1
|
Cuartero-Martínez A, García-Otero X, Codesido J, Gómez-Lado N, Mateos J, Bravo SB, Rodríguez-Fernández CA, González-Barcia M, Aguiar P, Ortega-Hortas M, Otero-Espinar FJ, Fernández-Ferreiro A. Preclinical characterization of endotoxin-induced uveitis models using OCT, PET/CT and proteomics. Int J Pharm 2024; 662:124516. [PMID: 39067549 DOI: 10.1016/j.ijpharm.2024.124516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Uveitis is a group of inflammatory ocular pathologies. Endotoxin-Induced Uveitis (EIU) model represent a well-known model induced by administration of Lipopolysaccharide (LPS). The aim is to characterize two models of EIU through two routes of administration with novel noninvasive imaging techniques. 29 rats underwent Intraocular Pressure (IOP) measurements, Optical Coherence Tomography (OCT), proteomic analysis, and Positron Emission Tomography and Computed Tomography (PET/CT). Groups included healthy controls (C), BSS administered controls (Ci), systemically induced EIU with LPS (LPSs), and intravitreally induced EIU with LPS (LPSi) for IOP, OCT, and proteomic studies. For 18F-FDG PET/CT study, animals were divided into FDG-C, FDG-LPSs and FDG-LPSi groups and scanned using a preclinical PET/CT system. LPSi animals exhibited higher IOP post-induction compared to C and LPSs groups. LPSi showed increased cellular infiltrate, fibrotic membranes, and iris inflammation. Proinflammatory proteins were more expressed in EIU models, especially LPSi. PET/CT indicated higher eye uptake in induced models compared to FDG-C. FDG-LPSi showed higher eye uptake than FDG-LPSs but systemic uptake was higher in FDG-LPSs due to generalized inflammation. OCT is valuable for anterior segment assessment in experimental models. 18F-FDG PET/CT shows promise as a noninvasive biomarker for ocular inflammatory diseases. Intravitreal induction leads to higher ocular inflammation. These findings offer insights for future inflammatory disease research and drug studies.
Collapse
Affiliation(s)
- Andrea Cuartero-Martínez
- FarmaChusLab Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain.
| | - Xurxo García-Otero
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; Molecular Imaging Biomarkers and Theragnosis Lab, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain; Nuclear Medicine Service and Molecular Imaging Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain.
| | - Jessica Codesido
- FarmaChusLab Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; Molecular Imaging Biomarkers and Theragnosis Lab, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain.
| | - Noemí Gómez-Lado
- Molecular Imaging Biomarkers and Theragnosis Lab, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain; Nuclear Medicine Service and Molecular Imaging Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain.
| | - Jesús Mateos
- FarmaChusLab Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain.
| | - Susana B Bravo
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), 1570f Santiago de Compostela, Spain.
| | - Carmen Antía Rodríguez-Fernández
- FarmaChusLab Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain; Ophthalmology Department, Vall d'Hebron University Hospital, 08035 Barcelona, Spain
| | - Miguel González-Barcia
- FarmaChusLab Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain.
| | - Pablo Aguiar
- Molecular Imaging Biomarkers and Theragnosis Lab, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain; Nuclear Medicine Service and Molecular Imaging Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain.
| | - Marcos Ortega-Hortas
- VARPA Group, INIBIC. Research Center CITIC, University of A Coruña, 15071 A Coruña, Spain.
| | - Francisco J Otero-Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; Paraquasil Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; Institute of Materials (iMATUS), University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain.
| | - Anxo Fernández-Ferreiro
- FarmaChusLab Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain.
| |
Collapse
|
2
|
Li B, Zhang M, Chen S, Zhao C, Li X, Zhang X. Small extracellular vesicle-based delivery of interleukin-10 improves treatment of experimental autoimmune uveitis. Exp Eye Res 2024; 244:109936. [PMID: 38763351 DOI: 10.1016/j.exer.2024.109936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/05/2024] [Accepted: 05/17/2024] [Indexed: 05/21/2024]
Abstract
Non-infectious uveitis is an intraocular autoimmune disease mainly characterized by immune dysregulation of the eye, which may cause blindness if not well treated. Interleukin 10 (IL-10) is a potent cytokine with multiple immunoregulatory functions. However, it's in vivo activity is unstable owing to its inherent protein instability and short plasma half-life. Therefore, our previous research tried to establish IL-10-overexpressing MSC-sEVs (sEVs-IL10) using lentiviral transfection. While this approach indeed improved drug delivery, it also suffered from tedious procedures and limited loading efficiency. Accordingly, we constructed a novel MSC-sEVs-based delivery system for IL-10 (IL-10@sEVs) by sonication. The obtained formulation (IL-10@sEVs) had relatively higher loading efficiency and exerted a more profound immunomodulatory effect than sEVs-IL10 in vitro. Furthermore, IL-10@sEVs had significant therapeutic effects in a mouse model of experimental autoimmune uveitis (EAU) by decreasing the percentage of Th17 cells, increasing regulatory T cells in the eye, and draining lymph nodes. In summary, sonication outperforms conventional transfection methods for loading IL-10 into MSC-sEVs.
Collapse
Affiliation(s)
- Baiyi Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Mi Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Shuang Chen
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Chuan Zhao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
| |
Collapse
|
3
|
Duan Y, Chen X, Shao H, Li Y, Zhang Z, Li H, Zhao C, Xiao H, Wang J, Zhang X. Enhanced immunosuppressive capability of mesenchymal stem cell-derived small extracellular vesicles with high expression of CD73 in experimental autoimmune uveitis. Stem Cell Res Ther 2024; 15:149. [PMID: 38783393 PMCID: PMC11118760 DOI: 10.1186/s13287-024-03764-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Autoimmune uveitis is an inflammatory disease triggered by an aberrant immune response. Mesenchymal stem cell-derived small extracellular vesicles (MSC-sEVs) are emerging as potential therapeutic agents for this condition. CD73, an ectoenzyme present on MSC-sEVs, is involved in mitigating inflammation by converting extracellular adenosine monophosphate into adenosine. We hypothesize that the inhibitory effect of MSC-sEVs on experimental autoimmune uveitis (EAU) could be partially attributed to the surface expression of CD73. METHODS To investigate novel therapeutic approaches for autoimmune uveitis, we performed lentiviral transduction to overexpress CD73 on the surface of MSC-sEVs, yielding CD73-enriched MSC-sEVs (sEVs-CD73). Mice with interphotoreceptor retinoid-binding protein (IRBP)-induced EAU were grouped randomly and treated with 50 µg MSC-sEVs, vector infected MSC-sEVs, sEVs-CD73 or PBS via single tail vein injection. We evaluated the clinical and histological features of the induced mice and analyzed the proportion and functional capabilities of T helper cells. Furthermore, T-cells were co-cultured with various MSC-sEVs in vitro, and we quantified the resulting inflammatory response to assess the potential therapeutic benefits of sEVs-CD73. RESULTS Compared to MSC-sEVs, sEVs-CD73 significantly alleviates EAU, leading to reduced inflammation and diminished tissue damage. Treatment with sEVs-CD73 results in a decreased proportion of Th1 cells in the spleen, draining lymph nodes, and eyes, accompanied by an increased proportion of regulatory T-cells (Treg cells). In vitro assays further reveal that sEVs-CD73 inhibits T-cell proliferation, suppresses Th1 cells differentiation, and enhances Treg cells proportion. CONCLUSION Over-expression of CD73 on MSC-sEVs enhances their immunosuppressive effects in EAU, indicating that sEVs-CD73 has the potential as an efficient immunotherapeutic agent for autoimmune uveitis.
