1
|
Matczyńska E, Beć-Gajowniczek M, Sivitskaya L, Gregorczyk E, Łyszkiewicz P, Szymańczak R, Jędrzejowska M, Wylęgała E, Krawczyński MR, Teper S, Boguszewska-Chachulska A. Optimised, Broad NGS Panel for Inherited Eye Diseases to Diagnose 1000 Patients in Poland. Biomedicines 2024; 12:1355. [PMID: 38927562 PMCID: PMC11202224 DOI: 10.3390/biomedicines12061355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Advances in gene therapy and genome editing give hope that new treatments will soon be available for inherited eye diseases that together affect a significant proportion of the adult population. New solutions are needed to make genetic diagnosis fast and affordable. This is the first study of such a large group of patients with inherited retinal dystrophies (IRD) and inherited optic neuropathies (ION) in the Polish population. It is based on four years of diagnostic analysis using a broad, targeted NGS approach. The results include the most common pathogenic variants, as well as 91 novel causative variants, including frameshifts in the cumbersome RPGR ORF15 region. The high frequency of the ABCA4 complex haplotype p.(Leu541Pro;Ala1038Val) was confirmed. Additionally, a deletion of exons 22-24 in USH2A, probably specific to the Polish population, was uncovered as the most frequent copy number variation. The diagnostic yield of the broad NGS panel reached 64.3% and is comparable to the results reported for genetic studies of IRD and ION performed for other populations with more extensive WES or WGS methods. A combined approach to identify genetic causes of all known diseases manifesting in the posterior eye segment appears to be the optimal choice given the currently available treatment options and advanced clinical trials.
Collapse
Affiliation(s)
- Ewa Matczyńska
- Genomed S.A., 02-971 Warsaw, Poland
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | | | | | | | | | | | | | - Edward Wylęgała
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Maciej R. Krawczyński
- Chair and Department of Medical Genetics, Poznań University of Medical Sciences, 61-701 Poznań, Poland
- Centers for Medical Genetics Genesis, 60-529 Poznań, Poland
| | - Sławomir Teper
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | | |
Collapse
|
2
|
Nowomiejska K, Baltaziak K, Całka P, Ciesielka M, Teresiński G, Rejdak R. Identification of the RPGR Gene Pathogenic Variants in a Cohort of Polish Male Patients with Retinitis Pigmentosa Phenotype. Genes (Basel) 2023; 14:1950. [PMID: 37895299 PMCID: PMC10606843 DOI: 10.3390/genes14101950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
The goal of the study was to explore the spectrum of pathogenic variants in the RPGR gene in a group of male Polish patients with a retinitis pigmentosa (RP) phenotype. A total of 45 male index patients, including twins, being members of 44 families, were screened for pathogenic variants in the RPGR gene via the direct sequencing of PCR-amplified genomic DNA and underwent a comprehensive ophthalmological examination in one center located in Poland. A total of two pathogenic and five likely pathogenic variants in eight patients (18%) were detected in the studied cohort. Of these, five variants were novel, and five disease-causing variants (71%) were identified within the ORF15 mutational hotspot of the RPGR gene. The median age of onset of the disease was 10 years (range 6-14 years), the median age during the examination was 30 years (range 20-47 years), and the median visual acuity was 0.4 (range 0.01-0.7). The majority of patients had middle constriction of the visual field and thinning of the central foveal thickness. Dizygotic twins bearing the same hemizygous mutation showed a different retinal phenotype in regard to the severity of the symptoms. This is the first RPGR mutation screening in Poland showing a prevalence of 18% of RPGR pathogenic mutations and likely pathogenic variants in the studied cohort of male patients with an RP phenotype.
Collapse
Affiliation(s)
- Katarzyna Nowomiejska
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, 20-059 Lublin, Poland; (K.B.); (R.R.)
| | - Katarzyna Baltaziak
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, 20-059 Lublin, Poland; (K.B.); (R.R.)
| | - Paulina Całka
- Department of Forensic Medicine, Medical University of Lublin, 20-059 Lublin, Poland; (P.C.); (M.C.); (G.T.)
| | - Marzanna Ciesielka
- Department of Forensic Medicine, Medical University of Lublin, 20-059 Lublin, Poland; (P.C.); (M.C.); (G.T.)
| | - Grzegorz Teresiński
- Department of Forensic Medicine, Medical University of Lublin, 20-059 Lublin, Poland; (P.C.); (M.C.); (G.T.)
| | - Robert Rejdak
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, 20-059 Lublin, Poland; (K.B.); (R.R.)
| |
Collapse
|
3
|
Samelska K, Szaflik JP, Śmigielska B, Zaleska-Żmijewska A. Progression of Rare Inherited Retinal Dystrophies May Be Monitored by Adaptive Optics Imaging. Life (Basel) 2023; 13:1871. [PMID: 37763275 PMCID: PMC10532666 DOI: 10.3390/life13091871] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/02/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Inherited retinal dystrophies (IRDs) are bilateral genetic conditions of the retina, leading to irreversible vision loss. This study included 55 eyes afflicted with IRDs affecting the macula. The diseases examined encompassed Stargardt disease (STGD), cone dystrophy (CD), and cone-rod dystrophy (CRD) using adaptive optics (Rtx1™; Imagine Eyes, Orsay, France). Adaptive optics facilitate high-quality visualisation of retinal microstructures, including cones. Cone parameters, such as cone density (DM), cone spacing (SM), and regularity (REG), were analysed. The best corrected visual acuity (BCVA) was assessed as well. Examinations were performed twice over a 6-year observation period. A significant change was observed in DM (1282.73/mm2 vs. 10,073.42/mm2, p< 0.001) and SM (9.83 μm vs. 12.16 μm, p< 0.001) during the follow-up. BCVA deterioration was also significant (0.16 vs. 0.12, p = 0.001), albeit uncorrelated with the change in cone parameters. No significant difference in REG was detected between the initial examination and the follow-up (p = 0.089).
