1
|
Zeppieri M, Gagliano C, Spadea L, Salati C, Chukwuyem EC, Enaholo ES, D’Esposito F, Musa M. From Eye Care to Hair Growth: Bimatoprost. Pharmaceuticals (Basel) 2024; 17:561. [PMID: 38794131 PMCID: PMC11124470 DOI: 10.3390/ph17050561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Bimatoprost has emerged as a significant medication in the field of medicine over the past several decades, with diverse applications in ophthalmology, dermatology, and beyond. Originally developed as an ocular hypotensive agent, it has proven highly effective in treating glaucoma and ocular hypertension. Its ability to reduce intraocular pressure has established it as a first-line treatment option, improving management and preventing vision loss. In dermatology, bimatoprost has shown promising results in the promotion of hair growth, particularly in the treatment of alopecia and hypotrichosis. Its mechanism of action, stimulating the hair cycle and prolonging the growth phase, has led to the development of bimatoprost-containing solutions for enhancing eyelash growth. AIM The aim of our review is to provide a brief description, overview, and studies in the current literature regarding the versatile clinical use of bimatoprost in recent years. This can help clinicians determine the most suitable individualized therapy to meet the needs of each patient. METHODS Our methods involve a comprehensive review of the latest advancements reported in the literature in bimatoprost formulations, which range from traditional eye drops to sustained-release implants. These innovations offer extended drug delivery, enhance patient compliance, and minimize side effects. RESULTS The vast literature published on PubMed has confirmed the clinical usefulness of bimatoprost in lowering intraocular pressure and in managing patients with glaucoma. Numerous studies have shown promising results in dermatology and esthetics in promoting hair growth, particularly in treating alopecia and hypotrichosis. Its mechanism of action involves stimulating the hair cycle and prolonging the growth phase, leading to the development of solutions that enhance eyelash growth. The global use of bimatoprost has expanded significantly, with applications growing beyond its initial indications. Ongoing research is exploring its potential in glaucoma surgery, neuroprotection, and cosmetic procedures. CONCLUSIONS Bimatoprost has shown immense potential for addressing a wide range of therapeutic needs through various formulations and advancements. Promising future perspectives include the exploration of novel delivery systems such as contact lenses and microneedles to further enhance drug efficacy and patient comfort. Ongoing research and future perspectives continue to shape its role in medicine, promising further advancements and improved patient outcomes.
Collapse
Affiliation(s)
- Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, Italy
- Eye Clinic, Catania University, San Marco Hospital, Viale Carlo Azeglio Ciampi, 95121 Catania, Italy
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, “ Sapienza” University of Rome, 00142 Rome, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy
| | | | | | - Fabiana D’Esposito
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, London NW1 5QH, UK
| | - Mutali Musa
- Department of Optometry, University of Benin, Benin City 300238, Nigeria;
| |
Collapse
|
2
|
Wu S, Liu C, Tang J, Wu C, Zhang Q, Liu Z, Han J, Xue J, Lin J, Chen Y, Yang J, Zhuo Y, Li Y. Tafluprost promotes axon regeneration after optic nerve crush via Zn 2+-mTOR pathway. Neuropharmacology 2024; 242:109746. [PMID: 37832634 DOI: 10.1016/j.neuropharm.2023.109746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/23/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
PURPOSE To investigate whether Tafluprost could promote optic nerve regeneration in mice after optic nerve crush (ONC) and determine the underlying molecular mechanism. METHODS Tafluprost was injected into the vitreous body immediately after ONC. The level of Zn2+ in the inner plexiform layer (IPL) of the retina was stained using autometallography (AMG). The number of survival retinal ganglion cells (RGCs) was determined via dual staining with RGC markers Tuj1 and RBPMS. Individual axons that regenerated to 0.25, 0.5, 0.75 and 1 mm were manually counted in the whole-mount optic nerve labeled by cholera toxin B fragment (CTB). Immunofluorescence and Western blot were performed to detect protein expression levels. Pattern electroretinogram was used to evaluate RGCs function. RESULTS Tafluprost promoted RGC survival in a dose-dependent manner with an optimal concentration of 1 μM. Tafluprost significantly decreased ZnT-3 expression and Zn2+ accumulation in the IPL of retina. Tafluprost stimulated intense axonal regeneration and maintained RGCs function compared to control. Mechanistically, Tafluprost and Zn2+ elimination treatment (TPEN or ZnT-3 deletion) can activate the mTOR pathway with an improved percentage of pS6+ RGCs in the retina. However, rapamycin, a specific inhibitor of the mTOR1, inhibited the activation of the mTOR pathway and abolished the regenerative effect mediated by Tafluprost. Tafluprost also inhibited the upregulation of p62, LC3 and Beclin-1, attenuated the overactivation of microglia/macrophages and downregulated the expression of TNFα and IL-1β. CONCLUSIONS Our results suggest that Tafluprost promoted axon regeneration via regulation of the Zn2+-mTOR pathway, and provide novel research directions for glaucomatous optic nerve injury mechanisms.
Collapse
Affiliation(s)
- Siting Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
| | - Canying Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
| | - Jiahui Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
| | - Caiqing Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
| | - Qi Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
| | - Zhe Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
| | - Jiaxu Han
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
| | - Jingfei Xue
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
| | - Jicheng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
| | - Yuze Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
| | - Jinpeng Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China.
| | - Yiqing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China.
| |
Collapse
|
3
|
Nakamura N, Honjo M, Yamagishi R, Sakata R, Watanabe S, Aihara M. Synergic effects of EP2 and FP receptors co-activation on Blood-Retinal Barrier and Microglia. Exp Eye Res 2023; 237:109691. [PMID: 37884204 DOI: 10.1016/j.exer.2023.109691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/25/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
Macular edema (ME) is caused with disruption of the blood-retinal barrier (BRB) followed by fluid accumulation in the subretinal space. Main components of the outer and inner BRB are retinal pigment epithelial (RPE) cells and retinal microvascular endothelial cells, respectively. In addition, glial cells also participate in the functional regulation of the BRB as the member of 'neurovascular unit'. Under various stresses, cells in neurovascular units secrete inflammatory cytokines. Neuroinflammation induced by these cytokines can cause BRB dysfunction by degrading barrier-related proteins and contribute to the pathophysiology of ME. Prostaglandins (PGs) are crucial lipid mediators involved in neuroinflammation. Among PGs, a novel EP2 agonist, omidenepag (OMD) acts on not only the uveoscleral pathway but also the conventional pathway, unlike F prostanoid (FP) receptor agonists. Moreover, the combination use of the EP and the FP agonist is not recommended because of the risk of inflammation. In this study, we investigated effects of OMD and latanoprost acid (LTA), a FP agonist, on BRB and microglia in vitro and in vivo. To investigate the function of outer/inner BRB and microglia, in vitro, ARPE-19 cells, human retinal microvascular endothelial cells (HRMECs), and MG5 cells were used. Cell viability, inflammatory cytokines mRNA and protein levels, barrier morphology/function, and microglial activation were evaluated using proliferation assays, qRT-PCR, ELISA, immunocytochemistry, trans-epithelial electrical resistance, and permeability assay. Moreover, after vitreous injection into the mouse, outer BRB morphology, glial activation, and cytokine expression were assessed. Each OMD and LTA alone did not affect the viability or cytokines expression of the three types of cells. In ARPE-19 cells, the co-stimulation of OMD and LTA increased the mRNA and protein levels of inflammatory cytokines (IL-6, TNF-α, and VEGF-A) and decreased the barrier function and the junction-related protein (ZO-1 and β-catenin). By contrast in HRMECs, the co-stimulation affected significant differences in the mRNA levels of some cytokine (IL-6 and TNF-α) but enhanced the barrier function. In MG5 cells, the cytokines mRNA and size of Iba1-expressed cell were increased. A non-steroidal anti-inflammatory inhibited the barrier dysfunction and the junction-related protein downregulation in ARPE-19 cells and activation of MG5 cells. Also in vivo, the co-stimulation induced outer BRB disruption, cytokine increase, and retinal glial activation. Therefore, the co-stimulation of EP2 and FP induced the inflammatory cytokine-mediated outer BRB disruption, the enhanced inner BRB function, and the microglial activation. The BRB imbalance and the intrinsic prostaglandin production may be involved in OMD-related inflammation.