Collapse
Affiliation(s)
- Yanan Duan
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xiteng Chen
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Yongtao Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Zhihui Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Huan Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Chuan Zhao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Hong Xiao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Jiawei Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.
| |
Collapse
|
4
|
Kang TK, Le TT, Kwon H, Park G, Kim KA, Ko H, Hong S, Lee WB, Jung SH. Lithospermum erythrorhizon Siebold & Zucc. extract reduces the severity of endotoxin-induced uveitis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155133. [PMID: 37812852 DOI: 10.1016/j.phymed.2023.155133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Uveitis is an inflammatory eye condition that threatens vision, and effective anti-inflammatory treatments with minimal side effects are necessary to treat uveitis. PURPOSE This study aimed to investigate the effects of Lithospermum erythrorhizon Siebold & Zucc. against endotoxin-induced uveitis in rat and mouse models. METHODS Endotoxin-induced uveitis models of rats and mice were used to evaluate the effects of l. erythrorhizon treatment. Clinical inflammation scores and retinal thickness were assessed in the extract of l. erythrorhizon-treated rats. Histopathological examination revealed inflammatory cell infiltration into the ciliary body. Protein concentration, cellular infiltration, and prostaglandin-E2 levels were measured in the aqueous humor of the extract of l. erythrorhizon-treated rats. Protective effects of l. erythrorhizon on the anterior segment of the eye were examined in mice with endotoxin-induced uveitis. Additionally, we investigated the effect of l. erythrorhizon on the expression of pro-inflammatory cytokines [tumor necrosis factor alpha, interleukin-6, and interleukin-8] in lipopolysaccharide-stimulated THP1 human macrophages and examined the involvement of nuclear factor kappaB/activator protein 1 and interferon regulatory factor signaling pathways. Furthermore, three components of l. erythrorhizon were identified and assessed for their inhibitory effects on LPS-induced inflammation in RAW264.7 macrophage cells. RESULTS Treatment of the extract of l. erythrorhizon significantly reduced clinical inflammation scores and retinal thickening in rats with endotoxin-induced uveitis. Histopathological examination revealed decreased inflammatory cell infiltration into the ciliary body. The extract of l. erythrorhizon effectively reduced the protein concentration, cellular infiltration, and PG-E2 levels in the aqueous humor of rats with endotoxin-induced uveitis. In mice with endotoxin-induced uveitis, the extract of l. erythrorhizon demonstrated a protective effect on the anterior segment of the eye by reducing inflammation and retinal thickening. The extract of l. erythrorhizon suppressed the expression of pro-inflammatory cytokines (tumor necrosis factor alpha, interleukin-6, and interleukin-8) in lipopolysaccharide-induced inflammation in THP1 human macrophages, by modulating nuclear factor kappaB/activator protein 1 and interferon regulatory factor signaling pathways. Moreover, shikonin, acetylshikonin, and β, β-dimethylacryloylshikonin showed dose-dependent inhibition of nitric oxide, tumor necrosis factor alpha and interleukin-6 production in RAW264.7 macrophage cells. CONCLUSION The extract of l. erythrorhizon is a potential therapeutic agent for uveitis management. Administration of the extract of l. erythrorhizon led to reduced inflammation, retinal thickening, and inflammatory cell infiltration in rat and mouse models of uveitis. The compounds (shikonin, acetylshikonin, and β, β-dimethylacryloylshikonin) identified in this study played crucial roles in mediating the anti-inflammatory effects of l. erythrorhizon. These findings indicate that the extract of l. erythrorhizon and its constituent compounds are promising candidates for further research and development of novel treatment modalities for uveitis.
Collapse
Affiliation(s)
- Tae Kyeom Kang
- Natural Product Research Center, Korea Institute of Science & Technology, Gangneung 25451, Republic of Korea
| | - Tam Thi Le
- Natural Product Research Center, Korea Institute of Science & Technology, Gangneung 25451, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Gangneung 25451, Republic of Korea
| | - Hyukjoon Kwon
- Natural Product Research Center, Korea Institute of Science & Technology, Gangneung 25451, Republic of Korea
| | - Geon Park
- Natural Product Research Center, Korea Institute of Science & Technology, Gangneung 25451, Republic of Korea
| | - Kyung-A Kim
- Division of Medical Oncology, Department of Internal Medicine, Graduate School of Medical Science Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyejin Ko
- Natural Product Research Center, Korea Institute of Science & Technology, Gangneung 25451, Republic of Korea
| | - Suhee Hong
- Department of Aquatic Life Medicine, Gangneung-Wonju National University, Gangneung, 25457, Republic of Korea
| | - Wook-Bin Lee
- Natural Product Research Center, Korea Institute of Science & Technology, Gangneung 25451, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Gangneung 25451, Republic of Korea.
| | - Sang Hoon Jung
- Natural Product Research Center, Korea Institute of Science & Technology, Gangneung 25451, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Gangneung 25451, Republic of Korea.
| |
Collapse
|
5
|
Li H, Zhang Z, Li Y, Su L, Duan Y, Zhang H, An J, Ni T, Li X, Zhang X. Therapeutic Effect of Rapamycin-Loaded Small Extracellular Vesicles Derived from Mesenchymal Stem Cells on Experimental Autoimmune Uveitis. Front Immunol 2022; 13:864956. [PMID: 35422798 PMCID: PMC9002107 DOI: 10.3389/fimmu.2022.864956] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Autoimmune uveitis is a major cause of vision loss and glucocorticoids are major traditional medications, which may induce serious complications. Rapamycin has been demonstrated to exhibit immunosuppressive effects and is promising to be used in treating uveitis by intravitreal injection. However, repeated and frequent intravitreal injections increase the risk of severe ocular complications, while the efficacy of subconjunctival injection of rapamycin is low since it is difficult for rapamycin to penetrate eyeball. Recently, small extracellular vesicles (sEVs) have attracted considerable research interest as natural drug delivery systems that can efficiently cross tissues and biological membranes. SEVs derived from mesenchymal stem cells (MSC-sEVs) also can exert immunosuppressive effect and ameliorate experimental autoimmune uveitis (EAU). The aim of this study was to construct a Rapamycin-loaded MSC-sEVs delivery system (Rapa-sEVs) and investigate its therapeutic effect on EAU by subconjunctival injection. Rapa-sEVs were prepared by sonication and characterized by nanoparticle tracking analysis, transmission electron microscopy, and western blotting. Clinical and histological scores were obtained to assess the treatment efficacy. Additionally, T cell infiltration was evaluated by flow cytometry. The results indicated that Rapa-sEVs could reach the retinal foci after subconjunctival injection. Compared to sEVs and rapamycin alone, Rapa-sEVs can produce a more marked therapeutic effect and reduce ocular inflammatory cell infiltration. Overall, MSC-sEVs have significant potential for the delivery of rapamycin to treat EAU. Subconjunctival injection of Rapa-sEVs may be contender for efficacious steroid-sparing immunomodulatory therapy.
