1
|
Dong Y, Qian C, Yan P, Wan G. YTHDF1-regulated ALOX5 in retinal pigment epithelial cells under hypoxia enhances VEGF expression and promotes viability, migration, and angiogenesis of vascular endothelial cells. Sci Rep 2024; 14:23226. [PMID: 39369033 PMCID: PMC11455921 DOI: 10.1038/s41598-024-72388-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 09/06/2024] [Indexed: 10/07/2024] Open
Abstract
Upregulation of vascular endothelial growth factor (VEGF) and enhanced angiogenesis have been implicated in the severe progression of age-related macular degeneration (AMD). Abnormal arachidonate 5-lipoxygenase (ALOX5) is associated with AMD pathogenesis. However, no reports have shown the causal role of ALOX5 in angiogenesis during AMD. In the present study, ARPE-19 cells were exposed to hypoxia, an inducer of VEGF expression. Potential proteins implicated in AMD progression were predicted using bioinformatics. RNA affinity antisense purification-mass spectrometry (RAP-MS) was applied to identify the binding proteins of ALOX5 3'UTR. Expression of ALOX5 and YTH N6-methyladenosine RNA-binding protein 1 (YTHDF1) was detected by qRT-PCR and western blotting. VEGF expression and secretion were assessed by immunofluorescence and ELISA, respectively. The chicken embryo chorioallantoic membrane (CAM) was used to analyze the effect of ALOX5 on angiogenesis. RNA stability was assayed using the Actinomycin D assay. The results show that hypoxia promoted cell growth and increased VEGF expression in ARPE-19 cells. ALOX5 was associated with AMD progression, and hypoxia upregulated ALOX5 expression in ARPE-19 cells. ALOX5 silencing reduced VEGF expression induced by hypoxia in ARPE-19 cells. Moreover, the conditioned medium of ALOX5-silenced ARPE-19 cells could suppress the viability and migration of HUVECs and diminish angiogenesis in the CAM. Furthermore, YTHDF1 was validated to bind to ALOX5 3'UTR, and YTHDF1 promoted ALOX5 expression by elevating the stability of ALOX5 mRNA. In conclusion, our findings demonstrate that YTHDF1-regulated ALOX5 increases VEGF expression in hypoxia-exposed ARPE-19 cells and enhances the viability, migration, and angiogenesis of vascular endothelial cells.
Collapse
Affiliation(s)
- Yi Dong
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Cheng Qian
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Panshi Yan
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Guangming Wan
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
2
|
Wei P, He M, Wang Y, Han G. High-Fat Diet Alters Acylcarnitine Metabolism of the Retina and Retinal Pigment Epithelium/Choroidal Tissues in Laser-Induced Choroidal Neovascularization Rat Models. Mol Nutr Food Res 2023; 67:e2300080. [PMID: 37490551 DOI: 10.1002/mnfr.202300080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/19/2023] [Indexed: 07/27/2023]
Abstract
SCOPE Choroidal neovascularization (CNV) is age-related macular degeneration's (AMD) main pathological change. High-fat diet (HFD) is associated with a form of CNV; however, the specific mechanism is unclear. Mitochondrial dysfunction, characterized by abnormal acylcarnitine, occurs during metabolic screening of serum or other body tissues in AMD. This study investigates HFD's role in retinal and retinal pigment epithelium (RPE)/choroidal acylcarnitine metabolism in CNV formation. METHODS AND RESULTS Chow diet and HFD-BN rats are laser-treated to induce CNV. Acylcarnitine species are quantitatively characterized by ultrahigh-performance liquid chromatography-tandem mass spectrometry. Optical coherence tomography and fundus fluorescein angiography evaluate CNV severity. HFD promotes weight gain, dyslipidemia, and CNV formation. In CNV rats, few medium-chain fatty acids (MCFAs) acylcarnitine in the RPE/choroid are initially affected. When an HFD is administered to these, even MCFA acylcarnitine in the RPE/choroid is found to decline. However, in the retina, odd acylcarnitines are increased, revealing "an opposite" change within the RPE/choroid, accompanied by influencing glycolytic key enzymes. The HFD+CNV group incorporated fewer long-chain acylcarnitines, like C18:2, into the retina than controls. CONCLUSIONS HFD hastens choroidal neovascularization. The study comprehensively documented acylcarnitine profiles in a CNV rat model. Acylcarnitine's odd-even and carbon-chain length properties may guide future therapeutics.