Collapse
Affiliation(s)
- Katarzyna Samelska
- Department of Ophthalmology, Medical University of Warsaw, 02-091 Warsaw, Poland
- SPKSO Ophthalmic University Hospital, 00-576 Warsaw, Poland
| | - Jacek Paweł Szaflik
- Department of Ophthalmology, Medical University of Warsaw, 02-091 Warsaw, Poland
- SPKSO Ophthalmic University Hospital, 00-576 Warsaw, Poland
| | - Barbara Śmigielska
- Department of Ophthalmology, Medical University of Warsaw, 02-091 Warsaw, Poland
- SPKSO Ophthalmic University Hospital, 00-576 Warsaw, Poland
| | - Anna Zaleska-Żmijewska
- Department of Ophthalmology, Medical University of Warsaw, 02-091 Warsaw, Poland
- SPKSO Ophthalmic University Hospital, 00-576 Warsaw, Poland
| |
Collapse
|
4
|
Samelska K, Szaflik JP, Guszkowska M, Kurowska AK, Zaleska-Żmijewska A. Characteristics of Rare Inherited Retinal Dystrophies in Adaptive Optics-A Study on 53 Eyes. Diagnostics (Basel) 2023; 13:2472. [PMID: 37568834 PMCID: PMC10417470 DOI: 10.3390/diagnostics13152472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Inherited retinal dystrophies (IRDs) are genetic disorders that lead to the bilateral degeneration of the retina, causing irreversible vision loss. These conditions often manifest during the first and second decades of life, and their primary symptoms can be non-specific. Diagnostic processes encompass assessments of best-corrected visual acuity, fundoscopy, optical coherence tomography, fundus autofluorescence, fluorescein angiography, electrophysiological tests, and genetic testing. This study focuses on the application of adaptive optics (AO), a non-invasive retinal examination, for the assessment of patients with IRDs. AO facilitates the high-quality, detailed observation of retinal photoreceptor structures (cones and rods) and enables the quantitative analysis of parameters such as cone density (DM), cone spacing (SM), cone regularity (REG), and Voronoi analysis (N%6). AO examinations were conducted on eyes diagnosed with Stargardt disease (STGD, N=36), cone dystrophy (CD, N=9), and cone-rod dystrophy (CRD, N=8), and on healthy eyes (N=14). There were significant differences in the DM, SM, REG, and N%6 parameters between the healthy and IRD-affected eyes (p<0.001 for DM, SM, and REG; p=0.008 for N%6). The mean DM in the CD, CRD, and STGD groups was 8900.39/mm2, 9296.32/mm2, and 16,209.66/mm2, respectively, with a significant inter-group difference (p=0.006). The mean SM in the CD, CRD, and STGD groups was 12.37 μm, 14.82 μm, and 9.65 μm, respectively, with a significant difference observed between groups (p=0.002). However, no significant difference was found in REG and N%6 among the CD, CRD, and STGD groups. Significant differences were found in SM and DM between CD and STGD (p=0.014 for SM; p=0.003 for DM) and between CRD and STGD (p=0.027 for SM; p=0.003 for DM). Our findings suggest that AO holds significant potential as an impactful diagnostic tool for IRDs.
Collapse
Affiliation(s)
- Katarzyna Samelska
- Department of Ophthalmology, Medical University of Warsaw, 02-091 Warsaw, Poland
- SPKSO Ophthalmic University Hospital, 00-576 Warsaw, Poland
| | - Jacek Paweł Szaflik
- Department of Ophthalmology, Medical University of Warsaw, 02-091 Warsaw, Poland
- SPKSO Ophthalmic University Hospital, 00-576 Warsaw, Poland
| | | | - Anna Katarzyna Kurowska
- Department of Ophthalmology, Medical University of Warsaw, 02-091 Warsaw, Poland
- SPKSO Ophthalmic University Hospital, 00-576 Warsaw, Poland
| | - Anna Zaleska-Żmijewska
- Department of Ophthalmology, Medical University of Warsaw, 02-091 Warsaw, Poland
- SPKSO Ophthalmic University Hospital, 00-576 Warsaw, Poland
| |
Collapse
|
5
|
Benson MD, Feldman CB, Zein WM. Evolution of focal choroidal excavation in ABCA4-related retinopathy. Am J Ophthalmol Case Rep 2022; 28:101740. [DOI: 10.1016/j.ajoc.2022.101740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/11/2022] [Accepted: 10/24/2022] [Indexed: 11/05/2022] Open
|
6
|
Vázquez-Domínguez I, Li CHZ, Fadaie Z, Haer-Wigman L, Cremers FPM, Garanto A, Hoyng CB, Roosing S. Identification of a Complex Allele in IMPG2 as a Cause of Adult-Onset Vitelliform Macular Dystrophy. Invest Ophthalmol Vis Sci 2022; 63:27. [PMID: 35608844 PMCID: PMC9150824 DOI: 10.1167/iovs.63.5.27] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 04/21/2022] [Indexed: 12/25/2022] Open
Abstract
Purpose Inherited retinal diseases are a group of clinically and genetically heterogeneous disorders with approximately 270 genes involved. IMPG2 is associated with adult-onset vitelliform macular dystrophy. Here, we investigated two unrelated patients with vitelliform macular dystrophy to identify the underlying genetic cause. Methods Whole-exome sequencing identified a putative causal complex allele consisting of c.3023-15T>A and c.3023G>A (p.(Gly1008Asp)) in IMPG2 in both individuals. To assess its effect, in vitro splice assays in HEK293T and further characterization in patient-derived photoreceptor precursor cells (PPCs) were conducted. Results The results of the midigene splice assays in HEK293T showed that the complex allele causes a variety of splicing defects ranging from a small deletion to (multiple-)exon skipping. This finding was further validated using patient-derived PPCs that showed a significant increase of out-of-frame transcripts lacking one or multiple exons compared to control-derived PPCs. Overall, control PPCs consistently showed low levels of aberrantly spliced IMPG2 transcripts that were highly elevated in patient-derived PPCs. These differences were even more obvious upon inhibition of nonsense-mediated decay with cycloheximide. Conclusions We report a heterozygous complex allele in IMPG2 causative for adult-onset vitelliform macular dystrophy in two unrelated individuals with mild visual loss and bilateral vitelliform lesions. The predicted causal missense mutation c.3023G>A, located in the consensus splice acceptor site, enhances the splicing effect of the upstream variant c.3023-15T>A, leading to the generation of aberrant transcripts that decrease the full-length IMPG2 levels. These results suggest a haploinsufficiency mechanism of action and highlight the complementarity of using different models to functionally assesses splicing defects.
Collapse
Affiliation(s)
- Irene Vázquez-Domínguez
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Catherina H. Z. Li
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Zeinab Fadaie
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lonneke Haer-Wigman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Frans P. M. Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alejandro Garanto
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Pediatrics, Amalia Children's Hospital and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Carel B. Hoyng
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
7
|
Molday RS, Garces FA, Scortecci JF, Molday LL. Structure and function of ABCA4 and its role in the visual cycle and Stargardt macular degeneration. Prog Retin Eye Res 2021; 89:101036. [PMID: 34954332 DOI: 10.1016/j.preteyeres.2021.101036] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 12/17/2022]
Abstract
ABCA4 is a member of the superfamily of ATP-binding cassette (ABC) transporters that is preferentially localized along the rim region of rod and cone photoreceptor outer segment disc membranes. It uses the energy from ATP binding and hydrolysis to transport N-retinylidene-phosphatidylethanolamine (N-Ret-PE), the Schiff base adduct of retinal and phosphatidylethanolamine, from the lumen to the cytoplasmic leaflet of disc membranes. This ensures that all-trans-retinal and excess 11-cis-retinal are efficiently cleared from photoreceptor cells thereby preventing the accumulation of toxic retinoid compounds. Loss-of-function mutations in the gene encoding ABCA4 cause autosomal recessive Stargardt macular degeneration, also known as Stargardt disease (STGD1), and related autosomal recessive retinopathies characterized by impaired central vision and an accumulation of lipofuscin and bis-retinoid compounds. High resolution structures of ABCA4 in its substrate and nucleotide free state and containing bound N-Ret-PE or ATP have been determined by cryo-electron microscopy providing insight into the molecular architecture of ABCA4 and mechanisms underlying substrate recognition and conformational changes induced by ATP binding. The expression and functional characterization of a large number of disease-causing missense ABCA4 variants have been determined. These studies have shed light into the molecular mechanisms underlying Stargardt disease and a classification that reliably predicts the effect of a specific missense mutation on the severity of the disease. They also provide a framework for developing rational therapeutic treatments for ABCA4-associated diseases.