Collapse
Affiliation(s)
- Huan Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Zhihui Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Yongtao Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Lin Su
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Yanan Duan
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Hui Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Jinying An
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Tianwen Ni
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| |
Collapse
|
6
|
Bradley LJ, Ward A, Hsue MCY, Liu J, Copland DA, Dick AD, Nicholson LB. Quantitative Assessment of Experimental Ocular Inflammatory Disease. Front Immunol 2021; 12:630022. [PMID: 34220797 PMCID: PMC8250853 DOI: 10.3389/fimmu.2021.630022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/28/2021] [Indexed: 11/25/2022] Open
Abstract
Ocular inflammation imposes a high medical burden on patients and substantial costs on the health-care systems that mange these often chronic and debilitating diseases. Many clinical phenotypes are recognized and classifying the severity of inflammation in an eye with uveitis is an ongoing challenge. With the widespread application of optical coherence tomography in the clinic has come the impetus for more robust methods to compare disease between different patients and different treatment centers. Models can recapitulate many of the features seen in the clinic, but until recently the quality of imaging available has lagged that applied in humans. In the model experimental autoimmune uveitis (EAU), we highlight three linked clinical states that produce retinal vulnerability to inflammation, all different from healthy tissue, but distinct from each other. Deploying longitudinal, multimodal imaging approaches can be coupled to analysis in the tissue of changes in architecture, cell content and function. This can enrich our understanding of pathology, increase the sensitivity with which the impacts of therapeutic interventions are assessed and address questions of tissue regeneration and repair. Modern image processing, including the application of artificial intelligence, in the context of such models of disease can lay a foundation for new approaches to monitoring tissue health.
Collapse
Affiliation(s)
- Lydia J Bradley
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Amy Ward
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Madeleine C Y Hsue
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Jian Liu
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - David A Copland
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Andrew D Dick
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom.,Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, United Kingdom.,University College London, Institute of Ophthalmology, London, United Kingdom
| | - Lindsay B Nicholson
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
7
|
Ko MK, Shao H, Kaplan HJ, Sun D. Timing Effect of Adenosine-Directed Immunomodulation on Mouse Experimental Autoimmune Uveitis. THE JOURNAL OF IMMUNOLOGY 2021; 207:153-161. [PMID: 34127521 DOI: 10.4049/jimmunol.2100182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/13/2021] [Indexed: 01/09/2023]
Abstract
Adenosine is an important regulatory molecule of the immune response. We have previously reported that treatment of experimental autoimmune uveitis (EAU)-prone mice with an adenosine-degrading enzyme (adenosine deaminase) prohibited EAU development by inhibiting Th17 pathogenic T cell responses. To further validate that the targeting of adenosine or adenosine receptors effectively modulates Th17 responses, we investigated the effect of adenosine receptor antagonists. In this study, we show that the A2AR antagonist SCH 58261 (SCH) effectively modulates aberrant Th17 responses in induced EAU. However, timing of the treatment is important. Whereas SCH inhibits EAU when administered during the active disease stage, it did not do so if administered during quiescent disease stages, thus implying that the existing immune status influences the therapeutic effect. Mechanistic studies showed that inhibition of γδ T cell activation is crucially involved in adenosine-based treatment. Adenosine is an important costimulator of γδ T cell activation, which is essential for promoting Th17 responses. During ongoing disease stages, adenosine synergizes with existing high levels of cytokines, leading to augmented γδ T cell activation and Th17 responses, but in quiescent disease stages, when existing cytokine levels are low, adenosine does not enhance γδ T cell activation. Our results demonstrated that blockade of the synergistic effect between adenosine and inflammatory cytokines at active disease stages can ameliorate high-degree γδ T cell activation and, thus, suppress Th17 pathogenic T cell responses.
Collapse
Affiliation(s)
- Minhee K Ko
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY; and
| | - Henry J Kaplan
- Saint Louis University Eye Institute, Saint Louis University School of Medicine, Saint Louis University, St. Louis, MO
| | - Deming Sun
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA;
| |
Collapse
|
8
|
Cuenca N, Ortuño-Lizarán I, Sánchez-Sáez X, Kutsyr O, Albertos-Arranz H, Fernández-Sánchez L, Martínez-Gil N, Noailles A, López-Garrido JA, López-Gálvez M, Lax P, Maneu V, Pinilla I. Interpretation of OCT and OCTA images from a histological approach: Clinical and experimental implications. Prog Retin Eye Res 2020; 77:100828. [PMID: 31911236 DOI: 10.1016/j.preteyeres.2019.100828] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/16/2019] [Accepted: 12/30/2019] [Indexed: 12/17/2022]
Abstract
Optical coherence tomography (OCT) and OCT angiography (OCTA) have been a technological breakthrough in the diagnosis, treatment, and follow-up of many retinal diseases, thanks to its resolution and its ability to inform of the retinal state in seconds, which gives relevant information about retinal degeneration. In this review, we present an immunohistochemical description of the human and mice retina and we correlate it with the OCT bands in health and pathological conditions. Here, we propose an interpretation of the four outer hyperreflective OCT bands with a correspondence to retinal histology: the first and innermost band as the external limiting membrane (ELM), the second band as the cone ellipsoid zone (EZ), the third band as the outer segment tips phagocytosed by the pigment epithelium (PhaZ), and the fourth band as the mitochondria in the basal portion of the RPE (RPEmitZ). The integrity of these bands would reflect the health of photoreceptors and retinal pigment epithelium. Moreover, we describe how the vascular plexuses vary in different regions of the healthy human and mice retina, using OCTA and immunohistochemistry. In humans, four, three, two or one plexuses can be observed depending on the distance from the fovea. Also, specific structures such as vascular loops in the intermediate capillary plexus, or spider-like structures of interconnected capillaries in the deep capillary plexus are found. In mice, three vascular plexuses occupy the whole retina, except in the most peripheral retina where only two plexuses are found. These morphological issues should be considered when assessing a pathology, as some retinal diseases are associated with structural changes in blood vessels. Therefore, the analysis of OCT bands and OCTA vascular plexuses may be complementary for the diagnosis and prognosis of retinal degenerative processes, useful to assess therapeutic approaches, and it is usually correlated to visual acuity.
Collapse
Affiliation(s)
- Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, Spain; Institute Ramón Margalef, University of Alicante, Alicante, Spain.
| | | | - Xavier Sánchez-Sáez
- Department of Physiology, Genetics and Microbiology, University of Alicante, Spain
| | - Oksana Kutsyr
- Department of Physiology, Genetics and Microbiology, University of Alicante, Spain
| | | | | | - Natalia Martínez-Gil
- Department of Physiology, Genetics and Microbiology, University of Alicante, Spain
| | - Agustina Noailles
- Department of Physiology, Genetics and Microbiology, University of Alicante, Spain
| | | | | | - Pedro Lax
- Department of Physiology, Genetics and Microbiology, University of Alicante, Spain
| | - Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, Spain
| | - Isabel Pinilla
- Department of Ophthalmology, Lozano Blesa, University Hospital, Zaragoza, Spain
| |
Collapse
|
9
|
Pepple KL, Choi WJ, Wilson L, Van Gelder RN, Wang RK. Quantitative Assessment of Anterior Segment Inflammation in a Rat Model of Uveitis Using Spectral-Domain Optical Coherence Tomography. Invest Ophthalmol Vis Sci 2017; 57:3567-75. [PMID: 27388049 PMCID: PMC4942250 DOI: 10.1167/iovs.16-19276] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Purpose To develop anterior segment spectral-domain optical coherence tomography (SD-OCT) and quantitative image analysis for use in experimental uveitis in rats. Methods Acute anterior uveitis was generated in Lewis rats. A spectral domain anterior segment OCT system was used to image the anterior chamber (AC) and ciliary body at baseline and during peak inflammation 2 days later. Customized MatLab image analysis algorithms were developed to segment the AC, count AC cells, calculate central corneal thickness (CCT), segment the ciliary body and zonules, and quantify the level of ciliary body inflammation with the ciliary body index (CBI). Images obtained at baseline and during peak inflammation were compared. Finally, longitudinal imaging and image analysis was performed over the 2-week course of inflammation. Results Spectral-domain optical coherence tomography identifies structural features of inflammation. Anterior chamber cell counts at peak inflammation obtained by automated image analysis and human grading were highly correlated (r = 0.961), and correlated well with the histologic score of inflammation (r = 0.895). Inflamed eyes showed a significant increase in average CCT (27 μm, P = 0.02) and an increase in average CBI (P < 0.0001). Longitudinal imaging and quantitative image analysis identified a significant change in AC cell and CBI on day 2 with spontaneous resolution of inflammation by day 14. Conclusions Spectral-domain optical coherence tomography provides high-resolution images of the structural changes associated with anterior uveitis in rats. Anterior chamber cell count and CBI determined by semi-automated image analysis strongly correlates with inflammation, and can be used to quantify inflammation longitudinally in single animals.
