1
|
Mekonnen TT, Zevallos-Delgado C, Hatami M, Singh M, Aglyamov SR, Larin KV. Acute alcohol consumption modulates corneal biomechanical properties as revealed by optical coherence elastography. J Biomech 2024; 169:112155. [PMID: 38761746 PMCID: PMC11285743 DOI: 10.1016/j.jbiomech.2024.112155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
Acute alcohol ingestion has been found to impact visual functions, including eye movement, but its effects on corneal biomechanical properties remain unclear. This study aimed to investigate the influence of acute alcohol consumption on corneal biomechanical properties using optical coherence elastography (OCE). An air-coupled ultrasound transducer induced elastic waves in mice corneas in vivo, and a high-resolution phase-sensitive optical coherence tomography (OCT) system tracked the mechanical waves to quantify the elastic wave speed. In vivo measurements were performed on three groups of age- and gender-matched mice: control, placebo (administered saline), and alcohol (administered ethanol) groups. Longitudinal measurements were conducted over a one-hour period to assess acute temporal changes in wave speeds, which are associated with inherent biomechanical properties of the cornea. The results showed a significant decrease in wave speed for the alcohol group after 10 min of ingestion in comparison to pre-ingestion values (p = 0.0096), whereas the temporal wave speed changes for the placebo group were statistically insignificant (p = 0.076). In contrast, the control group showed no significant changes in elastic wave speed and corneal thickness. Furthermore, a significant difference was observed between the wave speeds of the placebo and alcohol groups at each measurement time point between 10 and 50 min (p < 0.05), though both groups exhibited a similar trend in corneal thickness change. The findings of this study have important implications for clinical assessments and research in corneal disorders, highlighting the potential of OCE as a valuable tool for evaluating such changes.
Collapse
Affiliation(s)
- Taye Tolu Mekonnen
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | | | - Maryam Hatami
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Salavat R Aglyamov
- Department of Mechanical Engineering, University of Houston, Houston, TX, USA
| | - Kirill V Larin
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA.
| |
Collapse
|
2
|
Gómez C, Piñero DP, Paredes M, Alió JL, Cavas F. Study of the Influence of Boundary Conditions on Corneal Deformation Based on the Finite Element Method of a Corneal Biomechanics Model. Biomimetics (Basel) 2024; 9:73. [PMID: 38392119 PMCID: PMC10886865 DOI: 10.3390/biomimetics9020073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024] Open
Abstract
Implementing in silico corneal biomechanical models for surgery applications can be boosted by developing patient-specific finite element models adapted to clinical requirements and optimized to reduce computational times. This research proposes a novel corneal multizone-based finite element model with octants and circumferential zones of clinical interest for material definition. The proposed model was applied to four patient-specific physiological geometries of keratoconus-affected corneas. Free-stress geometries were calculated by two iterative methods, the displacements and prestress methods, and the influence of two boundary conditions: embedded and pivoting. The results showed that the displacements, stress and strain fields differed for the stress-free geometry but were similar and strongly depended on the boundary conditions for the estimated physiological geometry when considering both iterative methods. The comparison between the embedded and pivoting boundary conditions showed bigger differences in the posterior limbus zone, which remained closer in the central zone. The computational calculation times for the stress-free geometries were evaluated. The results revealed that the computational time was prolonged with disease severity, and the displacements method was faster in all the analyzed cases. Computational times can be reduced with multicore parallel calculation, which offers the possibility of applying patient-specific finite element models in clinical applications.