Collapse
Affiliation(s)
- Pinghui Wei
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, P. R. China
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, 300020, P. R. China
- Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, 300020, P. R. China
| | - Meiqin He
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300020, P. R. China
| | - Ying Wang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, P. R. China
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, 300020, P. R. China
- Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, 300020, P. R. China
| | - Guoge Han
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, P. R. China
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, 300020, P. R. China
- Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, 300020, P. R. China
| |
Collapse
|
3
|
Khoury S, Soubeyre V, Cabaret S, Grégoire S, Mézière E, Masson E, Grosmaitre X, Bretillon L, Berdeaux O, Acar N, Le Bon AM. Impact of dietary n-3 polyunsaturated fatty acid intake during the perinatal and post-weaning periods on the phospholipid and ganglioside composition of olfactory tissues. Prostaglandins Leukot Essent Fatty Acids 2023; 191:102556. [PMID: 36870298 DOI: 10.1016/j.plefa.2023.102556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/02/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023]
Abstract
The olfactory mucosa (OM) and olfactory bulb (OB) are neuronal tissues that contribute to the early processing of olfactory information. They contain significant amounts of n-3 and n-6 polyunsaturated fatty acids (PUFAs), which are crucial for neuronal tissue development. In this study, we evaluated the impact of feeding mice diets that are either deficient in α-linolenic acid (ALA) or supplemented with n-3 long-chain PUFAs from gestation to adolescence on the phospholipid and ganglioside composition of these tissues. Both diets modified the levels of some phospholipid classes, notably the phosphatidylserine and phosphatidylethanolamine levels. In addition, the low-ALA diet enriched n-6 PUFAs in the main phospholipid classes of both tissues, while the diet supplemented with n-3 PUFAs enhanced the n-3 PUFA-containing phospholipid species level, mainly in OM. The diets also modulated the levels and profiles of several ganglioside classes in OM and OB. These modifications may have repercussions on the olfactory sensitivity.
Collapse
Affiliation(s)
- Spiro Khoury
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne Franche-Comté, F-21000 Dijon, France; INRAE, PROBE Research Infrastructure, ChemoSens facility, F-21000 Dijon, France
| | - Vanessa Soubeyre
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Stéphanie Cabaret
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne Franche-Comté, F-21000 Dijon, France; INRAE, PROBE Research Infrastructure, ChemoSens facility, F-21000 Dijon, France
| | - Stéphane Grégoire
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Esther Mézière
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne Franche-Comté, F-21000 Dijon, France; INRAE, PROBE Research Infrastructure, ChemoSens facility, F-21000 Dijon, France
| | - Elodie Masson
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Xavier Grosmaitre
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Lionel Bretillon
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Olivier Berdeaux
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne Franche-Comté, F-21000 Dijon, France; INRAE, PROBE Research Infrastructure, ChemoSens facility, F-21000 Dijon, France
| | - Niyazi Acar
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Anne Marie Le Bon
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne Franche-Comté, F-21000 Dijon, France.
| |
Collapse
|
4
|
Abstract
In contrast to traditional breeding, which relies on the identification of mutants, metabolic engineering provides a new platform to modify the oil composition in oil crops for improved nutrition. By altering endogenous genes involved in the biosynthesis pathways, it is possible to modify edible plant oils to increase the content of desired components or reduce the content of undesirable components. However, introduction of novel nutritional components such as omega-3 long-chain polyunsaturated fatty acids needs transgenic expression of novel genes in crops. Despite formidable challenges, significant progress in engineering nutritionally improved edible plant oils has recently been achieved, with some commercial products now on the market.