Collapse
Affiliation(s)
- Kathryn L Pepple
- Department of Ophthalmology University of Washington, Seattle, Washington, United States
| | - Woo June Choi
- Department of Bioengineering, University of Washington, Seattle, Washington, United States
| | - Leslie Wilson
- Department of Ophthalmology University of Washington, Seattle, Washington, United States
| | - Russell N Van Gelder
- Department of Ophthalmology University of Washington, Seattle, Washington, United States 3Department of Biological Structure, University of Washington, Seattle, Washington, United States 4Department of Pathology, University of Washington, Seattle, Washing
| | - Ruikang K Wang
- Department of Bioengineering, University of Washington, Seattle, Washington, United States
| |
Collapse
|
10
|
Bremer D, Pache F, Günther R, Hornow J, Andresen V, Leben R, Mothes R, Zimmermann H, Brandt AU, Paul F, Hauser AE, Radbruch H, Niesner R. Longitudinal Intravital Imaging of the Retina Reveals Long-term Dynamics of Immune Infiltration and Its Effects on the Glial Network in Experimental Autoimmune Uveoretinitis, without Evident Signs of Neuronal Dysfunction in the Ganglion Cell Layer. Front Immunol 2016; 7:642. [PMID: 28066446 PMCID: PMC5179567 DOI: 10.3389/fimmu.2016.00642] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/13/2016] [Indexed: 12/12/2022] Open
Abstract
A hallmark of autoimmune retinal inflammation is the infiltration of the retina with cells of the innate and adaptive immune system, leading to detachment of the retinal layers and even to complete loss of the retinal photoreceptor layer. As the only optical system in the organism, the eye enables non-invasive longitudinal imaging studies of these local autoimmune processes and of their effects on the target tissue. Moreover, as a window to the central nervous system (CNS), the eye also reflects general neuroinflammatory processes taking place at various sites within the CNS. Histological studies in murine neuroinflammatory models, such as experimental autoimmune uveoretinitis (EAU) and experimental autoimmune encephalomyelitis, indicate that immune infiltration is initialized by effector CD4+ T cells, with the innate compartment (neutrophils, macrophages, and monocytes) contributing crucially to tissue degeneration that occurs at later phases of the disease. However, how the immune attack is orchestrated by various immune cell subsets in the retina and how the latter interact with the target tissue under in vivo conditions is still poorly understood. Our study addresses this gap with a novel approach for intravital two-photon microscopy, which enabled us to repeatedly track CD4+ T cells and LysM phagocytes during the entire course of EAU and to identify a specific radial infiltration pattern of these cells within the inflamed retina, starting from the optic nerve head. In contrast, highly motile CX3CR1+ cells display an opposite radial motility pattern, toward the optic nerve head. These inflammatory processes induce modifications of the microglial network toward an activated morphology, especially around the optic nerve head and main retinal blood vessels, but do not affect the neurons within the ganglion cell layer. Thanks to the new technology, non-invasive correlation of clinical scores of CNS-related pathologies with immune infiltrate behavior and subsequent tissue dysfunction is now possible. Hence, the new approach paves the way for deeper insights into the pathology of neuroinflammatory processes on a cellular basis, over the entire disease course.
Collapse
Affiliation(s)
- Daniel Bremer
- German Rheumatism Research Center , Berlin , Germany
| | - Florence Pache
- German Rheumatism Research Center, Berlin, Germany; NeuroCure Clinical Research Center, Clinical and Experimental Multiple Sclerosis Research Center, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | - Ruth Leben
- German Rheumatism Research Center , Berlin , Germany
| | - Ronja Mothes
- German Rheumatism Research Center, Berlin, Germany; Department of Neuropathology, Charité - Universitätsmedizin, Berlin, Germany
| | - Hanna Zimmermann
- NeuroCure Clinical Research Center, Clinical and Experimental Multiple Sclerosis Research Center, Department of Neurology, Charité - Universitätsmedizin Berlin , Berlin , Germany
| | - Alexander U Brandt
- NeuroCure Clinical Research Center, Clinical and Experimental Multiple Sclerosis Research Center, Department of Neurology, Charité - Universitätsmedizin Berlin , Berlin , Germany
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Clinical and Experimental Multiple Sclerosis Research Center, Department of Neurology, Charité - Universitätsmedizin Berlin , Berlin , Germany
| | - Anja E Hauser
- German Rheumatism Research Center, Berlin, Germany; Immundynamics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Helena Radbruch
- Department of Neuropathology, Charité - Universitätsmedizin , Berlin , Germany
| | | |
Collapse
|
11
|
Van Hove I, Lefevere E, De Groef L, Sergeys J, Salinas-Navarro M, Libert C, Vandenbroucke R, Moons L. MMP-3 Deficiency Alleviates Endotoxin-Induced Acute Inflammation in the Posterior Eye Segment. Int J Mol Sci 2016; 17:ijms17111825. [PMID: 27809288 PMCID: PMC5133826 DOI: 10.3390/ijms17111825] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/20/2016] [Accepted: 10/25/2016] [Indexed: 01/04/2023] Open
Abstract
Matrix metalloproteinase-3 (MMP-3) is known to mediate neuroinflammatory processes by activating microglia, disrupting blood-central nervous system barriers and supporting neutrophil influx into the brain. In addition, the posterior part of the eye, more specifically the retina, the retinal pigment epithelium (RPE) and the blood-retinal barrier, is affected upon neuroinflammation, but a role for MMP-3 during ocular inflammation remains elusive. We investigated whether MMP-3 contributes to acute inflammation in the eye using the endotoxin-induced uveitis (EIU) model. Systemic administration of lipopolysaccharide induced an increase in MMP-3 mRNA and protein expression level in the posterior part of the eye. MMP-3 deficiency or knockdown suppressed retinal leukocyte adhesion and leukocyte infiltration into the vitreous cavity in mice subjected to EIU. Moreover, retinal and RPE mRNA levels of intercellular adhesion molecule 1 (Icam1), interleukin 6 (Il6), cytokine-inducible nitrogen oxide synthase (Nos2) and tumor necrosis factor α (Tnfα), which are key molecules involved in EIU, were clearly reduced in MMP-3 deficient mice. In addition, loss of MMP-3 repressed the upregulation of the chemokines monocyte chemoattractant protein (MCP)-1 and (C-X-C motif) ligand 1 (CXCL1). These findings suggest a contribution of MMP-3 during EIU, and its potential use as a therapeutic drug target in reducing ocular inflammation.
Collapse
Affiliation(s)
- Inge Van Hove
- Neural Circuit Development and Regeneration Research Group, Department of Biology, Katholieke Universiteit Leuven (KU Leuven), B-3000 Leuven, Belgium.