Collapse
Affiliation(s)
- Carmelo Gómez
- International School of Doctorate, Technical University of Cartagena, 30202 Cartagena, Spain
| | - David P Piñero
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain
| | - Manuel Paredes
- ICA, Université de Toulouse, UPS, INSA, ISAE-SUPAERO, MINES-ALBI, CNRS, 3 rue Caroline Aigle, 31400 Toulouse, France
| | - Jorge L Alió
- Cornea, Cataract and Refractive Surgery Department, VISSUM, 03016 Alicante, Spain
- Division of Ophthalmology, Department of Pathology and Surgery, Faculty of Medicine, Miguel Hernández University, 03202 Alicante, Spain
| | - Francisco Cavas
- Department of Structures, Construction and Graphic Expression, Technical University of Cartagena, 30202 Cartagena, Spain
| |
Collapse
|
3
|
Ji F, Quinn M, Hua Y, Lee PY, Sigal IA. 2D or not 2D? Mapping the in-depth inclination of the collagen fibers of the corneoscleral shell. Exp Eye Res 2023; 237:109701. [PMID: 37898229 PMCID: PMC10872428 DOI: 10.1016/j.exer.2023.109701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 10/30/2023]
Abstract
The collagen fibers of the corneoscleral shell play a central role in the eye mechanical behavior. Although it is well-known that these fibers form a complex three-dimensional interwoven structure, biomechanical and microstructural studies often assume that the fibers are aligned in-plane with the tissues. This is convenient as it removes the out-of-plane components and allows focusing on the 2D maps of in-plane fiber organization that are often quite complex. The simplification, however, risks missing potentially important aspects of the tissue architecture and mechanics. In the cornea, for instance, fibers with high in-depth inclination have been shown to be mechanically important. Outside the cornea, the in-depth fiber orientations have not been characterized, preventing a deeper understanding of their potential roles. Our goal was to characterize in-depth collagen fiber organization over the whole corneoscleral shell. Seven sheep whole-globe axial sections from eyes fixed at an IOP of 50 mmHg were imaged using polarized light microscopy to measure collagen fiber orientations and density. In-depth fiber orientation distributions and anisotropy (degree of fiber alignment) accounting for fiber density were quantified over the whole sclera and in 15 regions: central cornea, peripheral cornea, limbus, anterior equator, equator, posterior equator, posterior sclera and peripapillary sclera on both nasal and temporal sides. Orientation distributions were fitted using a combination of a uniform distribution and a sum of π-periodic von Mises distributions, each with three parameters: primary orientation μ, fiber concentration factor k, and weighting factor a. To study the features of fibers that are not in-plane, i.e., fiber inclination, we quantified the percentage of inclined fibers and the range of inclination angles (half width at half maximum of inclination angle distribution). Our measurements showed that the fibers were not uniformly in-plane but exhibited instead a wide range of in-depth orientations, with fibers significantly more aligned in-plane in the anterior parts of the globe. We found that fitting the orientation distributions required between one and three π-periodic von Mises distributions with different primary orientations and fiber concentration factors. Regions of the posterior globe, particularly on the temporal side, had a larger percentage of inclined fibers and a larger range of inclination angles than anterior and equatorial regions. Variations of orientation distributions and anisotropies may imply varying out-of-plane tissue mechanical properties around the eye globe. Out-of-plane fibers could indicate fiber interweaving, not necessarily long, inclined fibers. Effects of small-scale fiber undulations, or crimp, were minimized by using tissues from eyes at high IOPs. These fiber features also play a role in tissue stiffness and stability and are therefore also important experimental information.
Collapse
Affiliation(s)
- Fengting Ji
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marissa Quinn
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yi Hua
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering and Department of Mechanical Engineering, University of Mississippi, University, MS, USA
| | - Po-Yi Lee
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ian A Sigal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Mekonnen T, Zevallos-Delgado C, Singh M, Aglyamov SR, Larin KV. Multifocal acoustic radiation force-based reverberant optical coherence elastography for evaluation of ocular globe biomechanical properties. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:095001. [PMID: 37701876 PMCID: PMC10494982 DOI: 10.1117/1.jbo.28.9.095001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/01/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023]
Abstract
Significance Quantifying the biomechanical properties of the whole eye globe can provide a comprehensive understanding of the interactions among interconnected ocular components during dynamic physiological processes. By doing so, clinicians and researchers can gain valuable insights into the mechanisms underlying ocular diseases, such as glaucoma, and design interventions tailored to each patient's unique needs. Aim The aim of this study was to evaluate the feasibility and effectiveness of a multifocal acoustic radiation force (ARF) based reverberant optical coherence elastography (RevOCE) technique for quantifying shear wave speeds in different ocular components simultaneously. Approach We implemented a multifocal ARF technique to generate reverberant shear wave fields, which were then detected using phase-sensitive optical coherence tomography. A 3D-printed acoustic lens array was employed to manipulate a collimated ARF beam generated by an ultrasound transducer, producing multiple focused ARF beams on mouse eye globes ex vivo. RevOCE measurements were conducted using an excitation pulse train consisting of 10 cycles at 3 kHz, followed by data processing to produce a volumetric map of the shear wave speed. Results The results show that the system can successfully generate reverberant shear wave fields in the eye globe, allowing for simultaneous estimation of shear wave speeds in various ocular components, including cornea, iris, lens, sclera, and retina. A comparative analysis revealed notable differences in wave speeds between different parts of the eye, for example, between the apical region of the cornea and the pupillary zone of the iris (p = 0.003 ). Moreover, the study also revealed regional variations in the biomechanical properties of ocular components as evidenced by greater wave speeds near the apex of the cornea compared to its periphery. Conclusions The study demonstrated the effectiveness of RevOCE based on a non-invasive multifocal ARF for assessing the biomechanical properties of the whole eyeball. The findings indicate the potential to provide a comprehensive understanding of the mechanical behavior of the whole eye, which could lead to improved diagnosis and treatment of ocular diseases.