Collapse
Affiliation(s)
- Natsuko Nakamura
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Division of Vision Research, National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo, Japan
| | - Megumi Honjo
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Reiko Yamagishi
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Rei Sakata
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sumiko Watanabe
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Makoto Aihara
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Joo L, Jeong HY, Bae DH, Jee JH, Choi WH, Kim HY, Kim S, Yang DH, Gee HY, Jeon S, Roh YG, Yoo J. Prostaglandin F2α analogue, bimatoprost ameliorates colistin-induced nephrotoxicity. Biomed Pharmacother 2023; 168:115446. [PMID: 37918255 DOI: 10.1016/j.biopha.2023.115446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 11/04/2023] Open
Abstract
Colistin (polymyxin E) is an antibiotic that is effective against multidrug-resistant gram-negative bacteria. However, the high incidence of nephrotoxicity caused by colistin limits its clinical use. To identify compounds that might ameliorate colistin-induced nephrotoxicity, we obtained 1707 compounds from the Korea Chemical Bank and used a high-content screening (HCS) imaging-based assay. In this way, we found that bimatoprost (one of prostaglandin F2α analogue) ameliorated colistin-induced nephrotoxicity. To further assess the effects of bimatoprost on colistin-induced nephrotoxicity, we used in vitro and in vivo models. In cultured human proximal tubular cells (HK-2), colistin induced dose-dependent cytotoxicity. The number of terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL)-positive cells, indicative of apoptosis, was higher in colistin-treated cells, but this effect of colistin was ameliorated by cotreatment with bimatoprost. The generation of reactive oxygen species, assessed using 2,7-dichlorodihydrofluorescein diacetate, was less marked in cells treated with both colistin and bimatoprost than in those treated with colistin alone. Female C57BL/6 mice (n = 10 per group) that were intraperitoneally injected with colistin (10 mg/kg/12 hr) for 14 days showed high blood urea nitrogen and serum creatinine concentrations that were reduced by the coadministration of bimatoprost (0.5 mg/kg/12 hr). In addition, kidney injury molecule-1 (KIM1) and Neutrophil gelatinase-associated lipocalin (NGAL) expression also reduced by bimatoprost administration. Further investigation in tubuloid and kidney organoids also showed that bimatoprost attenuated the nephrotoxicity by colistin, showing dose-dependent reducing effect of KIM1 expression. In this study, we have identified bimatoprost, prostaglandin F2α analogue as a drug that ameliorates colistin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Lina Joo
- Department of Microbiology, CHA University School of Medicine, Seongnam, the Republic of Korea; CHA Organoid Research Center, CHA University, Seongnam, the Republic of Korea
| | - Hye Yun Jeong
- Division of Nephrology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, the Republic of Korea
| | - Dong Hyuck Bae
- Department of Microbiology, CHA University School of Medicine, Seongnam, the Republic of Korea; CHA Organoid Research Center, CHA University, Seongnam, the Republic of Korea
| | - Joo Hyun Jee
- Department of Microbiology, CHA University School of Medicine, Seongnam, the Republic of Korea; CHA Organoid Research Center, CHA University, Seongnam, the Republic of Korea
| | - Woo Hee Choi
- Department of Microbiology, CHA University School of Medicine, Seongnam, the Republic of Korea; CHA Organoid Research Center, CHA University, Seongnam, the Republic of Korea; R&D Institute, ORGANOIDSCIENCES LTD., Seongnam, the Republic of Korea
| | - Hye-Youn Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, the Republic of Korea
| | - Sejoong Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonnggi-do 13620, the Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine Seoul, 03080, the Republic of Korea
| | - Dong-Ho Yang
- Division of Nephrology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, the Republic of Korea
| | - Heon Yung Gee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, the Republic of Korea
| | - SeongGyeong Jeon
- Department of Microbiology, CHA University School of Medicine, Seongnam, the Republic of Korea; CHA Organoid Research Center, CHA University, Seongnam, the Republic of Korea
| | - Yun-Gil Roh
- Program in Health Policy, Chung-Buk National University, Republic of Korea
| | - Jongman Yoo
- Department of Microbiology, CHA University School of Medicine, Seongnam, the Republic of Korea; CHA Organoid Research Center, CHA University, Seongnam, the Republic of Korea; R&D Institute, ORGANOIDSCIENCES LTD., Seongnam, the Republic of Korea.
| |
Collapse
|
5
|
Boccaccini A, Cavaterra D, Carnevale C, Tanga L, Marini S, Bocedi A, Lacal PM, Manni G, Graziani G, Sbardella D, Tundo GR. Novel frontiers in neuroprotective therapies in glaucoma: Molecular and clinical aspects. Mol Aspects Med 2023; 94:101225. [PMID: 38000334 DOI: 10.1016/j.mam.2023.101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023]
Abstract
In the last years, neuroprotective therapies have attracted the researcher interests as modern and challenging approach for the treatment of neurodegenerative diseases, aimed at protecting the nervous system from injuries. Glaucoma is a neurodegenerative disease characterized by progressive excavation of the optic nerve head, retinal axonal injury and corresponding vision loss that affects millions of people on a global scale. The molecular basis of the pathology is largely uncharacterized yet, and the therapeutic approaches available do not change the natural course of the disease. Therefore, in accordance with the therapeutic regimens proposed for other neurodegenerative diseases, a modern strategy to treat glaucoma includes prescription of drugs with neuroprotective activities. With respect to this, several preclinical and clinical investigations on a plethora of different drugs are currently ongoing. In this review, first, the conceptualization of the rationale for the adoption of neuroprotective strategies for retina is summarized. Second, the molecular aspects highlighting glaucoma as a neurodegenerative disease are reported. In conclusion, the molecular and pharmacological properties of most promising direct neuroprotective drugs used to delay glaucoma progression are examined, including: neurotrophic factors, NMDA receptor antagonists, the α2-adrenergic agonist, brimonidine, calcium channel blockers, antioxidant agents, nicotinamide and statins.
Collapse
Affiliation(s)
| | - Dario Cavaterra
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Tor Vergata, Via Della Ricerca Scientifica 1, 00133, Rome, Italy
| | | | | | - Stefano Marini
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università di Roma Tor Vergata, Via Montpellier n. 1, 00133, Roma, Italy
| | - Alessio Bocedi
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Tor Vergata, Via Della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Pedro M Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, Via Monti di Creta 104, 00167, Rome, Italy
| | - Gianluca Manni
- IRCCS - Fondazione Bietti, Rome, Italy; Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università di Roma Tor Vergata, Via Montpellier n. 1, 00133, Roma, Italy
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133, Rome, Italy
| | | | - Grazia Raffaella Tundo
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università di Roma Tor Vergata, Via Montpellier n. 1, 00133, Roma, Italy.
| |
Collapse
|
6
|
Kaur B, Miglioranza Scavuzzi B, F Abcouwer S, N Zacks D. A simplified protocol to induce hypoxia in a standard incubator: A focus on retinal cells. Exp Eye Res 2023; 236:109653. [PMID: 37793495 PMCID: PMC10732591 DOI: 10.1016/j.exer.2023.109653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023]
Abstract
Hypoxia chambers have traditionally been used to induce hypoxia in cell cultures. Cellular responses to hypoxia can also be mimicked with the use of chemicals such as cobalt chloride (CoCl2), which stabilizes hypoxia-inducible factor alpha-subunit proteins. In studies of ocular cells using primary cells and cell lines, such as Müller glial cell (MGC) lines, photoreceptor cell lines, retinal pigment epithelial (RPE) cell lines and retinoblastoma cell lines oxygen levels employed in hypoxia chambers range typically between 0.2% and 5% oxygen. For chemical induction of hypoxic response in these cells, the CoCl2 concentrations used typically range from 100 to 600 μM. Here, we describe simplified protocols for stabilizing cellular hypoxia-inducible factor-1α (HIF-1α) in cell culture using either a hypoxia chamber or CoCl2. In addition, we also provide a detailed methodology to confirm hypoxia induction by the assessment of protein levels of HIF-1α, which accumulates in response to hypoxic conditions. Furthermore, we provide a summary of conditions applied in previous studies of ocular cells.