Collapse
Affiliation(s)
| | - Qing Liu
- CSIRO Agriculture & Food, Canberra, Australia;
| | | |
Collapse
|
5
|
Vítor ACM, Correia JJ, Alves SP, Bessa RJB. Enrichment of Brain n-3 Docosapentaenoic Acid (DPA) and Retinal n-3 Eicosapentaenoic Acid (EPA) in Lambs Fed Nannochloropsis oceanica Microalga. Animals (Basel) 2023; 13:828. [PMID: 36899687 PMCID: PMC10000189 DOI: 10.3390/ani13050828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFAs) have special physiological functions in both brain and retinal tissues that are related to the modulation of inflammatory processes and direct effects on neuronal membrane fluidity, impacting mental and visual health. Among them, the long-chain (LC) n-3 PUFAs, as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are of special importance. Scarce data are available about the fatty acid (FA) composition of the ruminant brain in response to dietary intervention. However, we decided to examine the brain and retina FA composition of lambs supplemented with an EPA-rich microalga feed for 21 days, as it is known that despite the extensive biohydrogenation of dietary PUFAs in the rumen, ruminants can selectively accumulate some n-3 LC-PUFAs in their brain and retinal tissues. Twenty-eight male lambs were fed a control diet, or the same diet further supplemented with Nannochloropsis sp. microalga. Their brains and retina were collected for FA characterization. Overall, the brain FA profile remained unchanged, with little alteration in omega-3 docosapentaenoic acid (DPA) enhancement in both the hippocampus and prefrontal cortex. Retinal tissues were particularly responsive to the dietary intervention, with a 4.5-fold enhancement of EPA in the freeze-dried-fed lambs compared with the control lambs. We conclude that retinal tissues are sensitive to short-term n-3 PUFA supplementation in lambs.
Collapse
Affiliation(s)
- Ana C. M. Vítor
- Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Jorge J. Correia
- Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Susana P. Alves
- Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Rui J. B. Bessa
- Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| |
Collapse
|
6
|
Olivares-González L, Velasco S, Gallego I, Esteban-Medina M, Puras G, Loucera C, Martínez-Romero A, Peña-Chilet M, Pedraz JL, Rodrigo R. An SPM-Enriched Marine Oil Supplement Shifted Microglia Polarization toward M2, Ameliorating Retinal Degeneration in rd10 Mice. Antioxidants (Basel) 2022; 12:antiox12010098. [PMID: 36670960 PMCID: PMC9855087 DOI: 10.3390/antiox12010098] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/03/2022] [Accepted: 12/13/2022] [Indexed: 01/04/2023] Open
Abstract
Retinitis pigmentosa (RP) is the most common inherited retinal dystrophy causing progressive vision loss. It is accompanied by chronic and sustained inflammation, including M1 microglia activation. This study evaluated the effect of an essential fatty acid (EFA) supplement containing specialized pro-resolving mediators (SPMs), on retinal degeneration and microglia activation in rd10 mice, a model of RP, as well as on LPS-stimulated BV2 cells. The EFA supplement was orally administered to mice from postnatal day (P)9 to P18. At P18, the electrical activity of the retina was examined by electroretinography (ERG) and innate behavior in response to light were measured. Retinal degeneration was studied via histology including the TUNEL assay and microglia immunolabeling. Microglia polarization (M1/M2) was assessed by flow cytometry, qPCR, ELISA and histology. Redox status was analyzed by measuring antioxidant enzymes and markers of oxidative damage. Interestingly, the EFA supplement ameliorated retinal dysfunction and degeneration by improving ERG recording and sensitivity to light, and reducing photoreceptor cell loss. The EFA supplement reduced inflammation and microglia activation attenuating M1 markers as well as inducing a shift to the M2 phenotype in rd10 mouse retinas and LPS-stimulated BV2 cells. It also reduced oxidative stress markers of lipid peroxidation and carbonylation. These findings could open up new therapeutic opportunities based on resolving inflammation with oral supplementation with SPMs such as the EFA supplement.