Collapse
Affiliation(s)
- Robert S Molday
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C., Canada; Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, B.C., Canada.
| | - Fabian A Garces
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C., Canada
| | | | - Laurie L Molday
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C., Canada
| |
Collapse
|
8
|
Sheremet NL, Strelnikov VV. [Clinical and genetic aspects of ABCA4-associated inherited retinal diseases]. Vestn Oftalmol 2021; 137:367-374. [PMID: 34669350 DOI: 10.17116/oftalma2021137052367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The clinical and genetic characteristics of ABCA4-associated inherited retinal diseases have been studied for more than 2 decades, since the identification of the ABCA4 protein in 1978 and the ABCA4 gene in 1997. ABCA4 mutations were initially associated with autosomal recessive Stargardt disease (STGD1). It has now been established that mutations in this gene can cause other inherited retinal diseases, such as cone-rod dystrophy and retinitis pigmentosa. In addition, the phenotypes of ABCA4-associated diseases can vary greatly from the classic presentation of Stargardt disease, from loss of central vision in adolescence to disease with early onset and rapid progression or late onset and milder course. ABCA4-associated diseases are inherited in autosomal recessive manner, i.e. the disease develops only if both alleles of the gene are damaged, one inherited from the father and the other inherited from the mother. As with many other recessive hereditary diseases, which are characterized by a variety of clinical manifestations, the diversity of the phenotypes of ABCA4-associated retinal diseases is explained by combinations of sequence variants in the ABCA4 gene inherited by patients from their parents. Despite the fact that in this respect inherited retinal diseases associated with mutations in the ABCA4 gene do not fundamentally differ from other autosomal recessive traits, due to the structure of the gene and the protein encoded by it, there are a number of features thatshould be taken into account when performing molecular diagnostics, predicting the possibility of manifestation and the course of the disease, and planning the approaches to treatment.
Collapse
Affiliation(s)
- N L Sheremet
- Research Institute of Eye Diseases, Moscow, Russia
| | - V V Strelnikov
- Bochkov Research Center for Medical Genetics, Moscow, Russia
| |
Collapse
|
9
|
Song F, Owczarek-Lipska M, Ahmels T, Book M, Aisenbrey S, Menghini M, Barthelmes D, Schrader S, Spital G, Neidhardt J. High-Throughput Sequencing to Identify Mutations Associated with Retinal Dystrophies. Genes (Basel) 2021; 12:genes12081269. [PMID: 34440443 PMCID: PMC8391535 DOI: 10.3390/genes12081269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022] Open
Abstract
Retinal dystrophies (RD) are clinically and genetically heterogenous disorders showing mutations in over 270 disease-associated genes. Several millions of people worldwide are affected with different types of RD. Studying the relevance of disease-associated sequence alterations will assist in understanding disorders and may lead to the development of therapeutic approaches. Here, we established a whole exome sequencing (WES) pipeline to rapidly identify disease-associated mutations in patients. Sanger sequencing was applied to identify deep-intronic variants and to verify the co-segregation of WES results within families. We analyzed 26 unrelated patients with different syndromic and non-syndromic clinical manifestations of RD. All patients underwent ophthalmic examinations. We identified nine novel disease-associated sequence variants among 37 variants identified in total. The sequence variants located to 17 different genes. Interestingly, two cases presenting with Stargardt disease carried deep-intronic variants in ABCA4. We have classified 21 variants as pathogenic variants, 4 as benign/likely benign variants, and 12 as variants of uncertain significance. This study highlights the importance of WES-based mutation analyses in RD patients supporting clinical decisions, broadly based genetic diagnosis and support genetic counselling. It is essential for any genetic therapy to expand the mutation spectrum, understand the genes' function, and correlate phenotypes with genotypes.
Collapse
Affiliation(s)
- Fei Song
- Human Genetics Faculty VI-School of Medicine and Health Sciences, University of Oldenburg, Ammerländer Heerstrasse 114-118, 26129 Oldenburg, Germany; (F.S.); (M.O.-L.)
| | - Marta Owczarek-Lipska
- Human Genetics Faculty VI-School of Medicine and Health Sciences, University of Oldenburg, Ammerländer Heerstrasse 114-118, 26129 Oldenburg, Germany; (F.S.); (M.O.-L.)
- Research Center Neurosensory Science, University of Oldenburg, 26129 Oldenburg, Germany
| | - Tim Ahmels
- Department of Ophthalmology, Pius-Hospital, University of Oldenburg, 26121 Oldenburg, Germany; (T.A.); (S.S.)
| | - Marius Book
- Eye Centre at the St. Franziskus Hospital, 48145 Münster, Germany; (M.B.); (G.S.)
| | - Sabine Aisenbrey
- Department of Ophthalmology, Vivantes Health Network Ltd., Neukölln Hospital, 12351 Berlin, Germany;
| | - Moreno Menghini
- Department of Ophthalmology, Ospedale Regionale di Lugano, 6900 Lugano, Switzerland;
- Department of Ophthalmology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland;
| | - Daniel Barthelmes
- Department of Ophthalmology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland;
| | - Stefan Schrader
- Department of Ophthalmology, Pius-Hospital, University of Oldenburg, 26121 Oldenburg, Germany; (T.A.); (S.S.)
| | - Georg Spital
- Eye Centre at the St. Franziskus Hospital, 48145 Münster, Germany; (M.B.); (G.S.)
| | - John Neidhardt
- Human Genetics Faculty VI-School of Medicine and Health Sciences, University of Oldenburg, Ammerländer Heerstrasse 114-118, 26129 Oldenburg, Germany; (F.S.); (M.O.-L.)
- Research Center Neurosensory Science, University of Oldenburg, 26129 Oldenburg, Germany
- Correspondence: ; Tel.: +49-(0)441-7983810
| |
Collapse
|
10
|
Al-Khuzaei S, Broadgate S, Foster CR, Shah M, Yu J, Downes SM, Halford S. An Overview of the Genetics of ABCA4 Retinopathies, an Evolving Story. Genes (Basel) 2021; 12:1241. [PMID: 34440414 PMCID: PMC8392661 DOI: 10.3390/genes12081241] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 11/16/2022] Open
Abstract
Stargardt disease (STGD1) and ABCA4 retinopathies (ABCA4R) are caused by pathogenic variants in the ABCA4 gene inherited in an autosomal recessive manner. The gene encodes an importer flippase protein that prevents the build-up of vitamin A derivatives that are toxic to the RPE. Diagnosing ABCA4R is complex due to its phenotypic variability and the presence of other inherited retinal dystrophy phenocopies. ABCA4 is a large gene, comprising 50 exons; to date > 2000 variants have been described. These include missense, nonsense, splicing, structural, and deep intronic variants. Missense variants account for the majority of variants in ABCA4. However, in a significant proportion of patients with an ABCA4R phenotype, a second variant in ABCA4 is not identified. This could be due to the presence of yet unknown variants, or hypomorphic alleles being incorrectly classified as benign, or the possibility that the disease is caused by a variant in another gene. This underlines the importance of accurate genetic testing. The pathogenicity of novel variants can be predicted using in silico programs, but these rely on databases that are not ethnically diverse, thus highlighting the need for studies in differing populations. Functional studies in vitro are useful towards assessing protein function but do not directly measure the flippase activity. Obtaining an accurate molecular diagnosis is becoming increasingly more important as targeted therapeutic options become available; these include pharmacological, gene-based, and cell replacement-based therapies. The aim of this review is to provide an update on the current status of genotyping in ABCA4 and the status of the therapeutic approaches being investigated.
Collapse
Affiliation(s)
- Saoud Al-Khuzaei
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK; (S.A.-K.); (M.S.)
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; (S.B.); (J.Y.)
| | - Suzanne Broadgate
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; (S.B.); (J.Y.)
| | | | - Mital Shah
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK; (S.A.-K.); (M.S.)
| | - Jing Yu
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; (S.B.); (J.Y.)
| | - Susan M. Downes
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK; (S.A.-K.); (M.S.)
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; (S.B.); (J.Y.)
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; (S.B.); (J.Y.)
| |
Collapse
|
11
|
Mena MD, Moresco AA, Vidal SH, Aguilar-Cortes D, Obregon MG, Fandiño AC, Sendoya JM, Llera AS, Podhajcer OL. Clinical and Genetic Spectrum of Stargardt Disease in Argentinean Patients. Front Genet 2021; 12:646058. [PMID: 33841504 PMCID: PMC8033171 DOI: 10.3389/fgene.2021.646058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Purpose To describe the clinical and molecular spectrum of Stargardt disease (STGD) in a cohort of Argentinean patients. Methods This retrospective study included 132 subjects comprising 95 probands clinically diagnosed with STGD and relatives from 16 of them. Targeted next-generation sequencing of the coding and splicing regions of ABCA4 and other phenocopying genes (ELOVL4, PROM1, and CNGB3) was performed in 97 STGD patients. Results We found two or more disease-causing variants in the ABCA4 gene in 69/95 (73%) probands, a single ABCA4 variant in 9/95 (9.5%) probands, and no ABCA4 variants in 17/95 (18%) probands. The final analysis identified 173 variants in ABCA4. Seventy-nine ABCA4 variants were unique, of which nine were novel. No significant findings were seen in the other evaluated genes. Conclusion This study describes the phenotypic and genetic features of STGD1 in an Argentinean cohort. The mutations p.(Gly1961Glu) and p.(Arg1129Leu) were the most frequent, representing almost 20% of the mutated alleles. We also expanded the ABCA4 mutational spectrum with nine novel disease-causing variants, of which eight might be associated with South American natives.
Collapse
Affiliation(s)
- Marcela D Mena
- Laboratorio de Terapia Molecular y Celular (Genocan), Fundación Instituto Leloir, CONICET, Buenos Aires, Argentina
| | - Angélica A Moresco
- Servicio de Genética, Hospital de Pediatría Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Sofía H Vidal
- Servicio de Oftalmología, Hospital de Pediatría Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Diana Aguilar-Cortes
- Laboratorio de Terapia Molecular y Celular (Genocan), Fundación Instituto Leloir, CONICET, Buenos Aires, Argentina
| | - María G Obregon
- Servicio de Genética, Hospital de Pediatría Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Adriana C Fandiño
- Servicio de Oftalmología, Hospital de Pediatría Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Juan M Sendoya
- Laboratorio de Terapia Molecular y Celular (Genocan), Fundación Instituto Leloir, CONICET, Buenos Aires, Argentina
| | - Andrea S Llera
- Laboratorio de Terapia Molecular y Celular (Genocan), Fundación Instituto Leloir, CONICET, Buenos Aires, Argentina
| | - Osvaldo L Podhajcer
- Laboratorio de Terapia Molecular y Celular (Genocan), Fundación Instituto Leloir, CONICET, Buenos Aires, Argentina
| |
Collapse
|
12
|
Kozak A, Wieteska M, Ninghetto M, Szulborski K, Gałecki T, Szaflik J, Burnat K. Motion-Based Acuity Task: Full Visual Field Measurement of Shape and Motion Perception. Transl Vis Sci Technol 2021; 10:9. [PMID: 33505776 PMCID: PMC7794260 DOI: 10.1167/tvst.10.1.9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/19/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose Damage of retinal representation of the visual field affects its local features and the spared, unaffected parts. Measurements of visual deficiencies in ophthalmological patients are separated for central (shape) or peripheral (motion and space perception) properties, and acuity tasks rely on stationary stimuli. We explored the benefit of measuring shape and motion perception simultaneously using a new motion-based acuity task. Methods Eight healthy control subjects, three patients with retinitis pigmentosa (RP; tunnel vision), and 2 patients with Stargardt disease (STGD) juvenile macular degeneration were included. To model the peripheral loss, we narrowed the visual field in controls to 10 degrees. Negative and positive contrast of motion signals were tested in random-dot kinematograms (RDKs), where shapes were separated from the background by the motion of dots based on coherence, direction, or velocity. The task was to distinguish a circle from an ellipse. The difficulty of the task increased as ellipse became more circular until reaching the acuity limit. Results High velocity, negative contrast was more difficult for all, and for patients with STGD, it was too difficult to participate. A slower velocity improved acuity for all participants. Conclusions Proposed acuity testing not only allows for the full assessment of vision but also advances the capability of standard testing with the potential to detect spare visual functions. Translational Relevance The motion-based acuity task might be a practical tool for assessing vision loss and revealing undetected, undamaged, or strengthened properties of the injured visual system by standard testing, as suggested here for two patients with STGD and three patients with RP.
Collapse
Affiliation(s)
- Anna Kozak
- Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Michał Wieteska
- Institute of Radioelectronics and Multimedia Technology, Warsaw University of Technology, Warsaw, Poland
| | - Marco Ninghetto
- Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Kamil Szulborski
- Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Gałecki
- Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland
| | - Jacek Szaflik
- Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland
| | - Kalina Burnat
- Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| |
Collapse
|
13
|
Sun Z, Yang L, Li H, Zou X, Wang L, Wu S, Zhu T, Wei X, Zhong Y, Sui R. Clinical and genetic analysis of the ABCA4 gene associated retinal dystrophy in a large Chinese cohort. Exp Eye Res 2020; 202:108389. [PMID: 33301772 DOI: 10.1016/j.exer.2020.108389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 12/31/2022]
Abstract
ABCA4 gene associated retinal dystrophies (ABCA4-RD) are a group of inherited eye diseases caused by ABCA4 gene mutations, including Stargardt disease, cone-rod dystrophy and retinitis pigmentosa. With the development of next-generation sequencing (NGS), numerous clinical and genetic studies on ABCA4-RD have been performed, and the genotype and phenotype spectra have been elucidated. However, most of the studies focused on the Caucasian population and limited studies of large Chinese ABCA4-RD cohorts were reported. In this study, we summarized the phenotypic and genotypic characteristics of 129 Chinese patients with ABCA4-RD. We found a mutation spectrum of Chinese patients which is considerably different from that of the Caucasian population and identified 35 novel ABCA4 mutations. We also reported some rare and special cases, such as, pedigrees with patients in two generations, patients diagnosed with cone-rod dystrophy or retinitis pigmentosa, patients with subretinal fibrosis and patients with preserved foveal structure. At the same time, we focused on the correlation between the genotypes and phenotypes. By the comprehensive analysis of multiple clinical examinations and the application of multiple regression analysis, we proved that patients with two "null" variants had a younger onset age and reached legal blindness earlier than patients with two "none-null" variants. Patients with one or more "none-null" variants tended to have better visual acuity and presented with milder fundus autofluorescence changes and more preserved rod functions on the full-field electroretinography than patients with two "null" variants. Furthermore, most patients with the p.(Phe2188Ser) variant shared a mild phenotype with a low fundus autofluorescence signal limited to the fovea and with normal full-field electroretinography responses. Our findings expand the variant spectrum of the ABCA4 gene and enhance the knowledge of Chinese patients with ABCA4-RD.
Collapse
Affiliation(s)
- Zixi Sun
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Lizhu Yang
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China; Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization, Tokyo Medical Center, Tokyo, 152-8902, Japan; Department of Ophthalmology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Hui Li
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xuan Zou
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Lei Wang
- Beijing Mei'ermu Hospital, Beijing, China
| | - Shijing Wu
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Tian Zhu
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xing Wei
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yong Zhong
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Ruifang Sui
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
14
|
Molecular Analysis of the ABCA4 Gene Mutations in Patients with Stargardt Disease Using Human Hair Follicles. Int J Mol Sci 2020; 21:ijms21103430. [PMID: 32413971 PMCID: PMC7279462 DOI: 10.3390/ijms21103430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/05/2020] [Accepted: 05/10/2020] [Indexed: 12/17/2022] Open
Abstract
ABCA4 gene mutations are the cause of a spectrum of ABCA4 retinopathies, and the most common juvenile macular degeneration is called Stargardt disease. ABCA4 has previously been observed almost exclusively in the retina. Therefore, studying the functional consequences of ABCA4 variants has required advanced molecular analysis techniques. The aim of the present study was to evaluate whether human hair follicles may be used for molecular analysis of the ABCA4 gene splice-site variants in patients with ABCA4 retinopathies. We assessed ABCA4 expression in hair follicles and skin at mRNA and protein levels by means of real-time PCR and Western blot analyses, respectively. We performed cDNA sequencing to reveal the presence of full-length ABCA4 transcripts and analyzed ABCA4 transcripts from three patients with Stargardt disease carrying different splice-site ABCA4 variants: c.5312+1G>A, c.5312+2T>G and c.5836-3C>A. cDNA analysis revealed that c.5312+1G>A, c.5312+2T>G variants led to the skipping of exon 37, and the c.5836-3C>A variant resulted in the insertion of 30 nucleotides into the transcript. Our results strongly argue for the use of hair follicles as a model for the molecular analysis of the pathogenicity of ABCA4 variants in patients with ABCA4 retinopathies.
Collapse
|
15
|
Cremers FPM, Lee W, Collin RWJ, Allikmets R. Clinical spectrum, genetic complexity and therapeutic approaches for retinal disease caused by ABCA4 mutations. Prog Retin Eye Res 2020; 79:100861. [PMID: 32278709 PMCID: PMC7544654 DOI: 10.1016/j.preteyeres.2020.100861] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 12/18/2022]
Abstract
The ABCA4 protein (then called a “rim protein”) was first
identified in 1978 in the rims and incisures of rod photoreceptors. The
corresponding gene, ABCA4, was cloned in 1997, and variants
were identified as the cause of autosomal recessive Stargardt disease (STGD1).
Over the next two decades, variation in ABCA4 has been
attributed to phenotypes other than the classically defined STGD1 or fundus
flavimaculatus, ranging from early onset and fast progressing cone-rod dystrophy
and retinitis pigmentosa-like phenotypes to very late onset cases of mostly mild
disease sometimes resembling, and confused with, age-related macular
degeneration. Similarly, analysis of the ABCA4 locus uncovered
a trove of genetic information, including >1200 disease-causing mutations
of varying severity, and of all types – missense, nonsense, small
deletions/insertions, and splicing affecting variants, of which many are located
deep-intronic. Altogether, this has greatly expanded our understanding of
complexity not only of the diseases caused by ABCA4 mutations,
but of all Mendelian diseases in general. This review provides an in depth
assessment of the cumulative knowledge of ABCA4-associated retinopathy –
clinical manifestations, genetic complexity, pathophysiology as well as current
and proposed therapeutic approaches.
Collapse
Affiliation(s)
- Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9104, 6500 HE, Nijmegen, the Netherlands.
| | - Winston Lee
- Department of Ophthalmology, Columbia University, New York, NY, 10032, USA; Department of Genetics & Development, Columbia University, New York, NY, 10032, USA
| | - Rob W J Collin
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9104, 6500 HE, Nijmegen, the Netherlands
| | - Rando Allikmets
- Department of Ophthalmology, Columbia University, New York, NY, 10032, USA; Department of Pathology & Cell Biology, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
16
|
Abu-Ameerh M, Mohammad H, Dardas Z, Barham R, Ali D, Bijawi M, Tawalbeh M, Amr S, Hatmal MM, Al-Bdour M, Awidi A, Azab B. Extending the spectrum of CLRN1- and ABCA4-associated inherited retinal dystrophies caused by novel and recurrent variants using exome sequencing. Mol Genet Genomic Med 2020; 8:e1123. [PMID: 31968401 PMCID: PMC7057102 DOI: 10.1002/mgg3.1123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 12/14/2019] [Accepted: 12/27/2019] [Indexed: 01/13/2023] Open
Abstract
Background Inherited retinal dystrophies (IRDs) are characterized by extreme genetic and clinical heterogeneity. There are many genes that are known to cause IRD which makes the identification of the underlying genetic causes quite challenging. And in view of the emergence of therapeutic options, it is essential to combine molecular and clinical data to correctly diagnose IRD patients. In this study, we aimed to identify the disease‐causing variants (DCVs) in four consanguineous Jordanian families with IRDs and describe genotype–phenotype correlations. Methods Exome sequencing (ES) was employed on the proband patients of each family, followed by segregation analysis of candidate variants in affected and unaffected family members by Sanger sequencing. Simulation analysis was done on one novel CLRN1 variant to characterize its effect on mRNA processing. Clinical evaluation included history, slit‐lamp biomicroscopy, and indirect ophthalmoscopy. Results We identified two novel variants in CLRN1 [(c.433+1G>A) and (c.323T>C, p.Leu108Pro)], and two recurrent variants in ABCA4 [(c.1648G>A, p.Gly550Arg) and (c.5460+1G>A)]. Two families with the same DCV were found to have different phenotypes and another family was shown to have sector RP. Moreover, simulation analysis for the CLRN1 splice donor variant (c.433+1G>A) showed that the variant might affect mRNA processing resulting in the formation of an abnormal receptor. Also, a family that was previously diagnosed with nonsyndromic RP was found to have Usher syndrome based on their genetic assessment and audiometry. Conclusion Our findings extend the spectrum of CLRN1‐ and ABCA4‐associated IRDs and describe new phenotypes for these genes. We also highlighted the importance of combining molecular and clinical data to correctly diagnose IRDs and the utility of simulation analysis to predict the effect of splice donor variants on protein formation and function.
Collapse
Affiliation(s)
- Mohammed Abu-Ameerh
- Department of Ophthalmology, Jordan University Hospital, The University of Jordan, Amman, Jordan
| | | | - Zain Dardas
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| | - Raghda Barham
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Dema Ali
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Maysa Bijawi
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Mohamed Tawalbeh
- Department of Otolaryngology, Jordan University Hospital, The University of Jordan, Amman, Jordan
| | - Sami Amr
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ma'mon M Hatmal
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, The Hashemite University, Zarqa, Jordan
| | - Muawyah Al-Bdour
- Department of Ophthalmology, Jordan University Hospital, The University of Jordan, Amman, Jordan
| | - Abdalla Awidi
- Cell Therapy Center, The University of Jordan, Amman, Jordan.,Department of Medicine and Hematology, Jordan University Hospital, The University of Jordan, Amman, Jordan
| | - Belal Azab
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan.,Human and Molecular Genetics, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
17
|
Tracewska AM, Kocyła-Karczmarewicz B, Rafalska A, Murawska J, Jakubaszko-Jablonska J, Rydzanicz M, Stawiński P, Ciara E, Khan MI, Henkes A, Hoischen A, Gilissen C, van de Vorst M, Cremers FPM, Płoski R, Chrzanowska KH. Genetic Spectrum of ABCA4-Associated Retinal Degeneration in Poland. Genes (Basel) 2019; 10:E959. [PMID: 31766579 PMCID: PMC6947411 DOI: 10.3390/genes10120959] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/05/2019] [Accepted: 11/19/2019] [Indexed: 12/03/2022] Open
Abstract
Mutations in retina-specific ATP-binding cassette transporter 4 (ABCA4) are responsible for over 95% of cases of Stargardt disease (STGD), as well as a minor proportion of retinitis pigmentosa (RP) and cone-rod dystrophy cases (CRD). Since the knowledge of the genetic causes of inherited retinal diseases (IRDs) in Poland is still scarce, the purpose of this study was to identify pathogenic ABCA4 variants in a subgroup of Polish IRD patients. We recruited 67 families with IRDs as a part of a larger study. The patients were screened with next generation sequencing using a molecular inversion probes (MIPs)-based technique targeting 108 genes involved in the pathogenesis of IRDs. All identified mutations were validated and their familial segregation was tested using Sanger sequencing. In the case of the most frequent complex allele, consisting of two variants in exon 12 and 21, familial segregation was tested using restriction fragment length polymorphism (RFLP). The most prevalent variant, a complex change c.[1622T>C;3113C>T], p.[Leu541Pro;Ala1038Val], was found in this cohort in 54% of all solved ABCA4-associated disorder cases, which is the highest frequency reported thus far. Additionally, we identified nine families displaying a pseudo-dominant mode of inheritance, indicating a high frequency of pathogenic variants within this population.
Collapse
Affiliation(s)
- Anna M. Tracewska
- DNA Analysis Unit, ŁUKASIEWICZ Research Network–PORT Polish Center for Technology Development, 54-066 Wrocław, Poland
| | | | - Agnieszka Rafalska
- Department of Ophthalmology, Wrocław Medical University, 50-556 Wrocław, Poland; (A.R.); (J.J.-J.)
| | - Joanna Murawska
- Department of Ophthalmology, University Clinical Centre, 80-214 Gdańsk, Poland;
| | - Joanna Jakubaszko-Jablonska
- Department of Ophthalmology, Wrocław Medical University, 50-556 Wrocław, Poland; (A.R.); (J.J.-J.)
- Department of Paediatric Traumatology and Emergency Medicine, Wrocław Medical University, 50-345 Wrocław, Poland
- SPEKTRUM Ophthalmology Clinic, 53-334 Wrocław, Poland
| | - Małgorzata Rydzanicz
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland; (M.R.); (P.S.); (R.P.)
| | - Piotr Stawiński
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland; (M.R.); (P.S.); (R.P.)
| | - Elżbieta Ciara
- Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (B.K.-K.); (E.C.)
| | - Muhammad Imran Khan
- Department of Human Genetics, Radboud university medical center, PO Box 9101, 6500 HB Nijmegen, The Netherland; (M.I.K.); (A.H.); (A.H.); (M.v.d.V.); (F.P.M.C.)
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, PO Box 9104, 6500 HE Nijmegen, The Netherlands;
| | - Arjen Henkes
- Department of Human Genetics, Radboud university medical center, PO Box 9101, 6500 HB Nijmegen, The Netherland; (M.I.K.); (A.H.); (A.H.); (M.v.d.V.); (F.P.M.C.)
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, PO Box 9104, 6500 HE Nijmegen, The Netherlands;
| | - Alexander Hoischen
- Department of Human Genetics, Radboud university medical center, PO Box 9101, 6500 HB Nijmegen, The Netherland; (M.I.K.); (A.H.); (A.H.); (M.v.d.V.); (F.P.M.C.)
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Christian Gilissen
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, PO Box 9104, 6500 HE Nijmegen, The Netherlands;
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Maartje van de Vorst
- Department of Human Genetics, Radboud university medical center, PO Box 9101, 6500 HB Nijmegen, The Netherland; (M.I.K.); (A.H.); (A.H.); (M.v.d.V.); (F.P.M.C.)
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, PO Box 9104, 6500 HE Nijmegen, The Netherlands;
| | - Frans P. M. Cremers
- Department of Human Genetics, Radboud university medical center, PO Box 9101, 6500 HB Nijmegen, The Netherland; (M.I.K.); (A.H.); (A.H.); (M.v.d.V.); (F.P.M.C.)
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, PO Box 9104, 6500 HE Nijmegen, The Netherlands;
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland; (M.R.); (P.S.); (R.P.)
| | | |
Collapse
|
18
|
Garces F, Jiang K, Molday LL, Stöhr H, Weber BH, Lyons CJ, Maberley D, Molday RS. Correlating the Expression and Functional Activity of ABCA4 Disease Variants With the Phenotype of Patients With Stargardt Disease. Invest Ophthalmol Vis Sci 2019; 59:2305-2315. [PMID: 29847635 PMCID: PMC5937799 DOI: 10.1167/iovs.17-23364] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Purpose Stargardt disease (STGD1), the most common early-onset recessive macular degeneration, is caused by mutations in the gene encoding the ATP-binding cassette transporter ABCA4. Although extensive genetic studies have identified more than 1000 mutations that cause STGD1 and related ABCA4-associated diseases, few studies have investigated the extent to which mutations affect the biochemical properties of ABCA4. The purpose of this study was to correlate the expression and functional activities of missense mutations in ABCA4 identified in a cohort of Canadian patients with their clinical phenotype. Methods Eleven patients from British Columbia were diagnosed with STGD1. The exons and exon-intron boundaries were sequenced to identify potential pathologic mutations in ABCA4. Missense mutations were expressed in HEK293T cells and their level of expression, retinoid substrate binding properties, and ATPase activities were measured and correlated with the phenotype of the STGD1 patients. Results Of the 11 STGD1 patients analyzed, 7 patients had two mutations in ABCA4, 3 patients had one detected mutation, and 1 patient had no mutations in the exons and flanking regions. Included in this cohort of patients was a severely affected 11-year-old child who was homozygous for the novel p.Ala1794Pro mutation. Expression and functional analysis of this variant and other disease-associated variants compared favorably with the phenotypes of this cohort of STGD1 patients. Conclusions Although many factors contribute to the phenotype of STGD1 patients, the expression and residual activity of ABCA4 mutants play a major role in determining the disease severity of STGD1 patients.
Collapse
Affiliation(s)
- Fabian Garces
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kailun Jiang
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Laurie L Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Heidi Stöhr
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Bernhard H Weber
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Christopher J Lyons
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - David Maberley
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert S Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
19
|
González-Del Pozo M, Martín-Sánchez M, Bravo-Gil N, Méndez-Vidal C, Chimenea Á, Rodríguez-de la Rúa E, Borrego S, Antiñolo G. Searching the second hit in patients with inherited retinal dystrophies and monoallelic variants in ABCA4, USH2A and CEP290 by whole-gene targeted sequencing. Sci Rep 2018; 8:13312. [PMID: 30190494 PMCID: PMC6127285 DOI: 10.1038/s41598-018-31511-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022] Open
Abstract
Inherited Retinal Dystrophies are clinically and genetically heterogeneous disorders affecting the photoreceptors. Although NGS has shown to be helpful for the molecular diagnosis of these conditions, some cases remain unsolved. Among these, several individuals harboured monoallelic variants in a recessive gene, suggesting that a comprehensive screening could improve the overall diagnosis. In order to assess the contribution of non-coding variations in a cohort of 29 patients, 25 of them with monoallelic mutations, we performed targeted NGS. The design comprised the entire genomic sequence of three genes (USH2A, ABCA4 and CEP290), the coding exons of 76 genes and two disease-associated intronic regions in OFD1 and PRPF31. As a result, likely causative mutations (8 novel) were identified in 17 probands (diagnostic rate: 58.62%), including two copy-number variations in USH2A (one deletion of exons 22-55 and one duplication of exons 46-47). Possibly damaging deep-intronic mutations were identified in one family, and another with a monoallelic variant harboured causal mutations in a different locus. In conclusion, due to the high prevalence of carriers of IRD mutations and the results obtained here, sequencing entire genes do not seem to be the approach of choice for detecting the second hit in IRD patients with monoallelic variants.
Collapse
Affiliation(s)
- María González-Del Pozo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Seville, Spain
| | - Marta Martín-Sánchez
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
| | - Nereida Bravo-Gil
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Seville, Spain
| | - Cristina Méndez-Vidal
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Seville, Spain
| | - Ángel Chimenea
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
| | - Enrique Rodríguez-de la Rúa
- Department of Ophthalmology, University Hospital Virgen Macarena, Seville, Spain
- Retics Patologia Ocular. OFTARED. Instituto de Salud Carlos III, Madrid, Spain
| | - Salud Borrego
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Seville, Spain
| | - Guillermo Antiñolo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Seville, Spain.
| |
Collapse
|
20
|
Sheremet NL, Grushke IG, Zhorzholadze NV, Tanas AS, Strelnikov VV. [Inherited retinal diseases in patients with ABCA4 gene mutations]. Vestn Oftalmol 2018; 134:68-73. [PMID: 30166513 DOI: 10.17116/oftalma201813404168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
ABCA4 is one of the main genes which mutations are associated with various inherited retinal diseases (IRD) such as Stargardt disease, cone dystrophy, cone-rod dystrophy, and retinitis pigmentosa. Wide prevalence of IRD, high heterogeneity of ABCA4 gene mutations that lead to impaired function of the protein with varying expressiveness make studying of the clinical and genetic characteristics of retinal diseases relevant for further investigations into pathogenesis, prognosis and outcome of the disease. This article reviews the literature on incidence of IRD caused by mutations in the ABCA4 gene and characteristics of the clinical progression of retinal diseases associated with various types of mutations, and presents analysis of clinical and genetic correlations in terms of the effect the mutation has on the structure or function of the protein.
Collapse
Affiliation(s)
- N L Sheremet
- Research Institute of Eye Diseases, 11, A, B, Rossolimo St., Moscow, Russian Federation, 119021
| | - I G Grushke
- Research Institute of Eye Diseases, 11, A, B, Rossolimo St., Moscow, Russian Federation, 119021
| | - N V Zhorzholadze
- Research Institute of Eye Diseases, 11, A, B, Rossolimo St., Moscow, Russian Federation, 119021
| | - A S Tanas
- Medicogenetic Research Center, 1 Moskvorechye St., Moscow, Russian Federation, 115478
| | - V V Strelnikov
- Medicogenetic Research Center, 1 Moskvorechye St., Moscow, Russian Federation, 115478
| |
Collapse
|
21
|
Nassisi M, Mohand-Saïd S, Dhaenens CM, Boyard F, Démontant V, Andrieu C, Antonio A, Condroyer C, Foussard M, Méjécase C, Eandi CM, Sahel JA, Zeitz C, Audo I. Expanding the Mutation Spectrum in ABCA4: Sixty Novel Disease Causing Variants and Their Associated Phenotype in a Large French Stargardt Cohort. Int J Mol Sci 2018; 19:E2196. [PMID: 30060493 PMCID: PMC6121640 DOI: 10.3390/ijms19082196] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/18/2018] [Accepted: 07/22/2018] [Indexed: 12/18/2022] Open
Abstract
Here we report novel mutations in ABCA4 with the underlying phenotype in a large French cohort with autosomal recessive Stargardt disease. The DNA samples of 397 index subjects were analyzed in exons and flanking intronic regions of ABCA4 (NM_000350.2) by microarray analysis and direct Sanger sequencing. At the end of the screening, at least two likely pathogenic mutations were found in 302 patients (76.1%) while 95 remained unsolved: 40 (10.1%) with no variants identified, 52 (13.1%) with one heterozygous mutation, and 3 (0.7%) with at least one variant of uncertain significance (VUS). Sixty-three novel variants were identified in the cohort. Three of them were variants of uncertain significance. The other 60 mutations were classified as likely pathogenic or pathogenic, and were identified in 61 patients (15.4%). The majority of those were missense (55%) followed by frameshift and nonsense (30%), intronic (11.7%) variants, and in-frame deletions (3.3%). Only patients with variants never reported in literature were further analyzed herein. Recruited subjects underwent complete ophthalmic examination including best corrected visual acuity, kinetic and static perimetry, color vision test, full-field and multifocal electroretinography, color fundus photography, short-wavelength and near-infrared fundus autofluorescence imaging, and spectral domain optical coherence tomography. Clinical evaluation of each subject confirms the tendency that truncating mutations lead to a more severe phenotype with electroretinogram (ERG) impairment (p = 0.002) and an earlier age of onset (p = 0.037). Our study further expands the mutation spectrum in the exonic and flanking regions of ABCA4 underlying Stargardt disease.
Collapse
Affiliation(s)
- Marco Nassisi
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France.
- Department of Surgical Sciences, Eye Clinic, University of Turin, 10126 Turin, Italy.
| | - Saddek Mohand-Saïd
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France.
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC 1423, F-75012 Paris, France.
| | - Claire-Marie Dhaenens
- Univ. Lille, Inserm UMR-S 1172, CHU Lille, Biochemistry and Molecular Biology Department-UF Génopathies, F-59000 Lille, France.
| | - Fiona Boyard
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France.
| | - Vanessa Démontant
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France.
| | - Camille Andrieu
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC 1423, F-75012 Paris, France.
| | - Aline Antonio
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France.
| | - Christel Condroyer
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France.
| | - Marine Foussard
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France.
| | - Cécile Méjécase
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France.
| | - Chiara Maria Eandi
- Department of Surgical Sciences, Eye Clinic, University of Turin, 10126 Turin, Italy.
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France.
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC 1423, F-75012 Paris, France.
- Fondation Ophtalmologique Adolphe de Rothschild, F-75019 Paris, France.
- Académie des Sciences-Institut de France, F-75006 Paris, France.
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburg, PA 15213, USA.
| | - Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France.
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France.
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC 1423, F-75012 Paris, France.
- Institute of Ophthalmology, University College of London, London EC1V 9EL, UK.
| |
Collapse
|
22
|
Schulz HL, Grassmann F, Kellner U, Spital G, Rüther K, Jägle H, Hufendiek K, Rating P, Huchzermeyer C, Baier MJ, Weber BHF, Stöhr H. Mutation Spectrum of the ABCA4 Gene in 335 Stargardt Disease Patients From a Multicenter German Cohort-Impact of Selected Deep Intronic Variants and Common SNPs. Invest Ophthalmol Vis Sci 2017; 58:394-403. [PMID: 28118664 PMCID: PMC5270621 DOI: 10.1167/iovs.16-19936] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Purpose Stargardt disease (STGD1) is an autosomal recessive retinopathy, caused by mutations in the retina-specific ATP-binding cassette transporter (ABCA4) gene. To establish the mutational spectrum and to assess effects of selected deep intronic and common genetic variants on disease, we performed a comprehensive sequence analysis in a large cohort of German STGD1 patients. Methods DNA samples of 335 STGD1 patients were analyzed for ABCA4 mutations in its 50 coding exons and adjacent intronic sequences by resequencing array technology or next generation sequencing (NGS). Parts of intron 30 and 36 were screened by Sanger chain-terminating dideoxynucleotide sequencing. An in vitro splicing assay was used to test selected variants for their splicing behavior. By logistic regression analysis we assessed the association of common ABCA4 alleles while a multivariate logistic regression model calculated a genetic risk score (GRS). Results Our analysis identified 148 pathogenic or likely pathogenic mutations, of which 48 constitute so far unpublished ABCA4-associated disease alleles. Four rare deep intronic variants were found once in 472 alleles analyzed. In addition, we identified six risk-modulating common variants. Genetic risk score estimates suggest that defined common ABCA4 variants influence disease risk in carriers of a single pathogenic ABCA4 allele. Conclusions Our study adds to the mutational spectrum of the ABCA4 gene. Moreover, in our cohort, deep intronic variants in intron 30 and 36 likely play no or only a minor role in disease pathology. Of note, our findings demonstrate a possible modifying effect of common sequence variants on ABCA4-associated disease.
Collapse
Affiliation(s)
- Heidi L Schulz
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Felix Grassmann
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Ulrich Kellner
- Rare Retinal Disease Center, AugenZentrum Siegburg, MVZ ADTC Siegburg GmbH, Siegburg, Germany 3RetinaScience, Bonn, Germany
| | - Georg Spital
- Department of Ophthalmology, St. Franziskus-Hospital, Münster, Germany
| | | | - Herbert Jägle
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, Germany
| | | | - Philipp Rating
- Department of Ophthalmology, University Hospital Essen, Essen, Germany
| | - Cord Huchzermeyer
- Department of Ophthalmology, University Hospital Erlangen, Erlangen, Germany
| | - Maria J Baier
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Bernhard H F Weber
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Heidi Stöhr
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| |
Collapse
|
23
|
Lee W, Schuerch K, Xie Y, Zernant J, Tsang SH, Sparrow JR, Allikmets R. Simultaneous Expression of ABCA4 and GPR143 Mutations: A Complex Phenotypic Manifestation. Invest Ophthalmol Vis Sci 2017; 57:3409-15. [PMID: 27367509 PMCID: PMC4961055 DOI: 10.1167/iovs.16-19621] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Purpose To describe the complex, overlapping phenotype expressed in a two generation family harboring pathogenic mutations in the ABCA4 and GPR143 genes. Methods Clinical evaluation of a two generation family included quantitative autofluorescence imaging (qAF, 488-nm excitation) using a modified confocal scanning laser ophthalmoscope equipped with an internal fluorescent reference to account for varying laser power detector sensitivity, spectral-domain optical coherence tomography, and full-field ERG testing. Complete sequencing of the ABCA4 and GPR143 genes was carried out in each individual. Results Affected individuals presented with bull's eye lesions and qAF levels above the 95% confidence interval for healthy eyes; full-field ERG revealed no generalized rod dysfunction but mild implicit time delays in cone responses. Complete sequencing of the ABCA4 gene revealed two disease-causing mutations, p.L541P and p.G1961E; and mutational phase was confirmed in each unaffected parent. Further examination in the affected patients revealed a peripheral “mud-splattered” pattern of hypopigmented RPE after which sequencing of GPR143 revealed a novel missense variant, p.Y157C. The GPR143 variant segregated from the father who did not exhibit any indications of retinal disease with the exception of an abnormal near-infrared autofluorescence (NIR-AF) signal distribution in the macula. Conclusions An individual carrying both ABCA4 and GPR143 disease-causing mutations can express a complex, overlapping phenotype associated with both Stargardt disease and X-linked ocular albinism (OA1). The absence of OA1-related disease changes (with the exception of NIR-AF changes associated with melanin distribution) in the father may be indicative of mild expressivity or variable gene penetrance.
Collapse
Affiliation(s)
- Winston Lee
- Department of Ophthalmology, Columbia University, New York, New York, United States
| | - Kaspar Schuerch
- Department of Ophthalmology, Columbia University, New York, New York, United States
| | - Yajing Xie
- Department of Ophthalmology, Columbia University, New York, New York, United States
| | - Jana Zernant
- Department of Ophthalmology, Columbia University, New York, New York, United States
| | - Stephen H Tsang
- Department of Ophthalmology, Columbia University, New York, New York, United States 2Department of Pathology & Cell Biology, Columbia University, New York, New York, United States
| | - Janet R Sparrow
- Department of Ophthalmology, Columbia University, New York, New York, United States 2Department of Pathology & Cell Biology, Columbia University, New York, New York, United States
| | - Rando Allikmets
- Department of Ophthalmology, Columbia University, New York, New York, United States 2Department of Pathology & Cell Biology, Columbia University, New York, New York, United States
| |
Collapse
|
24
|
Genomic screening of ABCA4 and array CGH analysis underline the genetic variability of Greek patients with inherited retinal diseases. Meta Gene 2016; 8:37-43. [PMID: 27014590 PMCID: PMC4792891 DOI: 10.1016/j.mgene.2016.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 01/12/2016] [Accepted: 02/10/2016] [Indexed: 11/22/2022] Open
Abstract
Background Retinal dystrophies are a clinically and genetically heterogeneous group of disorders which affect more than two million people worldwide. The present study focused on the role of the ABCA4 gene in the pathogenesis of hereditary retinal dystrophies (autosomal recessive Stargardt disease, autosomal recessive cone-rod dystrophy, and autosomal recessive retinitis pigmentosa) in patients of Greek origin. Materials and methods Our cohort included 26 unrelated patients and their first degree healthy relatives. The ABCA4 mutation screening involved Sanger sequencing of all exons and flanking regions. Evaluation of novel variants included sequencing of control samples, family segregation analysis and characterization by in silico prediction tools. Twenty five patients were also screened for copy number variations by array-comparative genomic hybridization. Results Excluding known disease-causing mutations and polymorphisms, two novel variants were identified in coding and non-coding regions of ABCA4. Array-CGH analysis revealed two partial deletions of USH2A and MYO3A in two patients with nonsyndromic autosomal recessive retinitis pigmentosa. Conclusions The ABCA4 mutation spectrum in Greek patients differs from other populations. Bioinformatic tools, segregation analysis along with clinical data from the patients seemed to be crucial for the evaluation of genetic variants and particularly for the discrimination between causative and non-causative variants. Sixteen known pathological genetic variants were identified in ABCA4 gene in Greek patients with retinal dystrophies. Two novel variants were found in patients with Stargardt’s disease and cone-rod dystrophy respectively. Two reported mutations in Stargardt's patients were identified in retinitis pigmentosa and cone-rod dystrophy patients. The mutations p.Gly1961Glu and p.Ala1038Val, which are common in other populations, where also found in our cohort consisted of 26 Greek patients. Array-comparative genome hybridization revealed large deletions in two out of the 25 cases studied.
Collapse
|