- Laboratory of Experimental Ophthalmology, Department of Neurosciences, KU Leuven, B-3000 Leuven, Belgium.
| | - Evy Lefevere
- Neural Circuit Development and Regeneration Research Group, Department of Biology, Katholieke Universiteit Leuven (KU Leuven), B-3000 Leuven, Belgium.
- Laboratory of Experimental Ophthalmology, Department of Neurosciences, KU Leuven, B-3000 Leuven, Belgium.
| | - Lies De Groef
- Neural Circuit Development and Regeneration Research Group, Department of Biology, Katholieke Universiteit Leuven (KU Leuven), B-3000 Leuven, Belgium.
- Laboratory of Experimental Ophthalmology, Department of Neurosciences, KU Leuven, B-3000 Leuven, Belgium.
| | - Jurgen Sergeys
- Neural Circuit Development and Regeneration Research Group, Department of Biology, Katholieke Universiteit Leuven (KU Leuven), B-3000 Leuven, Belgium.
- Laboratory of Experimental Ophthalmology, Department of Neurosciences, KU Leuven, B-3000 Leuven, Belgium.
| | - Manuel Salinas-Navarro
- Neural Circuit Development and Regeneration Research Group, Department of Biology, Katholieke Universiteit Leuven (KU Leuven), B-3000 Leuven, Belgium.
| | - Claude Libert
- Inflammation Research Center, VIB, B-9052 Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.
| | - Roosmarijn Vandenbroucke
- Inflammation Research Center, VIB, B-9052 Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.
| | - Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Department of Biology, Katholieke Universiteit Leuven (KU Leuven), B-3000 Leuven, Belgium.
| |
Collapse
|
12
|
Zhao PT, Zhang LJ, Shao H, Bai LL, Yu B, Su C, Dong LJ, Liu X, Li XR, Zhang XM. Therapeutic effects of mesenchymal stem cells administered at later phase of recurrent experimental autoimmune uveitis. Int J Ophthalmol 2016; 9:1381-1389. [PMID: 27803852 DOI: 10.18240/ijo.2016.10.03] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 06/08/2016] [Indexed: 12/14/2022] Open
Abstract
AIM To test the therapeutic effects of delayed treatment of mesenchymal stem cells (MSCs) in recurrent experimental autoimmune uveitis (rEAU). METHODS The efficacy of different regimens of MSC administration in rEAU were tested by evaluation of clinical and pathological intraocular inflammation, as well as retinal structural and functional integrity using optical coherence tomography (OCT) and electroretinogram (ERG). The retinal sections were also immunostained with antibodies to glial fibrillary acidic protein (GFAP) and rhodopsin (RHO). RESULTS Delayed treatment of MSCs effectively alleviated the severity of intraocular inflammation with relative intact of outer retinal structure and function. Moreover, double therapies with longer interval led to an even better clinical evaluation, as well as a trend of decrease in relapse and amelioration of retinal function. MSC therapies also effectively reduced GFAP expression and increased RHO expression in the retina. CONCLUSION MSC administration can effectively treat developed diseases of rEAU, and multiple therapies can provide additional therapeutic benefits.
Collapse
Affiliation(s)
- Ping-Ting Zhao
- Eye Institute & School of Optometry and Ophthalmology, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Ling-Jun Zhang
- Eye Institute & School of Optometry and Ophthalmology, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY 40202, USA
| | - Ling-Ling Bai
- Eye Institute & School of Optometry and Ophthalmology, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Bo Yu
- Eye Institute & School of Optometry and Ophthalmology, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Chang Su
- Eye Institute & School of Optometry and Ophthalmology, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Li-Jie Dong
- Eye Institute & School of Optometry and Ophthalmology, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Xun Liu
- Eye Institute & School of Optometry and Ophthalmology, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Xiao-Rong Li
- Eye Institute & School of Optometry and Ophthalmology, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Xiao-Min Zhang
- Eye Institute & School of Optometry and Ophthalmology, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| |
Collapse
|
13
|
Pepple KL, Rotkis L, Van Grol J, Wilson L, Sandt A, Lam DL, Carlson E, Van Gelder RN. Primed Mycobacterial Uveitis (PMU): Histologic and Cytokine Characterization of a Model of Uveitis in Rats. Invest Ophthalmol Vis Sci 2016; 56:8438-48. [PMID: 26747775 DOI: 10.1167/iovs.15-17523] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PURPOSE The purpose of this study was to compare the histologic features and cytokine profiles of experimental autoimmune uveitis (EAU) and a primed mycobacterial uveitis (PMU) model in rats. METHODS In Lewis rats, EAU was induced by immunization with interphotoreceptor binding protein peptide, and PMU was induced by immunization with a killed mycobacterial extract followed by intravitreal injection of the same extract. Clinical course, histology, and the cytokine profiles of the aqueous and vitreous were compared using multiplex bead fluorescence immunoassays. RESULTS Primed mycobacterial uveitis generates inflammation 2 days after intravitreal injection and resolves spontaneously 14 days later. CD68+ lymphocytes are the predominant infiltrating cells and are found in the anterior chamber, surrounding the ciliary body and in the vitreous. In contrast to EAU, no choroidal infiltration or retinal destruction is noted. At the day of peak inflammation, C-X-C motif ligand 10 (CXCL10), IL-1β, IL-18, and leptin were induced in the aqueous of both models. Interleukin-6 was induced 2-fold in the aqueous of PMU but not EAU. Cytokines elevated in the aqueous of EAU exclusively include regulated on activation, normal T cell expressed and secreted (RANTES), lipopolysaccharide-induced CXC chemokine (LIX), growth-related oncogene/keratinocyte chemokine (GRO/KC), VEGF, monocyte chemoattractant protein-1 (MCP-1), macrophage inflammatory protein-1α (MIP-1α), and IL-17A. In the vitreous, CXCL10, GRO/KC, RANTES, and MIP-1α were elevated in both models. Interleukin-17A and IL-18 were elevated exclusively in EAU. CONCLUSIONS Primed mycobacterial uveitis generates an acute anterior and intermediate uveitis without retinal involvement. Primed mycobacterial uveitis has a distinct proinflammatory cytokine profile compared with EAU, suggesting PMU is a good complementary model for study of immune-mediated uveitis. CXCL10, a proinflammatory cytokine, was increased in the aqueous and vitreous of both models and may be a viable therapeutic target.