Collapse
Affiliation(s)
- Lorena Olivares-González
- Group of Pathophysiology and Therapies for Vision Disorders, Príncipe Felipe Research Center (CIPF), 46012 Valencia, Spain
| | - Sheyla Velasco
- Group of Pathophysiology and Therapies for Vision Disorders, Príncipe Felipe Research Center (CIPF), 46012 Valencia, Spain
| | - Idoia Gallego
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Health Institute Carlos III, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Marina Esteban-Medina
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS Hospital Virgen del Rocío, 41013 Seville, Spain
- Systems and Computational Medicine Group, Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
| | - Gustavo Puras
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Health Institute Carlos III, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Carlos Loucera
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS Hospital Virgen del Rocío, 41013 Seville, Spain
- Systems and Computational Medicine Group, Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
| | | | - María Peña-Chilet
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS Hospital Virgen del Rocío, 41013 Seville, Spain
- Systems and Computational Medicine Group, Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Bioinformatics in Rare Diseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocio, 41013 Seville, Spain
| | - José Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Health Institute Carlos III, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Regina Rodrigo
- Group of Pathophysiology and Therapies for Vision Disorders, Príncipe Felipe Research Center (CIPF), 46012 Valencia, Spain
- Biomedical Research Networking Center in Rare Diseases (CIBERER), Health Institute Carlos III, 28029 Madrid, Spain
- Department of Physiology, University of Valencia (UV), 46100 Burjassot, Spain
- Department of Anatomy and Physiology, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics UV-IIS La Fe, 46026 Valencia, Spain
- Correspondence: ; Tel.: +34-96-328-96-80
| |
Collapse
|
7
|
Plasma Fatty Acids Pattern and Dry Eye Disease in the Elderly: The Montrachet Population-Based Study. Nutrients 2022; 14:nu14112290. [PMID: 35684090 PMCID: PMC9183164 DOI: 10.3390/nu14112290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: To investigate the association between plasma fatty acids (FAs) and dry eye disease (DED) in an elderly population; (2) Methods: We conducted a population-based study, the Montrachet study, in individuals older than 75 years. DED was evaluated using the Schirmer I test without anesthesia, tear film breakup time (TFBUT) measurement and fluorescein corneal staining. Plasma FAs were measured in fasting blood using gas chromatography; (3) Results: A total of 740 subjects with a plasma measurement of 25 FAs were included in this study. The mean age was 82.2 ± 3.7 years, and 62.7% were women. DED was present in 35.0% of participants. We identified a plasma FAs pattern positively associated with DED, characterized by low polyunsaturated fatty acids (PUFAs), high monounsaturated fatty acids (MUFAs) and low saturated fatty acids (SFAs) levels. After adjustment for major confounders, individuals in the upper quartile of the FAs pattern scores compared with those in the lower quartile were more likely to present DED (OR 2.46 (95% CI 1.51-4.01), p = 0.001); (4) Conclusion: In this study, we found that a plasma FAs pattern characterized by low PUFAs, high MUFAs and low SFAs was significantly associated with DED in elderly participants.
Collapse
|
8
|
Potential mechanisms of macular degeneration protection by fatty fish consumption. Curr Opin Pharmacol 2022; 63:102186. [PMID: 35217394 DOI: 10.1016/j.coph.2022.102186] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/15/2022] [Accepted: 01/15/2022] [Indexed: 01/13/2023]
Abstract
Age-related macular degeneration (AMD) is a progressive retinal disease that is a leading cause of visual impairment and severe vision loss. The number of people affected by AMD is increasing and constitutes a huge worldwide health problem. The beneficial effects of fish consumption on AMD have been revealed over the past decades, and in this review, we summarizes the beneficial effects of fatty fish on AMD and its mechanism of action. Fatty fish affects the development of AMD by inhibiting neovascularization, interacting with retinal pigment epithelial (RPE) cells, displacing Omega-6, and inducing cellular responses. It is recommended that people at high risk or with moderate or more severe AMD should consider eating more fatty fish in addition to maintaining a healthy lifestyle of weight control and smoking cessation and the need to promote new models of personalized AMD prevention and treatment.
Collapse
|
9
|
Vidal E, Jun B, Gordon WC, Maire MA, Martine L, Grégoire S, Khoury S, Cabaret S, Berdeaux O, Acar N, Bretillon L, Bazan NG. Bioavailability and spatial distribution of fatty acids in the rat retina after dietary omega-3 supplementation. J Lipid Res 2020; 61:1733-1746. [PMID: 33127836 PMCID: PMC7707163 DOI: 10.1194/jlr.ra120001057] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spatial changes of FAs in the retina in response to different dietary n-3 formulations have never been explored, although a diet rich in EPA and DHA is recommended to protect the retina against the effects of aging. In this study, Wistar rats were fed for 8 weeks with balanced diet including either EPA-containing phospholipids (PLs), EPA-containing TGs, DHA-containing PLs, or DHA-containing TGs. Qualitative changes in FA composition of plasma, erythrocytes, and retina were evaluated by gas chromatography-flame ionization detector. Following the different dietary intakes, changes to the quantity and spatial organization of PC and PE species in retina were determined by LC coupled to MS/MS and MALDI coupled to MS imaging. The omega-3 content in the lipids of plasma and erythrocytes suggests that PLs as well as TGs are good omega-3 carriers for retina. However, a significant increase in DHA content in retina was observed, especially molecular species as di-DHA-containing PC and PE, as well as an increase in very long chain PUFAs (more than 28 carbons) following PL-EPA and TG-DHA diets only. All supplemented diets triggered spatial organization changes of DHA in the photoreceptor layer around the optic nerve. Taken together, these findings suggest that dietary omega-3 supplementation can modify the content of FAs in the rat retina.