Collapse
Affiliation(s)
- Bhavneet Kaur
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Bruna Miglioranza Scavuzzi
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Steven F Abcouwer
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - David N Zacks
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Sgambellone S, Marri S, Villano S, Masini E, Provensi G, Bastia E, Galli C, Brambilla S, Impagnatiello F, Lucarini L. NCX 470 Exerts Retinal Cell Protection and Enhances Ophthalmic Artery Blood Flow After Ischemia/Reperfusion Injury of Optic Nerve Head and Retina. Transl Vis Sci Technol 2023; 12:22. [PMID: 37750744 PMCID: PMC10541723 DOI: 10.1167/tvst.12.9.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/23/2023] [Indexed: 09/27/2023] Open
Abstract
Purpose The purpose of this study was to assess the retinal protective activity and ocular hemodynamics after NCX 470 (0.1%) compared to bimatoprost administered as the US Food and Drug Administration (FDA)-approved drug (Lumigan - 0.01% ophthalmic solution, LUM) and at an equimolar dose (0.072%, BIM) to that released by NCX 470. Methods Endothelin-1 (ET-1) induced ischemia/reperfusion injury model in rabbits was used. ET-1 was injected nearby the optic nerve head (ONH) twice/week for 6 weeks. Starting on week 3, the animals received vehicle (VEH), NCX 470, LUM, or BIM (30 µL/eye, twice daily, 6 days/week) until the end of ET-1 treatment. Intraocular pressure (IOP), ophthalmic artery resistive index (OA-RI), and electroretinogram (ERG) data were collected prior to dosing and at different time points postdosing. Reduced glutathione, 8-Hydroxy 2-deoxyguanosine, and Caspase-3 were determined in the retina of treated eyes. DNA fragmentation was determined by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) staining. Results ET-1 increased IOP (VEHIOP_Baseline = 20.5 ± 0.8 and VEHIOP_Week6 = 24.8 ± 0.3 mmHg) and OA-RI (VEHOA-RI_Baseline = 0.36 ± 0.02 and VEHOA-RI_Week6 = 0.55 ± 0.01) and reduced rod/cone responses over time. Oxidative stress, inflammation, and apoptotic markers increased in ET-1-treated eyes. NCX 470 prevented IOP (NCX 470IOP_Week6 = 18.1 ± 0.6 mmHg) and OA-RI changes (NCX 470OA-RI_Week6 = 0.33 ± 0.01) and restored ERG amplitude leaving unaltered the respective latency; these effects were only partially demonstrated by LUM or BIM. Additionally, NCX 470 reduced oxidative stress, inflammation, and apoptosis in the retinas of treated eyes. BIM and LUM were numerically less effective on these parameters. Conclusions NCX 470 repeated ocular dosing ameliorates ocular hemodynamics and retinal cell dysfunction caused by ischemia/reperfusion via nitric oxide- and bimatoprost-mediated mechanisms. Translational Relevance If confirmed in clinical setting our data may open new therapeutic opportunities to reduce visual field loss in glaucoma.
Collapse
Affiliation(s)
- Silvia Sgambellone
- Department of Neuroscience, Phycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Florence, Italy
| | - Silvia Marri
- Department of Neuroscience, Phycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Florence, Italy
| | - Serafina Villano
- Department of Neuroscience, Phycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Florence, Italy
| | - Emanuela Masini
- Department of Neuroscience, Phycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Florence, Italy
| | - Gustavo Provensi
- Department of Neuroscience, Phycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Florence, Italy
| | | | | | | | | | - Laura Lucarini
- Department of Neuroscience, Phycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Florence, Italy
| |
Collapse
|
8
|
Salvetat ML, Pellegrini F, Spadea L, Salati C, Zeppieri M. Pharmaceutical Approaches to Normal Tension Glaucoma. Pharmaceuticals (Basel) 2023; 16:1172. [PMID: 37631087 PMCID: PMC10458083 DOI: 10.3390/ph16081172] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Normal tension glaucoma (NTG) is defined as a subtype of primary open-angle glaucoma (POAG) in which the intraocular pressure (IOP) values are constantly within the statistically normal range without treatment and represents approximately the 30-40% of all glaucomatous cases. The pathophysiology of this condition is multifactorial and is still not completely well known. Several theories have been proposed to explain the onset and progression of this disease, which can be divided into IOP-dependent and IOP-independent factors, suggesting different therapeutic strategies. The current literature strongly supports the fundamental role of IOP in NTG. The gold standard treatment for NTG tends to be based on the lowering IOP even if "statistically normal". Numerous studies have shown, however, that the IOP reduction alone is not enough to slow down or stop the disease progression in all cases, suggesting that other IOP-independent risk factors may contribute to the NTG pathogenesis. In addition to IOP-lowering strategies, several different therapeutic approaches for NTG have been proposed, based on vaso-active, antioxidant, anti-inflammatory and/or neuroprotective substances. To date, unfortunately, there are no standardized or proven treatment alternatives for NTG when compared to traditional IOP reduction treatment regimes. The efficacy of the IOP-independent strategies in decreasing the risk or treating NTG still remains inconclusive. The aim of this review is to highlight strategies reported in the current literature to treat NTG. The paper also describes the challenges in finding appropriate and pertinent treatments for this potentially vision-threatening disease. Further comprehension of NTG pathophysiology can help clinicians determine when to use IOP-lowering treatments alone and when to consider additional or alternatively individualized therapies focused on particular risk factors, on a case-by-case basis.
Collapse
Affiliation(s)
- Maria Letizia Salvetat
- Department of Ophthalmology, Azienda Sanitaria Friuli Occidentale, 33170 Pordenone, Italy
| | - Francesco Pellegrini
- Department of Ophthalmology, Azienda Sanitaria Friuli Occidentale, 33170 Pordenone, Italy
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, “Sapienza” University of Rome, 00142 Rome, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
9
|
Sharif NA, Odani-Kawabata N, Lu F, Pinchuk L. FP and EP2 prostanoid receptor agonist drugs and aqueous humor outflow devices for treating ocular hypertension and glaucoma. Exp Eye Res 2023; 229:109415. [PMID: 36803996 DOI: 10.1016/j.exer.2023.109415] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/21/2022] [Accepted: 02/08/2023] [Indexed: 02/21/2023]
Abstract
Prostaglandin (PG) receptors represent important druggable targets due to the many diverse actions of PGs in the body. From an ocular perspective, the discovery, development, and health agency approvals of prostaglandin F (FP) receptor agonists (FPAs) have revolutionized the medical treatment of ocular hypertension (OHT) and glaucoma. FPAs, such as latanoprost, travoprost, bimatoprost, and tafluprost, powerfully lower and control intraocular pressure (IOP), and became first-line therapeutics to treat this leading cause of blindness in the late 1990s to early 2000s. More recently, a latanoprost-nitric oxide (NO) donor conjugate, latanoprostene bunod, and a novel FP/EP3 receptor dual agonist, sepetaprost (ONO-9054 or DE-126), have also demonstrated robust IOP-reducing activity. Moreover, a selective non-PG prostanoid EP2 receptor agonist, omidenepag isopropyl (OMDI), was discovered, characterized, and has been approved in the United States, Japan and several other Asian countries for treating OHT/glaucoma. FPAs primarily enhance uveoscleral (UVSC) outflow of aqueous humor (AQH) to reduce IOP, but cause darkening of the iris and periorbital skin, uneven thickening and elongation of eyelashes, and deepening of the upper eyelid sulcus during chronic treatment. In contrast, OMDI lowers and controls IOP by activation of both the UVSC and trabecular meshwork outflow pathways, and it has a lower propensity to induce the aforementioned FPA-induced ocular side effects. Another means to address OHT is to physically promote the drainage of the AQH from the anterior chamber of the eye of patients with OHT/glaucoma. This has successfully been achieved by the recent approval and introduction of miniature devices into the anterior chamber by minimally invasive glaucoma surgeries. This review covers the three major aspects mentioned above to highlight the etiology of OHT/glaucoma, and the pharmacotherapeutics and devices that can be used to combat this blinding ocular disease.