Collapse
Affiliation(s)
- Taye Mekonnen
- University of Houston, Department of Biomedical Engineering Houston, Texas, United States
| | | | - Manmohan Singh
- University of Houston, Department of Biomedical Engineering Houston, Texas, United States
| | - Salavat R. Aglyamov
- University of Houston, Department of Mechanical Engineering, Houston, Texas, United States
| | - Kirill V. Larin
- University of Houston, Department of Biomedical Engineering Houston, Texas, United States
| |
Collapse
|
5
|
Foong TY, Hua Y, Amini R, Sigal IA. Who bears the load? IOP-induced collagen fiber recruitment over the corneoscleral shell. Exp Eye Res 2023; 230:109446. [PMID: 36935071 PMCID: PMC10133210 DOI: 10.1016/j.exer.2023.109446] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/25/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
Collagen is the main load-bearing component of cornea and sclera. When stretched, both of these tissues exhibit a behavior known as collagen fiber recruitment. In recruitment, as the tissues stretch the constitutive collagen fibers lose their natural waviness, progressively straightening. Recruited, straight, fibers bear substantially more mechanical load than non-recruited, wavy, fibers. As such, the process of recruitment underlies the well-established nonlinear macroscopic behavior of the corneoscleral shell. Recruitment has an interesting implication: when recruitment is incomplete, only a fraction of the collagen fibers is actually contributing to bear the loads, with the rest remaining "in reserve". In other words, at a given intraocular pressure (IOP), it is possible that not all the collagen fibers of the cornea and sclera are actually contributing to bear the loads. To the best of our knowledge, the fraction of corneoscleral shell fibers recruited and contributing to bear the load of IOP has not been reported. Our goal was to obtain regionally-resolved estimates of the fraction of corneoscleral collagen fibers recruited and in reserve. We developed a fiber-based microstructural constitutive model that could account for collagen fiber undulations or crimp via their tortuosity. We used experimentally-measured collagen fiber crimp tortuosity distributions in human eyes to derive region-specific nonlinear hyperelastic mechanical properties. We then built a three-dimensional axisymmetric model of the globe, assigning region-specific mechanical properties and regional anisotropy. The model was used to simulate the IOP-induced shell deformation. The model-predicted tissue stretch was then used to quantify collagen recruitment within each shell region. The calculations showed that, at low IOPs, collagen fibers in the posterior equator were recruited the fastest, such that at a physiologic IOP of 15 mmHg, over 90% of fibers were recruited, compared with only a third in the cornea and the peripapillary sclera. The differences in recruitment between regions, in turn, mean that at a physiologic IOP the posterior equator had a fiber reserve of only 10%, whereas the cornea and peripapillary sclera had two thirds. At an elevated IOP of 50 mmHg, collagen fibers in the limbus and the anterior/posterior equator were almost fully recruited, compared with 90% in the cornea and the posterior sclera, and 70% in the peripapillary sclera and the equator. That even at such an elevated IOP not all the fibers were recruited suggests that there are likely other conditions that challenge the corneoscleral tissues even more than IOP. The fraction of fibers recruited may have other potential implications. For example, fibers that are not bearing loads may be more susceptible to enzymatic digestion or remodeling. Similarly, it may be possible to control tissue stiffness through the fraction of recruited fibers without the need to add or remove collagen.