Collapse
Affiliation(s)
- Elisa Vidal
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, INRAE, CNRS, Université Bourgogne Franche-Comté, Dijon, France; Horus Pharma Laboratories, Saint Laurent du Var, France
| | - Bokkyoo Jun
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA
| | - William C Gordon
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA
| | - Marie-Annick Maire
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, INRAE, CNRS, Université Bourgogne Franche-Comté, Dijon, France
| | - Lucy Martine
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, INRAE, CNRS, Université Bourgogne Franche-Comté, Dijon, France
| | - Stéphane Grégoire
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, INRAE, CNRS, Université Bourgogne Franche-Comté, Dijon, France
| | - Spiro Khoury
- Chemosens Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Stephanie Cabaret
- Chemosens Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Olivier Berdeaux
- Chemosens Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Niyazi Acar
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, INRAE, CNRS, Université Bourgogne Franche-Comté, Dijon, France
| | - Lionel Bretillon
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, INRAE, CNRS, Université Bourgogne Franche-Comté, Dijon, France.
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA
| |
Collapse
|
10
|
Albouery M, Buteau B, Grégoire S, Martine L, Gambert S, Bron AM, Acar N, Chassaing B, Bringer MA. Impact of a high-fat diet on the fatty acid composition of the retina. Exp Eye Res 2020; 196:108059. [DOI: 10.1016/j.exer.2020.108059] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/18/2020] [Accepted: 04/28/2020] [Indexed: 12/16/2022]
|
11
|
Perinatal exposure to diets with different n-6:n-3 fatty acid ratios affects olfactory tissue fatty acid composition. Sci Rep 2020; 10:10785. [PMID: 32612195 PMCID: PMC7329853 DOI: 10.1038/s41598-020-67725-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/15/2020] [Indexed: 12/23/2022] Open
Abstract
The olfactory mucosa (OM) and the olfactory bulb (OB) are responsible for the detection and processing of olfactory signals. Like the brain and retina, they contain high levels of n-3 and n-6 polyunsaturated fatty acids (PUFAs), which are essential for the structure and function of neuronal and non-neuronal cells. Since the influence of the maternal diet on olfactory lipid profiles of the offspring has been poorly explored, we examined the effects of feeding mice during the perinatal period with diets containing an adequate linoleic acid level but either deficient in α-linolenic acid (ALA) or supplemented in n-3 long-chain PUFAs on the lipid composition of dams and weaning offspring olfactory tissues. In both the OM and OB, the low n-3 ALA diet led to a marked reduction in n-3 PUFAs with a concomitant increase in n-6 PUFAs, whereas consumption of the high n-3 PUFA diet reduced n-6 PUFAs and increased n-3 PUFAs. Structural analysis showed that the molecular species profiles of the main phospholipid classes of olfactory tissues from weaning pups were markedly affected by the maternal diets. This study demonstrates that the PUFA status of olfactory tissues is sensitive to diet composition from the early stages of development.