Collapse
Affiliation(s)
- Najam A Sharif
- Ophthalmology Innovation Center, Santen Inc., Emeryville, CA, USA; Singapore Eye Research Institute, Singapore; Eye-ACP Duke-National University of Singapore Medical School, Singapore; Department of Pharmacology and Neuroscience, University of North Texas Health Sciences Center, Fort Worth, TX, USA; Department of Pharmacy Sciences, Creighton University, Omaha, NE, USA; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA; Imperial College of Science and Technology, St. Mary's Campus, London, UK; Institute of Ophthalmology, University College London, London, UK.
| | | | - Fenghe Lu
- Product Development Division, Santen Inc., Emeryville, CA, USA
| | - Leonard Pinchuk
- Ophthalmology Innovation Center, Santen Inc., Emeryville, CA, USA; Biomedical Engineering Department, University of Miami, Miami, FL, USA
| |
Collapse
|
10
|
Sharif N. Neuroaxonal and cellular damage/protection by prostanoid receptor ligands, fatty acid derivatives and associated enzyme inhibitors. Neural Regen Res 2023; 18:5-17. [PMID: 35799502 PMCID: PMC9241399 DOI: 10.4103/1673-5374.343887] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Cellular and mitochondrial membrane phospholipids provide the substrate for synthesis and release of prostaglandins in response to certain chemical, mechanical, noxious and other stimuli. Prostaglandin D2, prostaglandin E2, prostaglandin F2α, prostaglandin I2 and thromboxane-A2 interact with five major receptors (and their sub-types) to elicit specific downstream cellular and tissue actions. In general, prostaglandins have been associated with pain, inflammation, and edema when they are present at high local concentrations and involved on a chronic basis. However, in acute settings, certain endogenous and exogenous prostaglandins have beneficial effects ranging from mediating muscle contraction/relaxation, providing cellular protection, regulating sleep, and enhancing blood flow, to lowering intraocular pressure to prevent the development of glaucoma, a blinding disease. Several classes of prostaglandins are implicated (or are considered beneficial) in certain central nervous system dysfunctions (e.g., Alzheimer’s, Parkinson’s, and Huntington’s diseases; amyotrophic lateral sclerosis and multiple sclerosis; stroke, traumatic brain injuries and pain) and in ocular disorders (e.g., ocular hypertension and glaucoma; allergy and inflammation; edematous retinal disorders). This review endeavors to address the physiological/pathological roles of prostaglandins in the central nervous system and ocular function in health and disease, and provides insights towards the therapeutic utility of some prostaglandin agonists and antagonists, polyunsaturated fatty acids, and cyclooxygenase inhibitors.
Collapse
|
11
|
Kurysheva NI. [Neuroprotective properties of latanoprost]. Vestn Oftalmol 2022; 138:126-134. [PMID: 36004601 DOI: 10.17116/oftalma2022138041126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Glaucoma is the main cause of irreversible blindness in the world. Latanoprost - an ester prodrug of prostaglandin F2α (PGF2α) - was the first prostaglandin analogue used to treat glaucoma. The review shows that latanoprost possesses direct neuroprotective properties such as blocking the entry of calcium ions into neurons and inhibiting the action of caspase-3, inhibiting the activity of cyclooxygenase and activation of polypeptide 2B1 (OATP2B1) and Klotho protein. It is emphasized that when the drug is instilled into the eye, the concentration of the drug inside the vitreous body is twice as high as what is required to ensure the survival of retinal ganglion cells.
Collapse
Affiliation(s)
- N I Kurysheva
- Medical and Biological University of Innovations and Continuing Education of the State Research Center - Burnasyan Federal Biophysical Center, Moscow, Russia
- Ophthalmological Center of the State Research Center - Burnasyan Federal Biophysical Center, Moscow, Russia
| |
Collapse
|
12
|
Azimpour S, Emami Alagha H, Faghihi H, Rajaei SM, Shokoohimand A. Effects of 0.0015% preservative-free tafluprost on the equine eye. Vet Ophthalmol 2021; 25:173-179. [PMID: 34806805 DOI: 10.1111/vop.12957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/28/2021] [Accepted: 11/07/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The purpose of this study was to determine the effects and potential side effects of topical preservative-free (PF) tafluprost 0.0015% in ophthalmologically normal horses. ANIMALS Five adult grade horses. PROCEDURES One of the eyes of each horse was randomly chosen as the "treatment" eye, and consequently, the contralateral eye served as the "control." A single dose of PF tafluprost 0.0015% (0.2 mL) was instilled in the treated eye of each horse. Intraocular pressure (IOP), Schirmer's tear test (STT) levels of each eye, and an ophthalmic examination were performed at T0 (baseline), T30, T120, T24 h, and T48 h. RESULTS The mean IOP values of the treated eyes at baseline (T0), T30, T120, T24 h, and T48 h were 25.4 ± 4.8 mmHg, 21.2 ± 1.92 mmHg, 15.20 ± 2.48 mmHg, 18.40 ± 1.51 mmHg, and 24.60 ± 1.94 mmHg, respectively. Significant differences were observed between the mean baseline IOP level and the T120 and T24 h time points (p = .001 and p = .009). The mean STT levels at each time point showed insignificant fluctuations during the study (p = .140). Adverse effects such as chemosis and episcleral injection were observed 30 min after the instillation of tafluprost 0.0015% (T30). Blepharospasm and conjunctival hyperemia were observed 120 min (T120) after the administration of the medication. CONCLUSION AND CLINICAL RELEVANCE Tafluprost 0.0015% showed potential in reducing IOP, but due to its local side effects, it is not a good candidate for management of glaucoma in horses. Tafluprost did not notably affect STT.
Collapse
Affiliation(s)
- Saeed Azimpour
- Department of Veterinary Medicine, Babol Branch, Islamic Azad University, Babol, Iran
| | - Hannah Emami Alagha
- Department of Clinical Sciences, College of Veterinary Medicine, Islamic Azad University, Karaj Branch, Alborz, Iran
| | - Houman Faghihi
- Ophthalmology Section, Negah Veterinary Centre, Tehran, Iran.,Department of Clinical Sciences, Faculty of Veterinary Specialized Sciences, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Seyed Mehdi Rajaei
- Department of Clinical Sciences, College of Veterinary Medicine, Islamic Azad University, Karaj Branch, Alborz, Iran.,Ophthalmology Section, Negah Veterinary Centre, Tehran, Iran
| | - Armin Shokoohimand
- Ophthalmology Section, Negah Veterinary Centre, Tehran, Iran.,Department of Clinical Sciences, Faculty of Veterinary Specialized Sciences, Islamic Azad University, Science and Research Branch, Tehran, Iran
| |
Collapse
|
13
|
Kelada M, Hill D, Yap TE, Manzar H, Cordeiro MF. Innovations and revolutions in reducing retinal ganglion cell loss in glaucoma. EXPERT REVIEW OF OPHTHALMOLOGY 2020. [DOI: 10.1080/17469899.2021.1835470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Mary Kelada
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London NW1 5QH, UK
| | - Daniel Hill
- Glaucoma and Retinal Neurodegeneration Group, UCL Institute of Ophthalmology, London, UK
| | - Timothy E. Yap
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London NW1 5QH, UK
- The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London, UK
| | - Haider Manzar
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London NW1 5QH, UK
| | - M. Francesca Cordeiro
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London NW1 5QH, UK
- Glaucoma and Retinal Neurodegeneration Group, UCL Institute of Ophthalmology, London, UK
- The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London, UK
| |
Collapse
|
14
|
Shalaby WS, Shankar V, Razeghinejad R, Katz LJ. Current and new pharmacotherapeutic approaches for glaucoma. Expert Opin Pharmacother 2020; 21:2027-2040. [PMID: 32717157 DOI: 10.1080/14656566.2020.1795130] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Glaucoma is the leading cause of irreversible blindness worldwide. Medical therapy is the main line of treatment of open-angle glaucoma (OAG) and ocular hypertension. Despite the expansion of the glaucoma lineup with the newly approved medication classes, many barriers and issues still exist with topical therapy. Novel non-topical drug delivery may address such issues, adding more options to glaucoma pharmacotherapy. AREAS COVERED This review outlines current topical therapies for glaucoma, in addition to new medications under trials. The issues with topical therapy, in general, are discussed, as well as the new non-topical drug delivery systems. The authors performed a comprehensive search for published studies on glaucoma medical therapy using the electronic database of PubMed and manual search for each medication and non-topical delivery options. The extra- and intraocular delivery methods and the new topical glaucoma medications under research are covered. EXPERT OPINION Medical management of glaucoma represents a challenge for both patients and clinicians. Noncompliance (e.g. difficulty with administering the eye drops), cost, side effects, and intraocular pressure fluctuation are the major problems with topical therapy. To overcome such barriers, research should continue in developing new medications and innovation of non-topical drug delivery systems.