Collapse
Affiliation(s)
- Tian Yong Foong
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yi Hua
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Biomedical Engineering, University of Mississippi, MS, United States; Department of Mechanical Engineering, University of Mississippi, MS, United States
| | - Rouzbeh Amini
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, United States; Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Ian A Sigal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center and University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
6
|
Lan G, Twa MD, Song C, Feng J, Huang Y, Xu J, Qin J, An L, Wei X. In vivo corneal elastography: A topical review of challenges and opportunities. Comput Struct Biotechnol J 2023; 21:2664-2687. [PMID: 37181662 PMCID: PMC10173410 DOI: 10.1016/j.csbj.2023.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
Clinical measurement of corneal biomechanics can aid in the early diagnosis, progression tracking, and treatment evaluation of ocular diseases. Over the past two decades, interdisciplinary collaborations between investigators in optical engineering, analytical biomechanical modeling, and clinical research has expanded our knowledge of corneal biomechanics. These advances have led to innovations in testing methods (ex vivo, and recently, in vivo) across multiple spatial and strain scales. However, in vivo measurement of corneal biomechanics remains a long-standing challenge and is currently an active area of research. Here, we review the existing and emerging approaches for in vivo corneal biomechanics evaluation, which include corneal applanation methods, such as ocular response analyzer (ORA) and corneal visualization Scheimpflug technology (Corvis ST), Brillouin microscopy, and elastography methods, and the emerging field of optical coherence elastography (OCE). We describe the fundamental concepts, analytical methods, and current clinical status for each of these methods. Finally, we discuss open questions for the current state of in vivo biomechanics assessment techniques and requirements for wider use that will further broaden our understanding of corneal biomechanics for the detection and management of ocular diseases, and improve the safety and efficacy of future clinical practice.
Collapse
Affiliation(s)
- Gongpu Lan
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
- Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Michael D. Twa
- College of Optometry, University of Houston, Houston, TX 77204, United States
| | - Chengjin Song
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - JinPing Feng
- Institute of Engineering and Technology, Hubei University of Science and Technology, Xianning, Hubei 437100, China
| | - Yanping Huang
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
- Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Jingjiang Xu
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
- Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Jia Qin
- Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Lin An
- Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Xunbin Wei
- Biomedical Engineering Department, Peking University, Beijing 100081, China
- International Cancer Institute, Peking University, Beijing 100191, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
7
|
Catania F, Morenghi E, Rosetta P, Paolo V, Vinciguerra R. Corneal Biomechanics Assessment with Ultra High Speed Scheimpflug Camera in Primary Open Angle Glaucoma Compared with Healthy Subjects: A meta-analysis of the Literature. Curr Eye Res 2023; 48:161-171. [PMID: 35385343 DOI: 10.1080/02713683.2022.2059809] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE The aim of this meta-analysis of the literature is to provide a comprehensive analysis of the differences in Corvis ST dynamic corneal response (DCR) parameters between primary open-angle glaucoma (POAG) patients and healthy controls. METHODS A quantitative meta-analysis was conducted on articles published before September 10, 2021 identified by searching PubMed, EMBASE, and Web of Science. Prospective studies comparing DCR Corvis ST parameter in high tension POAG and healthy controls were included. The random-effects model was conducted. Assessment of heterogeneity was based on the calculation of I2. Funnel plots evaluation and meta-regression were performed in case of detection of high heterogeneity. RESULTS The selection process resulted in the inclusion of six articles. Pooled analysis revealed that POAG corneas respond to mechanical stimulus with a smaller concavity, showing lower deformation amplitude (DA) (CI95% -0.991 to -0.578; p < .001; I2 = 0%), higher highest concavity radius (HCR; confidence interval [CI]95% -0.01 to 0.34; p = .058; I2 = 6.7%), and lower peak distance (PD; CI95% -1.06 to -0.024; p = .040; I2 = 86.5%). They also show a slower loading phase, with lower highest concavity time (HCT; CI95% -0.39 to -0.02; p = .029; I2 = 3.3%) and lower applanation velocity-1 (CI95% -0.641 to -0.127; p = .003; I2 = 34.6%), and a faster restoration to the original form, shown by lower applanation time-2 (CI95% -1.123 to -0.544; p = .001; I2 = 44.8%) compared to healthy subjects. CONCLUSIONS High tension POAG patients are characterized by stiffer corneas compared to healthy controls. These differences are valid also after removing the effect of age, corneal thickness, and intraocular pressure (IOP).