Collapse
Affiliation(s)
- Kathryn L Pepple
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Lauren Rotkis
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | | | - Leslie Wilson
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Angela Sandt
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Deborah L Lam
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Eric Carlson
- Alcon Research Laboratories, Fort Worth, Texas, United States
| | - Russell N Van Gelder
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States 3Department of Biological Structure, University of Washington, Seattle, Washington, United States 4Department of Pathology, University of Washington, Seattle, Washin
| |
Collapse
|
14
|
Xie B, Jin L, Luo Z, Yu J, Shi S, Zhang Z, Shen M, Chen H, Li X, Song Z. An injectable thermosensitive polymeric hydrogel for sustained release of Avastin® to treat posterior segment disease. Int J Pharm 2015; 490:375-83. [PMID: 26027491 DOI: 10.1016/j.ijpharm.2015.05.071] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/11/2015] [Accepted: 05/26/2015] [Indexed: 10/23/2022]
Abstract
Delivery of drugs, especially bioactive macromolecules such as proteins and nucleic acids, to the posterior segment is still a significant challenge for pharmaceutical scientists. In the present study, we developed an injectable thermosensitive polymeric hydrogel for sustained release of Avastin(®) to treat posterior segment disorders. The payload of Avastin(®) to poly(lactic acid-co-glycolic acid)-poly(ethylene glycol)-poly(lactic acid-co-glycolic acid) (PLGA-PEG-PLGA) hydrogel did not influence its inherent sol-gel transition behavior, but shifted the sol-gel transition to a lower temperature. The resulting Avastin(®)/PLGA-PEG-PLGA hydrogels had a porous structure (pore size, 100 ∼ 150 μm) as determined by scanning electron microcopy (SEM), facilitating sustained Avastin(®) release over a period of up to 14 days in vitro. The PLGA-PEG-PLGA hydrogel was immediately formed in the vitreous humor after intravitreal injection, followed by slow clearance over an 8 week study period. The PLGA-PEG-PLGA hydrogel exhibited no apparent toxicity against retinal tissue, as indicated by the absence of inflammation, retinal necrosis, and stress responses, using optical coherence tomography (OCT) and histological/immunochemical analyses. Electrophysiology (ERG) examination also showed that the PLGA-PEG-PLGA hydrogel did not affect retinal function. In vivo pharmacokinetic studies indicated that the use of the PLGA-PEG-PLGA hydrogel greatly extended the release of Avastin(®) over time in the vitreous humor and retina after intravitreal injection. Together, these results demonstrated that the PLGA-PEG-PLGA hydrogel was a promising candidate for ocular drug delivery of Avastin(®)via intravitreal injection.
Collapse
Affiliation(s)
- Binbin Xie
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, PR China
| | - Ling Jin
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, PR China
| | - Zichao Luo
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, PR China; Wenzhou Institute of Biomaterials and Engineering, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Jing Yu
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, PR China; Wenzhou Institute of Biomaterials and Engineering, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Shuai Shi
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, PR China
| | - Zhaoliang Zhang
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, PR China
| | - Meixiao Shen
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, PR China
| | - Hao Chen
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, PR China.
| | - Xingyi Li
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, PR China.
| | - Zongming Song
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, PR China.
| |
Collapse
|
15
|
Chen X, Kezic JM, Forrester JV, Goldberg GL, Wicks IP, Bernard CC, McMenamin PG. In vivo multi-modal imaging of experimental autoimmune uveoretinitis in transgenic reporter mice reveals the dynamic nature of inflammatory changes during disease progression. J Neuroinflammation 2015; 12:17. [PMID: 25623142 PMCID: PMC4336748 DOI: 10.1186/s12974-015-0235-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/05/2015] [Indexed: 12/22/2022] Open
Abstract
Background Experimental autoimmune uveoretinitis (EAU) is a widely used experimental animal model of human endogenous posterior uveoretinitis. In the present study, we performed in vivo imaging of the retina in transgenic reporter mice to investigate dynamic changes in exogenous inflammatory cells and endogenous immune cells during the disease process. Methods Transgenic mice (C57Bl/6 J Cx3cr1GFP/+, C57Bl/6 N CD11c-eYFP, and C57Bl/6 J LysM-eGFP) were used to visualize the dynamic changes of myeloid-derived cells, putative dendritic cells and neutrophils during EAU. Transgenic mice were monitored with multi-modal fundus imaging camera over five time points following disease induction with the retinal auto-antigen, interphotoreceptor retinoid binding protein (IRBP1–20). Disease severity was quantified with both clinical and histopathological grading. Results In the normal C57Bl/6 J Cx3cr1GFP/+ mouse Cx3cr1-expressing microglia were evenly distributed in the retina. In C57Bl/6 N CD11c-eYFP mice clusters of CD11c-expressing cells were noted in the retina and in C57Bl/6 J LysM-eGFP mice very low numbers of LysM-expressing neutrophils were observed in the fundus. Following immunization with IRBP1–20, fundus examination revealed accumulations of Cx3cr1-GFP+ myeloid cells, CD11c-eYFP+ cells and LysM-eGFP+ myelomonocytic cells around the optic nerve head and along retinal vessels as early as day 14 post-immunization. CD11c-eYFP+ cells appear to resolve marginally earlier (day 21 post-immunization) than Cx3cr1-GFP+ and LysM-eGFP+ cells. The clinical grading of EAU in transgenic mice correlated closely with histopathological grading. Conclusions These results illustrate that in vivo fundus imaging of transgenic reporter mice allows direct visualization of various exogenously and endogenously derived leukocyte types during EAU progression. This approach acts as a valuable adjunct to other methods of studying the clinical course of EAU. Electronic supplementary material The online version of this article (doi:10.1186/s12974-015-0235-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiangting Chen
- Department of Anatomy and Developmental Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia.
| | - Jelena M Kezic
- Department of Anatomy and Developmental Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia.
| | - John V Forrester
- Section of Immunology and Infection, Division of Applied Medicine, School of Medicine and Dentistry, Institute of Medical Science, Foresterhill, University of Aberdeen, Scotland, UK. .,Ocular Immunology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, Western Australia, Australia. .,Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Crawley, Western Australia, Australia.
| | - Gabrielle L Goldberg
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
| | - Ian P Wicks
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
| | - Claude C Bernard
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.
| | - Paul G McMenamin
- Department of Anatomy and Developmental Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
16
|
Choi WJ, Pepple KL, Zhi Z, Wang RK. Optical coherence tomography based microangiography for quantitative monitoring of structural and vascular changes in a rat model of acute uveitis in vivo: a preliminary study. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:016015. [PMID: 25594627 PMCID: PMC4296737 DOI: 10.1117/1.jbo.20.1.016015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 12/19/2014] [Indexed: 05/15/2023]
Abstract
Uveitis models in rodents are important in the investigation of pathogenesis in human uveitis and the development of appropriate therapeutic strategies for treatment. Quantitative monitoring of ocular inflammation in small animal models provides an objective metric to assess uveitis progression and/or therapeutic effects. We present a new application of optical coherence tomography (OCT) and OCT-based microangiography (OMAG) to a rat model of acute anterior uveitis induced by intravitreal injection of a killed mycobacterial extract. OCT/OMAG is used to provide noninvasive three-dimensional imaging of the anterior segment of the eyes prior to injection (baseline) and two days post-injection (peak inflammation) in rats with and without steroid treatments. OCT imaging identifies characteristic structural and vascular changes in the anterior segment of the inflamed animals when compared to baseline images. Characteristics of inflammation identified include anterior chamber cells, corneal edema, pupillary membranes, and iris vasodilation. In contrast, no significant difference from the control is observed for the steroid-treated eye. These findings are compared with the histology assessment of the same eyes. In addition, quantitative measurements of central corneal thickness and iris vessel diameter are determined. This pilot study demonstrates that OCT-based microangiography promises to be a useful tool for the assessment and management of uveitis in vivo.
Collapse
Affiliation(s)
- Woo June Choi
- University of Washington, Department of Bioengineering, Seattle 98195, Washington, United States
| | - Kathryn L. Pepple
- University of Washington, Department of Ophthalmology, Seattle 98104, Washington, United States
| | - Zhongwei Zhi
- University of Washington, Department of Bioengineering, Seattle 98195, Washington, United States
| | - Ruikang K. Wang
- University of Washington, Department of Bioengineering, Seattle 98195, Washington, United States
- University of Washington, Department of Ophthalmology, Seattle 98104, Washington, United States
- Address all correspondence to: Ruikang K. Wang, E-mail:
| |
Collapse
|
17
|
Aziz MK, Ni A, Esserman DA, Chavala SH. Evidence of early ultrastructural photoreceptor abnormalities in light-induced retinal degeneration using spectral domain optical coherence tomography. Br J Ophthalmol 2014; 98:984-9. [PMID: 24671925 DOI: 10.1136/bjophthalmol-2013-304515] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND To study spatiotemporal in vivo changes in retinal morphology and quantify thickness of retinal layers in a mouse model of light-induced retinal degeneration using spectral domain optical coherence tomography (SD-OCT). METHODS BALB/c mice were exposed to 5000 lux of constant light for 3 h. SD-OCT images were taken 3 h, 24 h, 3 days, 1 week and 1 month after light exposure and were compared with histology at the same time points. SD-OCT images were also taken at 0, 1 and 2 h after light exposure in order to analyse retinal changes at the earliest time points. The thickness of retinal layers was measured using the Bioptigen software InVivoVue Diver. RESULTS SD-OCT demonstrated progressive outer retinal thinning. 3 h after light exposure, the outer nuclear layer converted from hyporeflective to hyper-reflective. At 24 h, outer retinal bands and nuclear layer demonstrated similar levels of hyper-reflectivity. Significant variations in outer retinal thickness, vitreous opacities and retinal detachments occurred within days of injury. Thinning of the retina was observed at 1 month after injury. It was also determined that outer nuclear layer changes precede photoreceptor segment structure disintegration and the greatest change in segment structure occurs between 1 and 2 h after light exposure. CONCLUSIONS Longitudinal SD-OCT reveals intraretinal changes that cannot be observed by histopathology at early time points in the light injury model.
Collapse
Affiliation(s)
- Mehak K Aziz
- Department of Ophthalmology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Aiguo Ni
- Department of Ophthalmology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Denise A Esserman
- Departments of Medicine, Division of General Medicine and Clinical Epidemiology and Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Sai H Chavala
- Department of Ophthalmology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
18
|
Machalińska A, Lejkowska R, Duchnik M, Kawa M, Rogińska D, Wiszniewska B, Machaliński B. Dose-dependent retinal changes following sodium iodate administration: application of spectral-domain optical coherence tomography for monitoring of retinal injury and endogenous regeneration. Curr Eye Res 2014; 39:1033-41. [PMID: 24661221 DOI: 10.3109/02713683.2014.892996] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The purpose of this study was to demonstrate the progression of acute retinal injury by correlating histological sections with in vivo spectral-domain optical coherence tomography (SD-OCT) images. METHODS Male C57BL/6 mice were treated intravenously with two different sodium iodate (NaIO3) doses (35 mg/kg or 15 mg/kg). In vivo SD-OCT was performed up to 3 months post-injury. Ex vivo retinal histology, TUNEL and IsolectinB4 immunostaining were also conducted. Quantitative comparison of histopathological images and SD-OCT images was performed. RESULTS SD-OCT examination revealed that administration of 35 mg/kg NaIO3 was associated with progressive and irreversible retinal degeneration. On day 3 post-injury, we found numerous apoptotic cells in the outer nuclear layer (ONL) that strongly corresponded to hyper-reflective areas in the SD-OCT images. At 7 d post-injury, SD-OCT images showed irregular-shaped patterns of hyper-reflectivity in the retinal pigment epithelium (RPE) that corresponded with the accumulation of macrophages phagocytosing melanin granules and cell debris. Additionally, we documented hyper-reflective opacities in the vitreous that were most numerous at 7 d. At 3 months post-injury, the neurosensory retina was significantly thinner, predominantly due to progressive photoreceptor (PR) loss. In contrast, administration of 15 mg/kg NaIO3 did not induce hyper-reflectivity of ONL in SD-OCT images, which indicates a lack of massive PR cell death. At 3 months post-injury, SD-OCT images showed the complete restoration of outer retina lamination and restoration of hyper-reflective structural bands. Histological assessment of retinas acquired after the last SD-OCT imaging session revealed complete regeneration of the RPE and considerable improvement of PR architecture. CONCLUSIONS Our findings showed the high level of effectiveness of SD-OCT imaging for monitoring dynamic changes in retinal morphology following acute retinal injury. Moreover, we demonstrated for the first time that SD-OCT can be used to non-invasively detect regeneration in the damaged retina.
Collapse
|
19
|
Harimoto K, Ito M, Karasawa Y, Sakurai Y, Takeuchi M. Evaluation of mouse experimental autoimmune uveoretinitis by spectral domain optical coherence tomography. Br J Ophthalmol 2014; 98:808-12. [PMID: 24574437 DOI: 10.1136/bjophthalmol-2013-304421] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AIMS To evaluate the efficacy of spectral domain optical coherence tomography (SD-OCT) in monitoring the development of mouse experimental autoimmune uveoretinitis (EAU) as an animal model of endogenous uveitis, and to develop an OCT-based grading system for EAU severity. METHODS C57BL/6 mice were immunised with human interphotoreceptor retinoid-binding protein (amino acid sequence 1-20) peptide and complete Freund's adjuvant to induce EAU. The development of EAU was monitored by SD-OCT serially throughout the disease course, and the images were graded from 1 to 4 and compared with the clinical and histopathological grades. RESULTS SD-OCT images depicted retinal lamella structures including the inner segment/outer segment (IS/OS) line in normal mice. Retinal structural changes were observed on SD-OCT images in mice that developed EAU clinically scored as grade 1 or higher, which precisely corresponded to the pathological findings. The SD-OCT images of EAU were graded as follows: grade 1, a few infiltrating cells in the vitreous and retina; grade 2, increased vitreous cells, retinal vasculitis, and granulomatous lesion; grade 3, cell infiltration into the whole retina, disappearance of IS/OS line, and destruction of the retinal layer structure; and grade 4, disappearance of the outer retina. The SD-OCT grade of EAU based on these criteria correlated significantly with both the clinical grade (R(2)=0.282, p<0.005) and histopathological grade (R(2)=0.846, p<0.0001). CONCLUSIONS SD-OCT is useful for evaluating the development and severity of mouse EAU. The SD-OCT scoring system we developed accurately reflects clinical and histopathological changes.
Collapse
Affiliation(s)
- Kohzou Harimoto
- Department of Ophthalmology, National Defense Medical College, Saitama, Tokorozawa, Japan
| | - Masataka Ito
- Department of Developmental Anatomy and Regenerative Biology, National Defense Medical College, Saitama, Tokorozawa, Japan
| | - Yoko Karasawa
- Department of Ophthalmology, National Defense Medical College, Saitama, Tokorozawa, Japan
| | - Yutaka Sakurai
- Department of Ophthalmology, National Defense Medical College, Saitama, Tokorozawa, Japan
| | - Masaru Takeuchi
- Department of Ophthalmology, National Defense Medical College, Saitama, Tokorozawa, Japan
| |
Collapse
|
20
|
Fairless R, Williams SK, Diem R. Dysfunction of neuronal calcium signalling in neuroinflammation and neurodegeneration. Cell Tissue Res 2013; 357:455-62. [PMID: 24326615 DOI: 10.1007/s00441-013-1758-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 10/31/2013] [Indexed: 02/07/2023]
Abstract
Neurodegeneration has been increasingly recognised as the leading structural correlate of disability progression in autoimmune diseases such as multiple sclerosis. Since calcium signalling is known to regulate the development of degenerative processes in many cell types, it is believed to play significant roles in mediating neurodegeneration. Because of its function as a major juncture linking various insults and injuries associated with inflammatory attack on neuronal cell bodies and axons, it provides potential for the development of neuroprotective strategies. This is of great significance because of the lack of neuroprotective agents presently available to supplement the current array of immunomodulatory treatments. In this review, we summarise the role that various calcium channels and pumps have been shown to play in the development of neurodegeneration under inflammatory autoimmune conditions. The identification of suitable targets might also provide insights into applications in non-inflammatory neurodegenerative diseases.
Collapse
Affiliation(s)
- Richard Fairless
- Department of Neuro-oncology, University Clinic Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | | | | |
Collapse
|
21
|
Chen J, Qian H, Horai R, Chan CC, Caspi RR. Use of optical coherence tomography and electroretinography to evaluate retinal pathology in a mouse model of autoimmune uveitis. PLoS One 2013; 8:e63904. [PMID: 23691112 PMCID: PMC3653843 DOI: 10.1371/journal.pone.0063904] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 04/08/2013] [Indexed: 12/11/2022] Open
Abstract
Experimental autoimmune uveoretinitis (EAU) in mice is a model for human autoimmune uveitis. Longitudinal follow-up is only possible by non-invasive techniques, but the information obtained by visual fundus examination can be limited. We therefore evaluated the efficacy of optical coherence tomography (OCT) and electroretinography (ERG) to monitor pathological and functional changes of the retina in vivo. OCT imaging and ERG recording as a measure of visual function were compared with visual fundoscopic imaging and histology findings in the same mouse. Our results showed that OCT imaging of the retina was well correlated with clinical and histological observations in mice during EAU. However, OCT imaging was more sensitive than fundoscopic imaging in detecting the cell infiltrates at the early phase of disease onset. Furthermore, by allowing multi-layer cross- and horizontal-sectional visualizations of retinal lesions longitudinally in a noninvasive fashion, OCT added information that could not be obtained by fundoscopic and histological examinations. Lastly, retinal thickness obtained by OCT imaging provided a key indicator reflecting disease activity, which showed a close association with visual dysfunction as measured by ERG recordings in EAU mice. Thus, our findings demonstrate that OCT is a highly sensitive and reliable technique, and a valuable method for the semi-quantitative evaluation of retinal inflammation in vivo in the mouse.
Collapse
Affiliation(s)
- Jun Chen
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United Sates of America
| | - Haohua Qian
- Vision Function Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United Sates of America
| | - Reiko Horai
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United Sates of America
| | - Chi-Chao Chan
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United Sates of America
| | - Rachel R. Caspi
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United Sates of America
| |
Collapse
|
22
|
Chu CJ, Herrmann P, Carvalho LS, Liyanage SE, Bainbridge JWB, Ali RR, Dick AD, Luhmann UFO. Assessment and in vivo scoring of murine experimental autoimmune uveoretinitis using optical coherence tomography. PLoS One 2013; 8:e63002. [PMID: 23690973 PMCID: PMC3653962 DOI: 10.1371/journal.pone.0063002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/27/2013] [Indexed: 12/02/2022] Open
Abstract
Despite advances in clinical imaging and grading our understanding of retinal immune responses and their morphological correlates in experimental autoimmune uveoretinitis (EAU), has been hindered by the requirement for post-mortem histology. To date, monitoring changes occurring during EAU disease progression and evaluating the effect of therapeutic intervention in real time has not been possible. We wanted to establish whether optical coherence tomography (OCT) could detect intraretinal changes during inflammation and to determine its utility as a tool for accurate scoring of EAU. EAU was induced in C57BL/6J mice and animals evaluated after 15, 26, 36 and 60 days. At each time-point, contemporaneous Spectralis-OCT scanning, topical endoscopic fundal imaging (TEFI), fundus fluorescein angiography (FFA) and CD45-immunolabelled histology were performed. OCT features were further characterised on retinal flat-mounts using immunohistochemistry and 3D reconstruction. Optic disc swelling and vitreous opacities detected by OCT corresponded to CD45+ cell infiltration on histology. Vasculitis identified by FFA and OCT matched perivascular myeloid and T-cell infiltrates and could be differentiated from unaffected vessels. Evolution of these changes could be followed over time in the same eye. Retinal folds were visible and found to encapsulate mixed populations of activated myeloid cells, T-cells and microglia. Using these features, an OCT-based EAU scoring system was developed, with significant correlation to validated histological (Pearson r2 = 0.6392, P<0.0001, n = 31 eyes) and TEFI based scoring systems (r2 = 0.6784, P<0.0001). OCT distinguishes the fundamental features of murine EAU in vivo, permits dynamic assessment of intraretinal changes and can be used to score disease severity. As a result, it allows tissue synchronisation with subsequent cellular and functional assessment and greater efficiency of animal usage. By relating OCT signals with immunohistochemistry in EAU, our findings offer the opportunity to inform the interpretation of OCT changes in human uveitis.
Collapse
Affiliation(s)
- Colin J. Chu
- Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom
| | - Philipp Herrmann
- Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom
| | - Livia S. Carvalho
- Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom
| | - Sidath E. Liyanage
- Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom
| | - James W. B. Bainbridge
- Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom
- NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital, London, United Kingdom
| | - Robin R. Ali
- Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom
- NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital, London, United Kingdom
| | - Andrew D. Dick
- NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital, London, United Kingdom
- Unit of Ophthalmology, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
- * E-mail: (UFL); (ADD)
| | - Ulrich F. O. Luhmann
- Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom
- * E-mail: (UFL); (ADD)
| |
Collapse
|
23
|
Pennesi ME, Michaels KV, Magee SS, Maricle A, Davin SP, Garg AK, Gale MJ, Tu DC, Wen Y, Erker LR, Francis PJ. Long-term characterization of retinal degeneration in rd1 and rd10 mice using spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 2012; 53:4644-56. [PMID: 22562504 DOI: 10.1167/iovs.12-9611] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE We characterize the in vivo changes over time in the retinal structure of wild-type mice alongside two lines of mice deficient in the β-subunit of phosphodiesterase (rd1 and rd10 mice) using spectral domain optical coherence tomography (SD-OCT). METHODS SD-OCT images were obtained using the Bioptigen spectral domain ophthalmic imaging system (SDOIS). Wild-type C57BL/6J, rd1 and rd10 mice ranging in age from P14 to P206 were sedated with 1% isoflurane. Horizontal and vertical linear scans through the optic nerve, and annular scans around the optic nerve were obtained. RESULTS SD-OCT imaging of wild-type mice demonstrated visibility of the inner segment/outer segment (IS/OS) junction, external limiting membrane (ELM), outer nuclear layer (ONL), and outer plexiform layer (OPL). At P14, most rd10 mice exhibited normal SD-OCT profiles, but some displayed changes in the IS/OS junction. At the same time point, rd1 mice had severe outer retinal degeneration. In rd10 mice, imaging revealed loss of the IS/OS junction by P18, hyperreflective changes in the ONL at P20, hyperreflective vitreous opacities, and shallow separation of the neural retina from the RPE. Retinal separations were not observed in rd1 mice. Segmentation analysis in wild-type mice demonstrated relatively little variability between animals, while in rd10 and rd1 mice there was a steady decline in outer retinal thickness. Histologic studies demonstrated correlation of retinal features with those seen on SD-OCT scans. Segmentation analysis provides a quantitative and reproducible method for measuring in vivo retinal changes in mice. CONCLUSIONS SD-OCT provides a non-invasive method of following long-term retinal changes in mice in vivo. Although rd10 and rd1 mice have mutations in the same gene, they demonstrate significantly different features on SD-OCT.
Collapse
Affiliation(s)
- Mark E Pennesi
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|