Collapse
Affiliation(s)
- Wesam Shamseldin Shalaby
- Glaucoma Research Center, Wills Eye Hospital , Philadelphia, PA, USA.,Tanta Medical School, Tanta University , Tanta, Gharbia, Egypt
| | - Vikram Shankar
- Glaucoma Research Center, Wills Eye Hospital , Philadelphia, PA, USA
| | - Reza Razeghinejad
- Glaucoma Research Center, Wills Eye Hospital , Philadelphia, PA, USA
| | - L Jay Katz
- Glaucoma Research Center, Wills Eye Hospital , Philadelphia, PA, USA
| |
Collapse
|
15
|
Jung KI, Woo JE, Park CK. Intraocular pressure fluctuation and neurodegeneration in the diabetic rat retina. Br J Pharmacol 2020; 177:3046-3059. [PMID: 32087615 PMCID: PMC7279969 DOI: 10.1111/bph.15033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Early retinal neurodegeneration occurs as one of the complications of diabetes even before clinically detectable diabetic vascular retinopathy. The pathogenesis of retinal diabetic neuropathy is still not well understood. We investigated the serial changes or fluctuations in intraocular pressure (IOP) and examined their roles in the pathogenesis of neuronal degeneration in diabetic retina. EXPERIMENTAL APPROACH Male Sprague Dawley rats with streptozotocin-induced diabetes were treated with ophthalmic preparations of brinzolamide, latanoprost, both drugs (combined treatment) or saline for 8 weeks. IOP was measured daily under general anaesthesia using a rebound tonometer. Antegrade axoplasmic flow in the optic nerve was assessed with a fluorescent substrate. Immunohistochemical staining, TUNEL assays and western blots were also used. KEY RESULTS The fluctuation of IOP was higher in the diabetes group than in the normal control or the combined treatment group. Diabetes-induced apoptosis of retinal ganglion cells was decreased by combined treatment. Increased expression of glial fibrillary acidic protein or Iba-1 in the retina or optic nerve head, induced by diabetes, was attenuated only by the combined treatment. Intercellular adhesion molecule-1 was increased in diabetic rats but not in the combined treatment group. Diabetes-induced loss of antegrade axoplasmic transport was partially relieved with combined treatment. CONCLUSION AND IMPLICATIONS Elevated IOP fluctuations seemed to be associated with the gliosis, neuroinflammation, and neurodegeneration induced by diabetes. The loss of retinal ganglion cells might be relieved by IOP-lowering medication. The improvement of unstable perfusion pressure could play a role in neuroprotection in the diabetic retina.
Collapse
Affiliation(s)
- Kyoung In Jung
- Department of Ophthalmology, Seoul St. Mary's Hospital, College of MedicineThe Catholic University of KoreaSeoulKorea
| | - Jung Eun Woo
- Department of Ophthalmology, Seoul St. Mary's Hospital, College of MedicineThe Catholic University of KoreaSeoulKorea
| | - Chan Kee Park
- Department of Ophthalmology, Seoul St. Mary's Hospital, College of MedicineThe Catholic University of KoreaSeoulKorea
| |
Collapse
|
16
|
Abstract
Glaucoma is the main cause of irreversible blindness in the world. Latanoprost - an ester prodrug of prostaglandin F2α (PGF2α) - was the first prostaglandin analogue used in the treatment of glaucoma. The present review shows that latanoprost is the most balanced prostaglandin analogue in terms of efficacy-safety. Its use improves the quality of life of glaucoma patients, provides reliable IOP reduction, has high patient compliance, and helps with the long-term preservation of visual functions. The review also reveals the possibility of long-term (more than five years) use of the drug, as well as effective combined treatment using latanoprost and beta-blockers, considers the pediatric use of latanoprost, and discusses its neuroprotective properties.
Collapse
Affiliation(s)
- N I Kurysheva
- A.I. Burnazyan Federal Medical and Biophysical Center of FMBA, Moscow, Russia
| |
Collapse
|
17
|
Sato K, Nakagawa Y, Omodaka K, Asada H, Fujii S, Masaki K, Nakazawa T. The Sustained Release of Tafluprost with a Drug Delivery System Prevents the Axonal Injury-induced Loss of Retinal Ganglion Cells in Rats. Curr Eye Res 2020; 45:1114-1123. [PMID: 31994948 DOI: 10.1080/02713683.2020.1715446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE To investigated whether a new drug delivery system (DDS) could enable the controlled release of tafluprost and suppress retinal ganglion cell (RGC) death in rats after optic nerve transection (ONT). METHODS A DDS containing 0.04%, 0.20% or 1.00% tafluprost, or vehicle, was injected intravitreally in 8-12-week-old male Sprague-Dawley rats 7 days before ONT, and the retinas were extracted 7 days after ONT. For comparison, eye drops containing 0.0015% tafluprost or vehicle were used once a day. The extracted retinas were analyzed with liquid chromatography-tandem mass spectrometry, immunohistochemistry and western blotting. RESULTS The level of tafluprost acid in the groups that received the 0.20% and 1.00% tafluprost DDSs was stable, and higher than the maximum concentration in the eye drop group, even after 14 days. In the retinas treated with the 1.00% tafluprost DDS, the active form of the drug had a high concentration (~50 times higher than eye drops), but no significant IOP difference compared with its vehicle in this study. The 1.00% tafluprost DDS group also had less cleaved α-fodrin and fewer c-Jun-positive cells than the vehicle DDS group. CONCLUSIONS This study found that a newly developed DDS allowed the controlled release of tafluprost and prevented the loss of RGCs after ONT IOP independently. The duration of drug action on the target site was longer with a tafluprost DDS than with topical instillation and should therefore reduce problems related to lack of patient compliance. This system may also enable new treatments to prevent RGC degeneration in diseases such as glaucoma.