Collapse
Affiliation(s)
- Fiammetta Catania
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Humanitas Clinical and Research Center, IRCCS, Rozzano, Italy
| | - Emanuela Morenghi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Humanitas Clinical and Research Center, IRCCS, Rozzano, Italy
| | | | - Vinciguerra Paolo
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Humanitas Clinical and Research Center, IRCCS, Rozzano, Italy
| | | |
Collapse
|
8
|
Xia M, Zhang E, Yao F, Xia Z, Zhou M, Ran X, Xia X. Regional differences of the sclera in the ocular hypertensive rat model induced by circumlimbal suture. EYE AND VISION (LONDON, ENGLAND) 2023; 10:2. [PMID: 36597143 PMCID: PMC9811703 DOI: 10.1186/s40662-022-00319-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/15/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE To describe the regional differences of the sclera in ocular hypertension (OHT) models with the inappropriate extension of the ocular axis. METHODS To discover the regional differences of the sclera at the early stage, OHT models were established using circumlimbal suture (CS) or sclerosant injection (SI). Axial length (AL) was measured by ultrasound and magnetic resonance imaging. The glaucoma-associated distinction was determined by intraocular pressure (IOP) and retrograde tracing of retinal ganglion cells (RGCs). The central thickness of the ganglion cell complex (GCC) was measured by optical coherence tomography. RGCs and collagen fibrils were detected using a transmission electron microscope, furthermore, anti-alpha smooth muscle actin (αSMA) was determined in the early stage after the operation. RESULTS Compared with the control group, the eyes in OHT models showed an increased IOP (P < 0.001 in the CS group, P = 0.001 in the SI group), growing AL (P = 0.026 in the CS group, P = 0.043 in the SI group), reduction of central RGCs (P < 0.001 in the CS group, P = 0.017 in the SI group), thinning central GCC (P < 0.001 in the CS group), and a distinctive expression of αSMA in the central sclera in the early 4-week stage after the operation (P = 0.002 in the CS group). Compared with the SI group, the eye in the CS group showed a significantly increased AL (7.1 ± 0.4 mm, P = 0.031), reduction of central RGCs (2121.1 ± 87.2 cells/mm2, P = 0.001), thinning central GCC (71.4 ± 0.8 pixels, P = 0.015), and a distinctive expression of αSMA (P = 0.005). Additionally, ultrastructural changes in RGCs, scleral collagen fibers, and collagen crimp were observed in the different regions. Increased collagen volume fraction in the posterior segment of the eyeball wall (30.2 ± 3.1%, P = 0.022) was observed by MASSON staining in the CS group. CONCLUSION Regional differences of the sclera in the ocular hypertensive rat model induced by CS may provide a reference for further treatment of scleral-related eye disorders.
Collapse
Affiliation(s)
- Mingfang Xia
- grid.216417.70000 0001 0379 7164Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan China ,grid.452223.00000 0004 1757 7615Hunan Key Laboratory of Ophthalmology, Changsha, 410008 Hunan China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China ,grid.469519.60000 0004 1758 070XDepartment of Ophthalmology, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750004 Ningxia China
| | - Endong Zhang
- grid.216417.70000 0001 0379 7164Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan China ,grid.452223.00000 0004 1757 7615Hunan Key Laboratory of Ophthalmology, Changsha, 410008 Hunan China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Fei Yao
- grid.216417.70000 0001 0379 7164Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan China ,grid.452223.00000 0004 1757 7615Hunan Key Laboratory of Ophthalmology, Changsha, 410008 Hunan China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Zhaohua Xia
- grid.216417.70000 0001 0379 7164Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan China ,grid.452223.00000 0004 1757 7615Hunan Key Laboratory of Ophthalmology, Changsha, 410008 Hunan China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Mingmin Zhou
- grid.216417.70000 0001 0379 7164Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan China ,grid.452223.00000 0004 1757 7615Hunan Key Laboratory of Ophthalmology, Changsha, 410008 Hunan China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Xufang Ran
- grid.216417.70000 0001 0379 7164Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan China ,grid.452223.00000 0004 1757 7615Hunan Key Laboratory of Ophthalmology, Changsha, 410008 Hunan China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Xiaobo Xia
- grid.216417.70000 0001 0379 7164Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan China ,grid.452223.00000 0004 1757 7615Hunan Key Laboratory of Ophthalmology, Changsha, 410008 Hunan China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| |
Collapse
|
9
|
Wei J, Hua Y, Yang B, Wang B, Schmitt SE, Wang B, Lucy KA, Ishikawa H, Schuman JS, Smith MA, Wollstein G, Sigal IA. Comparing Acute IOP-Induced Lamina Cribrosa Deformations Premortem and Postmortem. Transl Vis Sci Technol 2022; 11:1. [DOI: 10.1167/tvst.11.12.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Affiliation(s)
- Junchao Wei
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yi Hua
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bin Yang
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Engineering, Duquesne University, Pittsburgh, PA, USA
| | - Bo Wang