Collapse
|
12
|
Chen L, Wang L, Wang H, Sun R, You L, Zheng Y, Yuan Y, Li D. Identification and characterization of a plastidial ω-3 fatty acid desaturase EgFAD8 from oil palm (Elaeis guineensis Jacq.) and its promoter response to light and low temperature. PLoS One 2018; 13:e0196693. [PMID: 29698515 PMCID: PMC5919639 DOI: 10.1371/journal.pone.0196693] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 04/17/2018] [Indexed: 11/18/2022] Open
Abstract
In higher plants, ω-3 fatty acid desaturases are the key enzymes in the biosynthesis of alpha-linolenic acid (18:3), which plays key roles in plant metabolism as a structural component of both storage and membrane lipids. Here, the first ω-3 fatty acid desaturase gene was identified and characterized from oil palm. The bioinformatic analysis indicated it encodes a temperature-sensitive chloroplast ω-3 fatty acid desaturase, designated as EgFAD8. The expression analysis revealed that EgFAD8 is highly expressed in the oil palm leaves, when compared with the expression in the mesocarp. The heterologous expression of EgFAD8 in yeast resulted in the production of a novel fatty acid 18:3 (about 0.27%), when fed with 18:2 in the induction culture. Furthermore, to detect whether EgFAD8 could be induced by the environment stress, we detected the expression efficiency of the EgFAD8 promoter in transgenic Arabidopsis treated with low temperature and darkness, respectively. The results indicated that the promoter of EgFAD8 gene could be significantly induced by low temperature and slightly induced by darkness. These results reveal the function of EgFAD8 and the feature of its promoter from oil palm fruits, which will be useful for understanding the fuction and regulation of plastidial ω-3 fatty acid desaturases in higher plants.
Collapse
Affiliation(s)
- Lizhi Chen
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education; Department of Bioengineering, College of Material and Chemical Engineering, Hainan University, Haikou, Hainan, China
| | - Lei Wang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education; Department of Bioengineering, College of Material and Chemical Engineering, Hainan University, Haikou, Hainan, China
| | - Herong Wang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education; Department of Bioengineering, College of Material and Chemical Engineering, Hainan University, Haikou, Hainan, China
| | - Ruhao Sun
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education; Department of Bioengineering, College of Material and Chemical Engineering, Hainan University, Haikou, Hainan, China
| | - Lili You
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, China
| | - Yusheng Zheng
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education; Department of Bioengineering, College of Material and Chemical Engineering, Hainan University, Haikou, Hainan, China
| | - Yijun Yuan
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education; Department of Bioengineering, College of Material and Chemical Engineering, Hainan University, Haikou, Hainan, China
| | - Dongdong Li
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education; Department of Bioengineering, College of Material and Chemical Engineering, Hainan University, Haikou, Hainan, China
| |
Collapse
|
13
|
Molina-Leyva I, Molina-Leyva A, Bueno-Cavanillas A. Efficacy of nutritional supplementation with omega-3 and omega-6 fatty acids in dry eye syndrome: a systematic review of randomized clinical trials. Acta Ophthalmol 2017; 95:e677-e685. [PMID: 28371493 DOI: 10.1111/aos.13428] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 02/05/2017] [Indexed: 11/30/2022]
Abstract
PURPOSE To critically appraise scientific evidence regarding the efficacy of nutritional supplementation with omega-3 and omega-6 fatty acids for the treatment of dry eye syndrome (DES). METHODS A systematic review of randomized clinical trials was performed. Two independent reviewers selected and analysed the scientific papers that met inclusion and exclusion criteria. Objective and subjective efficacy outcomes were assessed. RESULTS The trials involved a total of 2591 patients in fifteen independent studies. All studies were published between 2005 and 2015. The supplements used were mostly omega-3 and omega-6 in different proportions. Subjective improvement was measured using mainly Ocular Surface Disease Index (OSDI) test and Dry Eye Severity Score (DESS) test: significant differences in favour of the experimental group were found in seven of the studies. The objective amelioration was assessed by lacrimal function parameters: Tear break-up time (TBUT) significantly increased in nine studies and Schirmer's test in four studies. CONCLUSION We observed a discrete improvement in the parameters of tear function. Scientific evidence is not strong enough to systematically recommend the use of omega-3 and omega-6 fatty acids as a standalone treatment of DES independently from its aetiology. However, they could be considered as an effective alternative to topical treatment in patients with DES secondary to certain pathologies.