Collapse
Affiliation(s)
- Kota Sato
- Department of Ophthalmology, Tohoku University Graduate School of Medicine , Sendai, Japan.,Collaborative Program for Ophthalmic Drug Discovery, Tohoku University Graduate School of Medicine , Sendai, Japan
| | - Yurika Nakagawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine , Sendai, Japan
| | - Kazuko Omodaka
- Department of Ophthalmology, Tohoku University Graduate School of Medicine , Sendai, Japan.,Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine , Sendai, Japan
| | - Hiroyuki Asada
- Pharmaceutical Technology Development, Global R&D, Santen Pharmaceutical Co., Ltd ., Nara, Japan
| | - Shinobu Fujii
- Pharmaceutical Technology Development, Global R&D, Santen Pharmaceutical Co., Ltd ., Nara, Japan
| | - Kenji Masaki
- Pharmaceutical Technology Development, Global R&D, Santen Pharmaceutical Co., Ltd ., Nara, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine , Sendai, Japan.,Collaborative Program for Ophthalmic Drug Discovery, Tohoku University Graduate School of Medicine , Sendai, Japan.,Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine , Sendai, Japan.,Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine , Sendai, Japan.,Department of Retinal Disease Control, Ophthalmology, Tohoku University Graduate School of Medicine , Sendai, Japan
| |
Collapse
|
18
|
Adeghate J, Rahmatnejad K, Waisbourd M, Katz LJ. Intraocular pressure-independent management of normal tension glaucoma. Surv Ophthalmol 2018; 64:101-110. [PMID: 30300625 DOI: 10.1016/j.survophthal.2018.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 08/15/2018] [Accepted: 08/20/2018] [Indexed: 11/19/2022]
Affiliation(s)
- Jennifer Adeghate
- Wills Eye Hospital, Glaucoma Research Department, Philadelphia, Pennsylvania, USA; Weill Cornell Medical College, Department of Ophthalmology, New York, New York, USA
| | - Kamran Rahmatnejad
- Wills Eye Hospital, Glaucoma Research Department, Philadelphia, Pennsylvania, USA
| | - Michael Waisbourd
- Wills Eye Hospital, Glaucoma Research Department, Philadelphia, Pennsylvania, USA; Thomas Jefferson University, Department of Ophthalmology, Philadelphia, Pennsylvania, USA; Tel-Aviv University Medical Center, Glaucoma Research Center, Tel-Aviv, Israel
| | - L Jay Katz
- Wills Eye Hospital, Glaucoma Research Department, Philadelphia, Pennsylvania, USA; Thomas Jefferson University, Department of Ophthalmology, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
19
|
Bucolo C, Platania CBM, Drago F, Bonfiglio V, Reibaldi M, Avitabile T, Uva M. Novel Therapeutics in Glaucoma Management. Curr Neuropharmacol 2018; 16:978-992. [PMID: 28925883 PMCID: PMC6120119 DOI: 10.2174/1570159x15666170915142727] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/26/2017] [Accepted: 09/03/2017] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Glaucoma is a progressive optic neuropathy characterized by retinal ganglion cell death and alterations of visual field. Elevated intraocular pressure (IOP) is considered the main risk factor of glaucoma, even though other factors cannot be ruled out, such as epigenetic mechanisms. OBJECTIVE An overview of the ultimate promising experimental drugs to manage glaucoma has been provided. RESULTS In particular, we have focused on purinergic ligands, KATP channel activators, gases (nitric oxide, carbon monoxide and hydrogen sulfide), non-glucocorticoid steroidal compounds, neurotrophic factors, PI3K/Akt activators, citicoline, histone deacetylase inhibitors, cannabinoids, dopamine and serotonin receptors ligands, small interference RNA, and Rho kinase inhibitors. CONCLUSIONS The review has been also endowed of a brief chapter on last reports about potential neuroprotective benefits of anti-glaucoma drugs already present in the market.
Collapse
Affiliation(s)
- Claudio Bucolo
- Address correspondence to this author at the Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Via S. Sofia 97, 95123 Catania, Italy; Tel: +39 095 4781196;
| | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Abstract
This literature review is focused on the prostaglandin topical analogues and describes peculiarities of their structure, pharmacokinetics and pharmacodynamics, results of clinical trials and meta-analyzes, as well as modern trends in the topical IOP-lowering glaucoma therapy evolution.
Collapse
|
22
|
Kwon JW, Jee D. Prostaglandin use is associated with increased vascular endothelial growth factor in the aqueous humor of glaucoma patients. Clin Exp Ophthalmol 2016; 45:549-551. [PMID: 28009474 DOI: 10.1111/ceo.12909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 12/18/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Jin-Woo Kwon
- Department of Ophthalmology and Visual Science, St. Vincent's Hospital, College of Medicine, Catholic University of Korea, Suwon, South Korea
| | - Donghyun Jee
- Department of Ophthalmology and Visual Science, St. Vincent's Hospital, College of Medicine, Catholic University of Korea, Suwon, South Korea
| |
Collapse
|
23
|
Fuma S, Shimazawa M, Imamura T, Kanno Y, Takano N, Tsuruma K, Hara H. Neuroprotective Effect of Ocular Hypotensive Drugs: Latanoprost/Timolol in Combination Are More Effective than Each as Monotherapy in RGC-5. Biol Pharm Bull 2016; 39:192-8. [DOI: 10.1248/bpb.b15-00584] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Shinichiro Fuma
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University
| | - Tomoyo Imamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University
| | - Yusuke Kanno
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University
| | - Norihito Takano
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University
| | - Kazuhiro Tsuruma
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University
| |
Collapse
|
24
|
Morrone LA, Rombolà L, Corasaniti MT, Bagetta G, Nucci C, Russo R. Natural compounds and retinal ganglion cell neuroprotection. PROGRESS IN BRAIN RESEARCH 2015; 220:257-81. [PMID: 26497795 DOI: 10.1016/bs.pbr.2015.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Glaucoma, the second leading cause of blindness in the world, is a chronic optic neuropathy often associated with increased intraocular pressure and characterized by progressive retinal ganglion cell (RGC) axons degeneration and death leading to typical optic nerve head damage and distinctive visual field defects. Although the pathogenesis of glaucoma is still largely unknown, it is hypothesized that RCGs become damaged through various insults/mechanisms, including ischemia, oxidative stress, excitotoxicity, defective axonal transport, trophic factor withdrawal, and neuroinflammation. In this review, we summarize the potential benefits of several natural compounds for RGCs neuroprotection.
Collapse
Affiliation(s)
- Luigi Antonio Morrone
- Department of Pharmacy and Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, Arcavacata di Rende, Italy; University Consortium for Adaptive Disorders and Head Pain (UCHAD), Section of Neuropharmacology of Normal and Pathological Neuronal Plasticity, University of Calabria, Arcavacata di Rende, Italy.
| | - Laura Rombolà
- Department of Pharmacy and Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, Arcavacata di Rende, Italy
| | | | - Giacinto Bagetta
- Department of Pharmacy and Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, Arcavacata di Rende, Italy; University Consortium for Adaptive Disorders and Head Pain (UCHAD), Section of Neuropharmacology of Normal and Pathological Neuronal Plasticity, University of Calabria, Arcavacata di Rende, Italy
| | - Carlo Nucci
- Ophthalmology Unit, Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Rossella Russo
- Department of Pharmacy and Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, Arcavacata di Rende, Italy
| |
Collapse
|
25
|
Schmidl D, Schmetterer L, Garhöfer G, Popa-Cherecheanu A. Pharmacotherapy of glaucoma. J Ocul Pharmacol Ther 2015; 31:63-77. [PMID: 25587905 PMCID: PMC4346603 DOI: 10.1089/jop.2014.0067] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 10/31/2014] [Indexed: 12/25/2022] Open
Abstract
Glaucoma is a group of diseases involving the optic nerve and associated structures, which is characterized by progressive visual field loss and typical changes of the optic nerve head (ONH). The only known treatment of the disease is reduction of intraocular pressure (IOP), which has been shown to reduce glaucoma progression in a variety of large-scale clinical trials. Nowadays, a relatively wide array of topical antiglaucoma drugs is available, including prostaglandin analogues, carbonic anhydrase inhibitors, beta-receptor antagonists, adrenergic agonists, and parasympathomimetics. In clinical routine, this allows for individualized treatment taking risk factors, efficacy, and safety into account. A major challenge is related to adherence to therapy. Sustained release devices may help minimize this problem but are not yet available for clinical routine use. Another hope arises from non-IOP-related treatment concepts. In recent years, much knowledge has been gained regarding the molecular mechanisms that underlie the disease process in glaucoma. This also strengthens the hope that glaucoma therapy beyond IOP lowering will become available. Implementing this concept with clinical trials remains, however, a challenge.