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Samantha E. Schmitt
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Bingrui Wang
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Katie A. Lucy
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Hiroshi Ishikawa
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, USA
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, USA
| | - Joel S. Schuman
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, USA
- Department of Biomedical Engineering and Electrical and Computer Engineering, New York University Tandon School of Engineering, Brooklyn, NY, USA
- Neuroscience Institute, NYU Langone Health, New York, NY, USA
| | - Matthew A. Smith
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Gadi Wollstein
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Ian A. Sigal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
10
|
Hwang HB, Yeon JS, Moon GS, Jung HN, Kim JY, Jeon SH, Yoon JM, Kim HW, Kim YC. 3D Reconstruction of a Unitary Posterior Eye by Converging Optically Corrected Optical Coherence and Magnetic Resonance Tomography Images via 3D CAD. Transl Vis Sci Technol 2022; 11:24. [PMID: 35895054 PMCID: PMC9344223 DOI: 10.1167/tvst.11.7.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Purpose In acquiring images of the posterior eye, magnetic resonance imaging (MRI) provides low spatial resolution of the overall shape of the eye while optical coherence tomography (OCT) offers high spatial resolution of the limited range. Through the merger of the two devices, we attempted to acquire detailed anatomy of the posterior eye. Methods Optical and display distortions in OCT images were corrected using the Listing reduced eye model. The 3.0T orbital MRI images were placed on the three-dimensional coordinate system of the computer-aided design (CAD) program. Employing anterior scleral canal opening, visual axis, and scleral curvature as references, original and corrected OCT images were ported into the CAD application. The radii of curvature of the choroid–scleral interfaces (Rc values) of all original and corrected OCT images were compared to the MRI images. Results Sixty-five eyes of 33 participants (45.58 ± 19.82 years) with a mean Rc of 12.94 ± 1.24 mm on axial MRI and 13.66 ± 2.81 mm on sagittal MRI were included. The uncorrected horizontal OCT (30.51 ± 9.34 mm) and the uncorrected vertical OCT (34.35 ± 18.09 mm) lengths differed significantly from the MRI Rc values (both P < 0.001). However, the mean Rc values of the corrected horizontal (12.50 ± 1.21 mm) and vertical (13.05 ± 1.98 mm) images did not differ significantly from the Rc values of the corresponding MRI planes (P = 0.065 and P = 0.198, respectively). Conclusions Features identifiable only on OCT and features only on MRI were successfully integrated into a unitary posterior eye. Translational Relevance Our CAD-based converging method may establish the collective anatomy of the posterior eye and the neural canal, beyond the range of the OCT.
Collapse
Affiliation(s)
- Hyung Bin Hwang
- Department of Ophthalmology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Ophthalmology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | | | | | | | | | - Seung Hee Jeon
- Department of Ophthalmology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Ophthalmology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Joon Myoung Yoon
- Department of Ophthalmology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Ophthalmology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyo Won Kim
- Gangnam St. Mary's One Eye Clinic, Seoul, Republic of Korea
| | - Yong Chan Kim
- Department of Ophthalmology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Ophthalmology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
11
|
Li W, Feng J, Wang Y, Shi Q, Ma G, Aglyamov S, Larin KV, Lan G, Twa M. Micron-scale hysteresis measurement using dynamic optical coherence elastography. BIOMEDICAL OPTICS EXPRESS 2022; 13:3021-3041. [PMID: 35774312 PMCID: PMC9203113 DOI: 10.1364/boe.457617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 05/28/2023]
Abstract
We present a novel optical coherence elastography (OCE) method to characterize mechanical hysteresis of soft tissues based on transient (milliseconds), low-pressure (<20 Pa) non-contact microliter air-pulse stimulation and micrometer-scale sample displacements. The energy dissipation rate (sample hysteresis) was quantified for soft-tissue phantoms (0.8% to 2.0% agar) and beef shank samples under different loading forces and displacement amplitudes. Sample hysteresis was defined as the loss ratio (hysteresis loop area divided by the total loading energy). The loss ratio was primarily driven by the sample unloading response which decreased as loading energy increased. Samples were distinguishable based on their loss ratio responses as a function loading energy or displacement amplitude. Finite element analysis and mechanical testing methods were used to validate these observations. We further performed the OCE measurements on a beef shank tissue sample to distinguish the muscle and connective tissue components based on the displacement and hysteresis features. This novel, noninvasive OCE approach has the potential to differentiate soft tissues by quantifying their viscoelasticity using micron-scale transient tissue displacement dynamics. Focal tissue hysteresis measurements could provide additional clinically useful metrics for guiding disease diagnosis and tissue treatment responses.
Collapse
Affiliation(s)
- Wenjie Li
- Foshan University, School of Mechatronic Engineering and Automation, Foshan, Guangdong, 528000, China
- Contributed equally
| | - Jinping Feng
- Hubei University of Science and Technology, Institute of Engineering and Technology, Xianning, Hubei, 437100, China
- Contributed equally
| | - Yicheng Wang
- Foshan University, School of Mechatronic Engineering and Automation, Foshan, Guangdong, 528000, China
| | - Qun Shi
- Foshan University, School of Mechatronic Engineering and Automation, Foshan, Guangdong, 528000, China
| | - Guoqin Ma
- Foshan University, School of Mechatronic Engineering and Automation, Foshan, Guangdong, 528000, China
| | - Salavat Aglyamov
- University of Houston, Mechanical Engineering, Houston, TX 77204, USA
| | - Kirill V Larin
- University of Houston, Biomedical Engineering, Houston, TX 77204, USA
| | - Gongpu Lan
- Foshan University, School of Physics and Optoelectronic Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, Foshan, Guangdong 528000, China
- Innovation and Entrepreneurship Team of Guangdong Pearl River Talents Program, Weiren Meditech Co., Ltd., Foshan, Guangdong, 528000, China
| | - Michael Twa
- University of Houston, College of Optometry, Houston, TX 77204, USA
| |
Collapse
|
12
|
Colbert MK, Ho LC, van der Merwe Y, Yang X, McLellan GJ, Hurley SA, Field AS, Yun H, Du Y, Conner IP, Parra C, Faiq MA, Fingert JH, Wollstein G, Schuman JS, Chan KC. Diffusion Tensor Imaging of Visual Pathway Abnormalities in Five Glaucoma Animal Models. Invest Ophthalmol Vis Sci 2021; 62:21. [PMID: 34410298 PMCID: PMC8383913 DOI: 10.1167/iovs.62.10.21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose To characterize the visual pathway integrity of five glaucoma animal models using diffusion tensor imaging (DTI). Methods Two experimentally induced and three genetically determined models of glaucoma were evaluated. For inducible models, chronic IOP elevation was achieved via intracameral injection of microbeads or laser photocoagulation of the trabecular meshwork in adult rodent eyes. For genetic models, the DBA/2J mouse model of pigmentary glaucoma, the LTBP2 mutant feline model of congenital glaucoma, and the transgenic TBK1 mouse model of normotensive glaucoma were compared with their respective genetically matched healthy controls. DTI parameters, including fractional anisotropy, axial diffusivity, and radial diffusivity, were evaluated along the optic nerve and optic tract. Results Significantly elevated IOP relative to controls was observed in each animal model except for the transgenic TBK1 mice. Significantly lower fractional anisotropy and higher radial diffusivity were observed along the visual pathways of the microbead- and laser-induced rodent models, the DBA/2J mice, and the LTBP2-mutant cats compared with their respective healthy controls. The DBA/2J mice also exhibited lower axial diffusivity, which was not observed in the other models examined. No apparent DTI change was observed in the transgenic TBK1 mice compared with controls. Conclusions Chronic IOP elevation was accompanied by decreased fractional anisotropy and increased radial diffusivity along the optic nerve or optic tract, suggestive of disrupted microstructural integrity in both inducible and genetic glaucoma animal models. The effects on axial diffusivity differed between models, indicating that this DTI metric may represent different aspects of pathological changes over time and with severity.
Collapse
Affiliation(s)
- Max K Colbert
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, United States
| | - Leon C Ho
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Yolandi van der Merwe
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Xiaoling Yang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Gillian J McLellan
- Department of Ophthalmology and Visual Sciences, University of Wisconsin - Madison, Madison, Wisconsin, United States.,McPherson Eye Research Institute, University of Wisconsin - Madison, Madison, Wisconsin, United States
| | - Samuel A Hurley
- Department of Radiology, University of Wisconsin - Madison, Madison, Wisconsin, United States
| | - Aaron S Field
- Department of Radiology, University of Wisconsin - Madison, Madison, Wisconsin, United States
| | - Hongmin Yun
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Yiqin Du
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Ian P Conner
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Carlos Parra
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, United States
| | - Muneeb A Faiq
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, United States
| | - John H Fingert
- Department of Ophthalmology and Visual Sciences, University of Iowa College of Medicine, Iowa City, Iowa, United States
| | - Gadi Wollstein
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, United States.,Center for Neural Science, College of Arts and Science, New York University, New York, New York, United States.,Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York, United States
| | - Joel S Schuman
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, United States.,Center for Neural Science, College of Arts and Science, New York University, New York, New York, United States.,Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York, United States.,Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, United States
| | - Kevin C Chan
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, United States.,Center for Neural Science, College of Arts and Science, New York University, New York, New York, United States.,Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York, United States.,Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, United States.,Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, United States
| |
Collapse
|
13
|
In vivo MRI evaluation of early postnatal development in normal and impaired rat eyes. Sci Rep 2021; 11:15513. [PMID: 34330952 PMCID: PMC8324881 DOI: 10.1038/s41598-021-93991-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 07/01/2021] [Indexed: 11/08/2022] Open
Abstract
This study employed in vivo 7-T magnetic resonance imaging (MRI) to evaluate the postnatal ocular growth patterns under normal development or neonatal impairments in Sprague-Dawley rats. Using T2-weighted imaging on healthy rats from postnatal day (P) 1 (newborn) to P60 (adult), the volumes of the anterior chamber and posterior chamber (ACPC), lens, and vitreous humor increased logistically with ACPC expanding by 33-fold and the others by fivefold. Intravitreal potassium dichromate injection at P1, P7, and P14 led to T1-weighted signal enhancement in the developing retina by 188-289%. Upon unilateral hypoxic-ischemic encephalopathy at P7, monocular deprivation at P15, and monocular enucleation at P1, T2-weighted imaging of the adult rats showed decreased ocular volumes to different extents. In summary, in vivo high-field MRI allows for non-invasive evaluation of early postnatal development in the normal and impaired rat eyes. Chromium-enhanced MRI appeared effective in examining the developing retina before natural eyelid opening at P14 with relevance to lipid metabolism. The reduced ocular volumes upon neonatal visual impairments provided evidence to the emerging problems of why some impaired visual outcomes cannot be solely predicted by neurological assessments and suggested the need to look into both the eye and the brain under such conditions.
Collapse
|
14
|
Brazile BL, Yang B, Waxman S, Lam P, Voorhees AP, Hua Y, Loewen RT, Loewen NA, Rizzo JF, Jakobs T, Sigal IA. Lamina Cribrosa Capillaries Straighten as Intraocular Pressure Increases. Invest Ophthalmol Vis Sci 2021; 61:2. [PMID: 33001158 PMCID: PMC7545063 DOI: 10.1167/iovs.61.12.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Purpose The purpose of this study was to visualize the lamina cribrosa (LC) capillaries and collagenous beams, measure capillary tortuosity (path length over straight end-to-end length), and determine if capillary tortuosity changes when intraocular pressure (IOP) increases. Methods Within 8 hours of sacrifice, 3 pig heads were cannulated via the external ophthalmic artery, perfused with PBS to remove blood, and then perfused with a fluorescent dye to label the capillaries. The posterior pole of each eye was mounted in a custom-made inflation chamber for control of IOP with simultaneous imaging. Capillaries and collagen beams were visualized with structured light illumination enhanced imaging at IOPs from 5 to 50 mm Hg at each 5 mm Hg increment. Capillary tortuosity was measured from the images and paired two-sample t-tests were used to assess for significant changes in relation to changes in IOP. Results Capillaries were highly tortuous at 15 mm Hg (up to 1.45). In all but one eye, tortuosity decreased significantly as IOP increased from 15 to 25 mm Hg (P < 0.01), and tortuosity decreased significantly in every eye as IOP increased from 15 to 40 mm Hg (P < 0.01). In only 16% of capillaries, tortuosity increased with elevated IOP. Capillaries had a surprisingly different topology from the collagen beams. Conclusions Although high capillary tortuosity is sometimes regarded as potentially problematic because it can reduce blood flow, LC capillary tortuosity may provide slack that mitigates against reduced flow and structural damage caused by excessive stretch under elevated IOP. We speculate that low capillary tortuosity could be a risk factor for damage under high IOP.
Collapse
Affiliation(s)
- Bryn L Brazile
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh Pennsylvania, United States
| | - Bin Yang
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh Pennsylvania, United States.,Department of Engineering, Duquesne University, Pittsburgh Pennsylvania, United States
| | - Susannah Waxman
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh Pennsylvania, United States
| | - