systems may be reasonable because of their certain advantages over previous methods.
Collapse
Affiliation(s)
- Takayuki Nakagawa
- Department of Otolaryngology-Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | | |
Collapse
|
46
|
Bibliography. Current world literature. Neuro-ophthalmology. Curr Opin Ophthalmol 2006; 17:574-5. [PMID: 17065928 DOI: 10.1097/icu.0b013e32801121a1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|