Collapse
Affiliation(s)
- Doreen Schmidl
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Leopold Schmetterer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Gerhard Garhöfer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
26
|
Craven ER, Alzuhairy SA. Bimatoprost: a unique compound that in its nonhydrolyzed form is a prostamide and hydrolyzed form has prostaglandin receptor activity, for glaucoma and cosmetic indications. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/17469899.2014.917959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Niwano Y, Iwasawa A, Ayaki M. Ocular surface cytotoxicity and safety evaluation of tafluprost, a recently developed anti-glaucoma prostaglandin analog. OPHTHALMOLOGY AND EYE DISEASES 2014; 6:5-12. [PMID: 24558301 PMCID: PMC3928056 DOI: 10.4137/oed.s12445] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/11/2013] [Accepted: 12/12/2013] [Indexed: 11/05/2022]
Abstract
In vitro cytotoxicity of tafluprost, which is the most recently developed anti-glaucoma prostaglandin (PG) analog, in ocular surface cells is addressed in comparison with other PG analogs. Irrespective of cell lines and models, the cytotoxicity of anti-glaucoma PG eyedrops was primarily related to the concentration of benzalkonium chloride (BAK) contained in the eyedrops as a preservative. Accordingly, preservative-free tafluprost was apparently less cytotoxic than BAK-preserved PG analogs. Furthermore, our study for cytotoxicity assays on ocular cells, conducted by comprehensive investigations covering a variety of concentrations and treatment times, which is termed the cell viability score (CVS) system, demonstrated that 0.001% BAK-preserved tafluprost was not cytotoxic, and suggested that tafluprost may even reduce the cytotoxic effect of BAK. It has been reported that adverse reactions associated with tafluprost in healthy human volunteers and patients with glaucoma include conjunctival hyperemia, eyelid pigmentation, eyelash bristles, and deepening of upper eyelid sulcus. Nonetheless, most clinical studies have demonstrated that not only preservative-free tafluprost but also BAK-preserved tafluprost is well tolerated and safe in patients with glaucoma and ocular hypertension.
Collapse
Affiliation(s)
- Yoshimi Niwano
- Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Atsuo Iwasawa
- Department of Bioengineering, Tokyo Institute of Technology, Yokohama, Japan
| | - Masahiko Ayaki
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
28
|
Shih GC, Calkins DJ. Secondary neuroprotective effects of hypotensive drugs and potential mechanisms of action. EXPERT REVIEW OF OPHTHALMOLOGY 2014; 7:161-175. [PMID: 22737176 DOI: 10.1586/eop.12.13] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Primary open-angle glaucoma, a long-term degenerative ocular neuropathy, remains a significant cause of vision impairment worldwide. While many risk factors have been correlated with increased risk for primary open-angle glaucoma, intraocular pressure (IOP) remains the only modifiable risk factor and primary therapeutic target. Pharmacologic therapies are administered topically; these include α(2)-agonists, β-antagonists, prostaglandin analogs and carbonic anhydrase inhibitors. Some of these topical medications exhibit secondary neuroprotective effects independent of their effect on IOP. This review covers the possible mechanisms of neuroprotection stimulated by drugs currently marketed for the lowering of IOP, based on known literature. While the neuroprotective properties of many glaucoma pharmaceuticals are promising from an experimental standpoint, key challenges for the development of new clinical practices include unknown systemic side effects, limited methods of drug delivery to the retina and optic nerve, and development of extended-release formulations.
Collapse
Affiliation(s)
- Grace C Shih
- The Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University, School of Medicine, 11435 MRB IV, 2215B Garland Avenue, Nashville, TN 37232, USA
| | | |
Collapse
|
29
|
Sagawa H, Terasaki H, Nakanishi K, Tokita Y, Watanabe M. Regeneration of optic nerve fibers with unoprostone, a prostaglandin-related antiglaucoma drug, in adult cats. Jpn J Ophthalmol 2013; 58:100-9. [PMID: 24129676 DOI: 10.1007/s10384-013-0282-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 08/26/2013] [Indexed: 01/01/2023]
Abstract
PURPOSE We investigated the effects of unoprostone on neurite extension of cultured retinal pieces and axonal regeneration of retinal ganglion cells in the crushed optic nerve of adult cats. METHODS The retinal pieces were cultured with unoprostone or its primary metabolite, M1, dissolved in DMSO or polysorbate for 14 days, and the number and length of Tau-1-positive neurites and glial processes labeled with anti-glial fibrillary acidic protein antibodies were examined. After the optic nerve was crushed, unoprostone was injected into the vitreous body and the crushed site. On day 12, wheat germ agglutinin-conjugated horseradish peroxidase was injected into the vitreous body to anterogradely label the regenerated axons. On day 14, the optic nerve was excised and longitudinally sectioned. After peroxidase reaction, the number of axons regenerating beyond the crush site was examined. RESULTS The greatest number of neurites protruded from the cultured retinal pieces in 3 μM unoprostone and 3 μM M1. The neurite length was also the longest at 3 μM unoprostone and 3 μM M1, in which no glial processes were detected. After injections of 3 μM unoprostone, the final concentration in the vitreous humor, into the vitreous body and the crush site, the optic nerve fibers regenerated and extended beyond the crush site. In contrast, almost no fibers extended beyond the crush site after injection of phosphate-buffered saline. CONCLUSIONS The results indicate that intravitreal injection of unoprostone promotes regeneration of crushed optic nerve fibers in adult cats.
Collapse
Affiliation(s)
- Hiroe Sagawa
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | |
Collapse
|
30
|
Woodward DF, Wang JW, Poloso NJ. Recent progress in prostaglandin F2α ethanolamide (prostamide F2α) research and therapeutics. Pharmacol Rev 2013; 65:1135-47. [PMID: 23893067 DOI: 10.1124/pr.112.007088] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Prostamide (prostaglandin ethanolamide) research emerged from two distinct lines of research: 1) the unique pharmacology of the antiglaucoma drug bimatoprost and 2) the discovery that endocannabinoid anandamide was converted by COX-2 to a series of electrochemically neutral prostaglandin (PG) ethanolamides. Bimatoprost pharmacology was found to be virtually identical to that of prostamide F2α. The earliest studies relied on comparison of agonist potencies compared with PGF2α and synthetic prostaglandin F2α (FP) receptor agonists. The subsequent discovery of selective and potent prostamide receptor antagonists (AGN 211334-6, as shown in Fig. 3) was critical for distinguishing between prostamide and FP receptor-mediated effects. The prostamide F2α receptor was then modeled by cotransfecting the wild-type FP receptor with an mRNA splicing variant (altFP4).Bimatoprost is now used therapeutically for treating both glaucoma and eyelash hypotrichosis. Bimatoprost also stimulates hair growth in isolated human scalp hair follicles. A strong effect is also seen in mouse pelage hair, where bimatoprost essentially halves the onset of hair regrowth and the time to achieve full hair regrowth in shaved mice. Beyond glaucoma and hair growth, bimatoprost has potential for reducing fat deposition. Studies to date suggest that preadipocytes are the cellular target for bimatoprost. The discovery of the enzyme prostamide/PGF synthase was invaluable in elucidating the anatomic distribution of prostamide F2α. High expression in the central nervous system provided the impetus for later studies that described prostamide F2α as a nociceptive mediator in the spinal cord. At the translational level, bimatoprost has already provided therapeutics in two distinct areas and the use of both prostamide agonists and antagonists may provide other useful medicaments.
Collapse
Affiliation(s)
- D F Woodward
- Department of Biological Sciences, Allergan Inc, Irvine, California 92623-9534, USA.
| | | | | |
Collapse
|
31
|
Herrero-Vanrell R, Vicario de la Torre M, Andrés-Guerrero V, Barbosa-Alfaro D, Molina-Martínez I, Bravo-Osuna I. Nano and microtechnologies for ophthalmic administration, an overview. J Drug Deliv Sci Technol 2013. [DOI: 10.1016/s1773-2247(13)50016-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Liu Y, Mao W. Tafluprost once daily for treatment of elevated intraocular pressure in patients with open-angle glaucoma. Clin Ophthalmol 2012; 7:7-14. [PMID: 23293509 PMCID: PMC3533683 DOI: 10.2147/opth.s30951] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Glaucoma is a leading cause of visual loss worldwide. Current antiglaucoma therapy focuses on lowering intraocular pressure to a safe level. In recent years, prostaglandin analogs have become the first-line agents for treating open angle glaucoma. Tafluprost, which was first reported in 2003, is a novel prostaglandin analog, and has been shown to be a potent ocular hypotensive agent in a number of preclinical and clinical studies. Also, its unique preservative-free formulation helps to decrease preservative-associated ocular disorders and improve patient compliance. In this review, studies from 2003 to 2012 focusing on the structure, metabolism, efficacy, and safety of tafluprost are summarized. These studies suggested that application of tafluprost once daily is a safe and effective treatment for patients with open angle glaucoma.
