1
|
Lee YP, Chung TY, Hyon JY, Shin YJ. Xenotransplantation of Cultured Human Corneal Endothelial Cell Sheets. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2018. [DOI: 10.3341/jkos.2018.59.6.497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yoon Pyo Lee
- Department of Ophthalmology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Tae-Young Chung
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Joon Young Hyon
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Young Joo Shin
- Department of Ophthalmology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| |
Collapse
|
2
|
Kim E, Yoon SY, Shin YJ. Oxidative Stress in Cornea. OXIDATIVE STRESS IN APPLIED BASIC RESEARCH AND CLINICAL PRACTICE 2015. [DOI: 10.1007/978-1-4939-1935-2_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
3
|
Wang L, Li H, Yang S. Role of oxygen free radicals in the proliferation of myofibroblasts induced by AngII. Acta Pharm Sin B 2013. [DOI: 10.1016/j.apsb.2012.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
4
|
Dittmar R, Potier E, van Zandvoort M, Ito K. Assessment of cell viability in three-dimensional scaffolds using cellular auto-fluorescence. Tissue Eng Part C Methods 2011; 18:198-204. [PMID: 21981657 DOI: 10.1089/ten.tec.2011.0334] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
After assessing cell viability (CV), tissue-engineered constructs are often discarded, as current CV assays commonly require specific (fluorescent) dyes to stain cells and may need scaffold/tissue digestion before quantifying the live and dead cells. Here, we demonstrate and evaluate how cellular auto-fluorescence can be exploited to facilitate a noninvasive CV estimation in three-dimensional scaffolds using two advanced microscopy methods. Mixtures of live and dead C2C12 myoblasts (0%, 25%, 50%, 75%, and 100% live cells) were prepared, and CV was determined before seeding cells into collagen carriers using the trypan blue (TB) assay. Cell-seeded collagen gels ([CSCGs], n=5/cell mixture) were produced by mixing collagen solution with the live/dead cell mixtures (7×10(6) cells/mL). After polymerization, two-photon microscopy (TPM) and confocal microscopy images of the CSCG were acquired (n=30 images/CSCG). It was found that live and dead cells systematically emit auto-fluorescent light with different spectral characteristics. Viable cells showed predominantly blue fluorescence with a peak emission around 470 nm, whereas dead cells appeared to mainly emit green fluorescent light with a peak intensity around 560 nm. For TPM, live and dead cells were distinguished spectrally. For confocal images, the intensity ratio of images taken with band-pass filters was used to distinguish live from dead cells. CV values obtained with both TPM and confocal imaging did not significantly differ from those acquired with the established TB method. In comparison to TPM, confocal microscopy was found to be less accurate in assessing the exact CV in constructs containing mostly live or dead cells. In summary, monitoring cellular auto-fluorescence using advanced microscopy techniques allows CV assessment requiring no additional dyes and/or scaffold digestion and, thus, may be especially suitable for tissue-engineering studies where CV is measured at multiple time points.
Collapse
Affiliation(s)
- Roman Dittmar
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | | | | |
Collapse
|
5
|
Field MG, Yang D, Bian ZM, Petty HR, Elner VM. Retinal flavoprotein fluorescence correlates with mitochondrial stress, apoptosis, and chemokine expression. Exp Eye Res 2011; 93:548-55. [PMID: 21767533 PMCID: PMC3206137 DOI: 10.1016/j.exer.2011.06.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 06/16/2011] [Accepted: 06/28/2011] [Indexed: 12/31/2022]
Abstract
Oxidative stress and mitochondrial dysfunction occur before apoptosis in many retinal diseases. Under these conditions, a larger fraction of flavoproteins become oxidized and, when excited by blue-light, emit green flavoprotein fluorescence (FPF). In this study, we evaluated the utility of FPF as an early indicator of mitochondrial stress, pre-apoptotic cellular instability, and apoptosis of human retinal pigment epithelial (HRPE) cells subjected to hydrogen peroxide (H(2)O(2)) or monocytes (unstimulated or interferon-γ-stimulated) in vitro and of freshly-isolated pieces of human and rat neural retina subjected to H(2)O(2)ex vivo. Increased FPF of HRPE cells exposed to H(2)O(2) correlated with reduced mitochondrial membrane potential (ΔΨm) and increased apoptosis in a time- and dose-dependent manner. HRPE cells co-cultured with monocytes had increased FPF that correlated in a time-dependent manner with reduced ΔΨm, increased apoptosis, and early expression of pro-inflammatory chemokines, interleukin-8 (IL8) and monocyte chemotactic factor-1 (MCP1), which are known to be induced by oxidative stress. Increased FPF, reduced ΔΨm, and upregulation of IL8 and MCP1 occurred as early as 1-2 h after exposure to stressors, while apoptosis did not occur in HRPE cells until later time points. The antioxidant, N-acetyl-cysteine (NAC), inhibited increased FPF and apoptosis of HRPE cells subjected to H(2)O(2). Increased FPF of human and rat neural retina also correlated with increased apoptosis. This study suggests that FPF is a useful measure of mitochondrial function in retinal cells and tissues and can detect early mitochondrial dysfunction that may precede apoptosis.
Collapse
Affiliation(s)
- Matthew G. Field
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan
| | - Dongli Yang
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan
| | - Zong-Mei Bian
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan
| | - Howard R. Petty
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan
| | - Victor M. Elner
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
6
|
Applications of multiphoton tomographs and femtosecond laser nanoprocessing microscopes in drug delivery research. Adv Drug Deliv Rev 2011; 63:388-404. [PMID: 21514335 DOI: 10.1016/j.addr.2011.03.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 02/12/2011] [Accepted: 03/02/2011] [Indexed: 02/05/2023]
Abstract
Multiphoton tomography for in vivo high-resolution multidimensional imaging has been used in clinical investigations and small animal studies. The novel femtosecond laser tomographs have been employed to detect cosmetics and pharmaceutical components in situ as well as to study the interaction of drugs with intratissue cells and the extracellular matrix under physiological conditions. Applications include the intra-tissue accumulation of sunscreen nanoparticles in humans, the monitoring the metabolic status of patients with dermatitis, the biosynthesis of collagen after administration of anti-aging products, and the detection of porphyrins after application of 5-aminolevulinic acid. More than 2000 patients and volunteers in Europe, Australia, and Asia have been investigated with these unique tomographs. In addition, femtosecond laser nanoprocessing microscopes have been employed for targeted delivery and deposition in body organs, optical transfection and optical cleaning of stem cells, as well as for the optical transfer of molecular beacons to track microRNAs. These diverse applications highlight the capacity for multiphoton tomography and femtosecond laser nanoprocessing tools to advance drug delivery research.
Collapse
|
7
|
Hwang YJ, Kolettis N, Yang M, Gillard ER, Sanchez E, Sun CH, Tromberg BJ, Krasieva TB, Lyubovitsky JG. Multiphoton imaging of actin filament formation and mitochondrial energetics of human ACBT gliomas. Photochem Photobiol 2011; 87:408-17. [PMID: 21143483 DOI: 10.1111/j.1751-1097.2010.00873.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We studied the three-dimensional (3D) distribution of actin filaments and mitochondria in relation to ACBT glioblastoma cells migration. We embedded the cells in the spheroid form within collagen hydrogels and imaged them by in situ multiphoton microscopy (MPM). The static 3D overlay of the distribution of actin filaments and mitochondria provided a greater understanding of cell-to-cell and cell-to-substrate interactions and morphology. While imaging mitochondria to obtain ratiometric redox index based on cellular fluorescence from reduced nicotinamide adenine dinucleotide and oxidized flavin adenine dinucleotide we observed differential sensitivity of the migrating ACBT glioblastoma cells to femtosecond laser irradiation employed in MPM. We imaged actin-green fluorescent protein fluorescence in live ACBT glioma cells and for the first time observed dynamic modulation of the pools of actin during migration in 3D. The MPM imaging, which probes cells directly within the 3D cancer models, could potentially aid in working out a link between the functional performance of mitochondria, actin distribution and cancer invasiveness.
Collapse
Affiliation(s)
- Yu-Jer Hwang
- Cell Molecular and Developmental Biology Program, University of California, Riverside, Riverside, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Nishi Y, Engler C, Na DR, Kashiwabuchi RT, Shin YJ, Cano M, Jun AS, Chuck RS. Evaluation of phacoemulsification-induced oxidative stress and damage of cultured human corneal endothelial cells in different solutions using redox fluorometry microscopy. Acta Ophthalmol 2010; 88:e323-7. [PMID: 21070614 DOI: 10.1111/j.1755-3768.2010.02024.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE To describe the basic concept of redox fluorometry microscopy and investigate its efficacy in evaluating the state of cultured human corneal endothelial cells in different solutions when ultrasonic energy was applied in vitro. METHODS Human corneal endothelial cells from human donor tissue not suitable for transplantation were cultured. A phacoemulsification probe with a 30° round, 1.1-mm TurboSonics(®) ABS™ Tip (Alcon, Fort Worth, Texas) was introduced into culture dishes filled with balanced salt solution (BSS) and BSS plus (Alcon, Fort Worth, Texas). Cellular autofluorescence images were obtained using a Zeiss inverted microscope. The redox fluorometric ratio, which can be related to cellular metabolism, mitochondrial distribution patterns, which can shift in reaction to environmental changes, and cell size were analysed with a software program. RESULTS Human corneal endothelial cells exposed to increasing phacoemulsification times and ultrasonic energy displayed dose-dependent decreases in redox ratios. At a lower ultrasonic power and time, BSS plus showed significantly less change in redox ratio than BSS and control (p < 0.05, Mann-Whitney test). As ultrasonic power and time increased, BSS plus had no more significance. CONCLUSION Redox fluorometry, with further technological improvement, might be an interesting and potentially useful tool for evaluation of phacoemulsification-induced corneal endothelial damage and screening of protective agents in vitro.
Collapse
Affiliation(s)
- Yutaro Nishi
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Shin YJ, Tata DB, Waynant RW, Gehlbach PL, Chuck RS. Fluorometric Determination of the Redox State and Distribution of Mitochondria in Human Malignant Glioblastoma Cells Grown on Different Culturing Substrates. Photomed Laser Surg 2010; 28 Suppl 1:S105-10. [DOI: 10.1089/pho.2009.2600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Young Joo Shin
- Department of Ophthalmology, Hallym University Gangnam Sacred Heart Hospital, Seoul, Korea
| | - Darrell B. Tata
- Food and Drug Administration, OSEL, Division of Physics, Silver Spring, Maryland
| | - Ronald W. Waynant
- Food and Drug Administration, OSEL, Division of Physics, Silver Spring, Maryland
| | - Peter L. Gehlbach
- Department of Ophthalmology, Johns Hopkins University, Baltimore, Maryland
| | - Roy S. Chuck
- Albert Einstein College of Medicine of Yeshiva University and Montefiore Medical Center, Bronx, New York
| |
Collapse
|
10
|
Spoden GA, Rostek U, Lechner S, Mitterberger M, Mazurek S, Zwerschke W. Pyruvate kinase isoenzyme M2 is a glycolytic sensor differentially regulating cell proliferation, cell size and apoptotic cell death dependent on glucose supply. Exp Cell Res 2009; 315:2765-74. [PMID: 19563799 DOI: 10.1016/j.yexcr.2009.06.024] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 05/29/2009] [Accepted: 06/22/2009] [Indexed: 11/19/2022]
Abstract
The glycolytic key regulator pyruvate kinase M2 (M2-PK or PKM2) can switch between a highly active tetrameric and an inactive dimeric form. The transition between the two conformations regulates the glycolytic flux in tumor cells. We developed specific M2-PK-binding peptide aptamers which inhibit M2-PK, but not the 96% homologous M1-PK isoenzyme. In this study we demonstrate that, at normal blood glucose concentrations, peptide aptamer-mediated inhibition of M2-PK induces a significant decrease of the population doubling (PDL rate) and cell proliferation rate as well as an increase in cell size, whereas under glucose restriction an increase in PDL and cell proliferation rates but a decrease in cell size was observed. Moreover, M2-PK inhibition rescues cells from glucose starvation-induced apoptotic cell death by increasing the metabolic activity. These findings suggest that M2-PK is a metabolic sensor which regulates cell proliferation, cell growth and apoptotic cell death in a glucose supply-dependent manner.
Collapse
Affiliation(s)
- Gilles A Spoden
- Department of Cell Metabolism and Differentiation, Institute for Biomedical Aging Research of the Austrian Academy of Sciences, Rennweg 10, 6020 Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
11
|
Ramey NA, Park CY, Gehlbach PL, Chuck RS. Imaging Mitochondria in Living Corneal Endothelial Cells Using Autofluorescence Microscopy. Photochem Photobiol 2007; 83:1325-9. [DOI: 10.1111/j.1751-1097.2007.00162.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|