Collapse
Affiliation(s)
| | - Alejandro Molina-Leyva
- Department of Preventive Medicine and Public Health; Universidad de Granada; Granada, Spain
- Department of Dermatology; Torrecárdenas Hospital Complex; Almería Spain
| | | |
Collapse
|
14
|
Babchia N, DeAraujo A, Leclère L, Buteau B, Martine L, Grégoire S, Brétillon L. Docosahexaenoic acid modulates oxidative stress-induced apoptosis via PI3K/Akt m-TOR/p70S6K pathways in human RPE cells. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201400155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Narjes Babchia
- CNRS; UMR 6265; Centre des Sciences du Goût et de l'Alimentation; Dijon France
- INRA; UMR 1324; Centre des Sciences du Goût et de l'Alimentation; Dijon France
- Université de Bourgogne; Centre des Sciences du Goût et de l'Alimentation; Dijon France
| | - Aline DeAraujo
- CNRS; UMR 6265; Centre des Sciences du Goût et de l'Alimentation; Dijon France
- INRA; UMR 1324; Centre des Sciences du Goût et de l'Alimentation; Dijon France
- Université de Bourgogne; Centre des Sciences du Goût et de l'Alimentation; Dijon France
| | - Laurent Leclère
- CNRS; UMR 6265; Centre des Sciences du Goût et de l'Alimentation; Dijon France
- INRA; UMR 1324; Centre des Sciences du Goût et de l'Alimentation; Dijon France
- Université de Bourgogne; Centre des Sciences du Goût et de l'Alimentation; Dijon France
| | - Bénédicte Buteau
- CNRS; UMR 6265; Centre des Sciences du Goût et de l'Alimentation; Dijon France
- INRA; UMR 1324; Centre des Sciences du Goût et de l'Alimentation; Dijon France
- Université de Bourgogne; Centre des Sciences du Goût et de l'Alimentation; Dijon France
| | - Lucy Martine
- CNRS; UMR 6265; Centre des Sciences du Goût et de l'Alimentation; Dijon France
- INRA; UMR 1324; Centre des Sciences du Goût et de l'Alimentation; Dijon France
- Université de Bourgogne; Centre des Sciences du Goût et de l'Alimentation; Dijon France
| | - Stéphane Grégoire
- CNRS; UMR 6265; Centre des Sciences du Goût et de l'Alimentation; Dijon France
- INRA; UMR 1324; Centre des Sciences du Goût et de l'Alimentation; Dijon France
- Université de Bourgogne; Centre des Sciences du Goût et de l'Alimentation; Dijon France
| | - Lionel Brétillon
- CNRS; UMR 6265; Centre des Sciences du Goût et de l'Alimentation; Dijon France
- INRA; UMR 1324; Centre des Sciences du Goût et de l'Alimentation; Dijon France
- Université de Bourgogne; Centre des Sciences du Goût et de l'Alimentation; Dijon France
| |
Collapse
|
15
|
Mansour MP, Shrestha P, Belide S, Petrie JR, Nichols PD, Singh SP. Characterization of oilseed lipids from "DHA-producing Camelina sativa": a new transformed land plant containing long-chain omega-3 oils. Nutrients 2014; 6:776-89. [PMID: 24566436 PMCID: PMC3942731 DOI: 10.3390/nu6020776] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/28/2014] [Accepted: 02/10/2014] [Indexed: 11/16/2022] Open
Abstract
New and sustainable sources of long-chain (LC, ≥C₂₀) omega-3 oils containing DHA (docosahexaenoic acid, 22:6ω3) are required to meet increasing demands. The lipid content of the oilseed of a novel transgenic, DHA-producing land plant, Camelina sativa, containing microalgal genes able to produce LC omega-3 oils, contained 36% lipid by weight with triacylglycerols (TAG) as the major lipid class in hexane extracts (96% of total lipid). Subsequent chloroform-methanol (CM) extraction recovered further lipid (~50% polar lipid, comprising glycolipids and phospholipids) and residual TAG. The main phospholipid species were phosphatidyl choline and phosphatidyl ethanolamine. The % DHA was: 6.8% (of total fatty acids) in the TAG-rich hexane extract and 4.2% in the polar lipid-rich CM extract. The relative level of ALA (α-linolenic acid, 18:3ω3) in DHA-camelina seed was higher than the control. Major sterols in both DHA- and control camelina seeds were: sitosterol, campesterol, cholesterol, brassicasterol and isofucosterol. C₁₆-C₂₂ fatty alcohols, including iso-branched and odd-chain alcohols were present, including high levels of iso-17:0, 17:0 and 19:0. Other alcohols present were: 16:0, iso-18:0, 18:0 and 18:1 and the proportions varied between the hexane and CM extracts. These iso-branched odd-chain fatty alcohols, to our knowledge, have not been previously reported. These components may be derived from wax esters, or free fatty alcohols.
Collapse
Affiliation(s)
- Maged P Mansour
- CSIRO Food Futures Flagship, Marine and Atmospheric Research, Castray Esplanade Hobart, Tasmania 7000, Australia.
| | - Pushkar Shrestha
- CSIRO Food Futures Flagship, Plant Industry, P.O. Box 1600, Canberra ACT 2601, Australia.
| | - Srinivas Belide
- CSIRO Food Futures Flagship, Plant Industry, P.O. Box 1600, Canberra ACT 2601, Australia.
| | - James R Petrie
- CSIRO Food Futures Flagship, Plant Industry, P.O. Box 1600, Canberra ACT 2601, Australia.
| | - Peter D Nichols
- CSIRO Food Futures Flagship, Marine and Atmospheric Research, Castray Esplanade Hobart, Tasmania 7000, Australia.
| | - Surinder P Singh
- CSIRO Food Futures Flagship, Plant Industry, P.O. Box 1600, Canberra ACT 2601, Australia.
| |
Collapse
|
16
|
Ananth S, Gnana-Prakasam JP, Bhutia YD, Veeranan-Karmegam R, Martin PM, Smith SB, Ganapathy V. Regulation of the cholesterol efflux transporters ABCA1 and ABCG1 in retina in hemochromatosis and by the endogenous siderophore 2,5-dihydroxybenzoic acid. Biochim Biophys Acta Mol Basis Dis 2014; 1842:603-12. [PMID: 24462739 DOI: 10.1016/j.bbadis.2014.01.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 01/08/2014] [Accepted: 01/13/2014] [Indexed: 01/19/2023]
Abstract
Hypercholesterolemia and polymorphisms in the cholesterol exporter ABCA1 are linked to age-related macular degeneration (AMD). Excessive iron in retina also has a link to AMD pathogenesis. Whether these findings mean a biological/molecular connection between iron and cholesterol is not known. Here we examined the relationship between retinal iron and cholesterol using a mouse model (Hfe(-/-)) of hemochromatosis, a genetic disorder of iron overload. We compared the expression of the cholesterol efflux transporters ABCA1 and ABCG1 and cholesterol content in wild type and Hfe(-/-) mouse retinas. We also investigated the expression of Bdh2, the rate-limiting enzyme in the synthesis of the endogenous siderophore 2,5-dihydroxybenzoic acid (2,5-DHBA) in wild type and Hfe(-/-) mouse retinas, and the influence of this siderophore on ABCA1/ABCG1 expression in retinal pigment epithelium. We found that ABCA1 and ABCG1 were expressed in all retinal cell types, and that their expression was decreased in Hfe(-/-) retina. This was accompanied with an increase in retinal cholesterol content. Bdh2 was also expressed in all retinal cell types, and its expression was decreased in hemochromatosis. In ARPE-19 cells, 2,5-DHBA increased ABCA1/ABCG1 expression and decreased cholesterol content. This was not due to depletion of free iron because 2,5-DHBA (a siderophore) and deferiprone (an iron chelator) had opposite effects on transferrin receptor expression and ferritin levels. We conclude that iron is a regulator of cholesterol homeostasis in retina and that removal of cholesterol from retinal cells is impaired in hemochromatosis. Since excessive cholesterol is pro-inflammatory, hemochromatosis might promote retinal inflammation via cholesterol in AMD.
Collapse
Affiliation(s)
- Sudha Ananth
- Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, GA 30912, USA
| | - Jaya P Gnana-Prakasam
- Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, GA 30912, USA
| | - Yangzom D Bhutia
- Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, GA 30912, USA
| | | | - Pamela M Martin
- Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, GA 30912, USA
| | - Sylvia B Smith
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA 30912, USA
| | - Vadivel Ganapathy
- Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, GA 30912, USA.
| |
Collapse
|
17
|
Bretillon L, Simon E, Acar N, Berdeaux O, Masson E, Bron A, Creuzot-Garcher C. Serum omega-3 fatty acids are not associated with age-related macular degeneration. EXPERT REVIEW OF OPHTHALMOLOGY 2012. [DOI: 10.1586/eop.11.74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|