Collapse
Affiliation(s)
- Yang Liu
- Department of Cell Biology and Anatomy, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX
| | | |
Collapse
|
33
|
Harms NV, Toris CB. Current status of unoprostone for the management of glaucoma and the future of its use in the treatment of retinal disease. Expert Opin Pharmacother 2012. [PMID: 23199345 DOI: 10.1517/14656566.2013.748038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Optic nerve and retinal diseases such as glaucoma, age-related macular degeneration (AMD) and retinitis pigmentosa (RP) are significant public health concerns and have a momentous impact on patients' functional status and quality of life. These diseases are among the most common causes of visual impairment worldwide and account for billions of dollars in healthcare expenditures and lost productivity. The importance of adequate treatment of these conditions and the need for efficacious therapeutic drugs cannot be overstated. Unoprostone continues to be developed as a potential treatment for these debilitating diseases. AREAS COVERED This review provides background information on unoprostone isopropyl (unoprostone), a prostanoid and synthetic docosanoid approved for the treatment of open-angle glaucoma and ocular hypertension, and recapitulates safety and efficacy data as it relates to this indication. Additionally, this review describes potential new uses of unoprostone as therapy for dry AMD and RP. A literature search of peer-reviewed publications was performed utilizing PubMed. Searches were last updated on 10 September 2012. EXPERT OPINION Current data indicate that unoprostone does significantly lower intraocular pressure (IOP) and has a favorable safety and tolerability profile. However, the IOP-lowering effects of unoprostone do not compare with other commercially available prostanoids and it has the disadvantage of a twice-daily rather than once-daily dosing regimen. Nonetheless, recent data suggest that unoprostone may improve neuronal survival and increase ocular blood flow, indicating that it may have some value as a therapy for glaucoma, RP and dry AMD. Further studies are needed to confirm whether unoprostone provides any clinically significant advantage over the other commercially available prostanoids.
Collapse
Affiliation(s)
- Nathan V Harms
- University of Nebraska Medical Center, Department of Ophthalmology and Visual Sciences, Omaha, NE 68198-5840, USA
| | | |
Collapse
|
34
|
Brignole-Baudouin F, Desbenoit N, Hamm G, Liang H, Both JP, Brunelle A, Fournier I, Guerineau V, Legouffe R, Stauber J, Touboul D, Wisztorski M, Salzet M, Laprevote O, Baudouin C. A new safety concern for glaucoma treatment demonstrated by mass spectrometry imaging of benzalkonium chloride distribution in the eye, an experimental study in rabbits. PLoS One 2012; 7:e50180. [PMID: 23209668 PMCID: PMC3507684 DOI: 10.1371/journal.pone.0050180] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 10/22/2012] [Indexed: 11/18/2022] Open
Abstract
We investigated in a rabbit model, the eye distribution of topically instilled benzalkonium_(BAK) chloride a commonly used preservative in eye drops using mass spectrometry imaging. Three groups of three New Zealand rabbits each were used: a control one without instillation, one receiving 0.01%BAK twice a day for 5 months and one with 0.2%BAK one drop a day for 1 month. After sacrifice, eyes were embedded and frozen in tragacanth gum. Serial cryosections were alternately deposited on glass slides for histological (hematoxylin-eosin staining) and immunohistological controls (CD45, RLA-DR and vimentin for inflammatory cell infiltration as well as vimentin for Müller glial cell activation) and ITO or stainless steel plates for MSI experiments using Matrix-assisted laser desorption ionization time-of-flight. The MSI results were confirmed by a round-robin study on several adjacent sections conducted in two different laboratories using different sample preparation methods, mass spectrometers and data analysis softwares. BAK was shown to penetrate healthy eyes even after a short duration and was not only detected on the ocular surface structures, but also in deeper tissues, especially in sensitive areas involved in glaucoma pathophysiology, such as the trabecular meshwork and the optic nerve areas, as confirmed by images with histological stainings. CD45-, RLA-DR- and vimentin-positive cells increased in treated eyes. Vimentin was found only in the inner layer of retina in normal eyes and increased in all retinal layers in treated eyes, confirming an activation response to a cell stress. This ocular toxicological study confirms the presence of BAK preservative in ocular surface structures as well as in deeper structures involved in glaucoma disease. The inflammatory cell infiltration and Müller glial cell activation confirmed the deleterious effect of BAK. Although these results were obtained in animals, they highlight the importance of the safety-first principle for the treatment of glaucoma patients.
Collapse
|
35
|
Schallenberg M, Prokosch V, Thanos S. Regulation of retinal proteome by topical antiglaucomatous eye drops in an inherited glaucoma rat model. PLoS One 2012; 7:e33593. [PMID: 22792152 PMCID: PMC3390333 DOI: 10.1371/journal.pone.0033593] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 02/12/2012] [Indexed: 12/24/2022] Open
Abstract
Examination of the response of the retinal proteome to elevated intraocular pressure (IOP) and to the pharmacological normalization of IOP is crucial, in order to develop drugs with neuroptorective potential. We used a hereditary rat model of ocular hypertension to lower IOP with travaprost and dorzolamide applied topically on the eye surface, and examine changes of the retinal proteome. Our data demonstrate that elevated IOP causes alterations in the retinal protein profile, in particular in high-mobility-group-protein B1 (HMGB1), calmodulin, heat-shock-protein (HSP) 70 and carbonic anhydrase II expression. The changes of the retinal proteome by dorzolamide or travoprost are different and independent of the IOP lowering effect. This fact suggests that the eye drops exert a direct IOP-independent effect on retinal metabolism. Further investigations are required to elucidate the potential neuroprotective mechanisms signaled through changes of HMGB1, calmodulin, HSP70 and carbonic anhydrase II expression in glaucoma. The data may facilitate development of eye drops that exert neuroprotection through direct pharmacological effect.
Collapse
Affiliation(s)
- Maurice Schallenberg
- Institute of Experimental Ophthalmology, School of Medicine, University Clinics Münster and Interdisciplinary Centre for Clinical Research (IZKF), Münster, Germany
- Department of Ophthalmology, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Verena Prokosch
- Institute of Experimental Ophthalmology, School of Medicine, University Clinics Münster and Interdisciplinary Centre for Clinical Research (IZKF), Münster, Germany
| | - Solon Thanos
- Institute of Experimental Ophthalmology, School of Medicine, University Clinics Münster and Interdisciplinary Centre for Clinical Research (IZKF), Münster, Germany
- * E-mail:
| |
Collapse
|
36
|
Crawley L, Zamir SM, Cordeiro MF, Guo L. Clinical options for the reduction of elevated intraocular pressure. OPHTHALMOLOGY AND EYE DISEASES 2012; 4:43-64. [PMID: 23650457 PMCID: PMC3619493 DOI: 10.4137/oed.s4909] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Elevated IOP in clinical practice is usually seen in glaucoma or ocular hypertension. Glaucoma affects 60 million people worldwide and 8.4 million are bilaterally blind from this chronic disease.1 Options for reducing IOP rely on pharmacological agents, laser treatments and surgery which may be penetrating or non-penetrating. The last twenty years has seen significant changes in all of these strategies. This review aims to cover these clinical options and introduce some of the new technologies currently in development for the clinical lowering of IOP.
Collapse
Affiliation(s)
- Laura Crawley
- Western Eye Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | | | - Maria F. Cordeiro
- Glaucoma and Retinal Neurodegeneration Research Group, Visual Neuroscience, UCL Institute of Ophthalmology, London, United Kingdom
- Western Eye Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Li Guo
- Glaucoma and Retinal Neurodegeneration Research Group, Visual Neuroscience, UCL Institute of Ophthalmology, London, United Kingdom
| |
Collapse
|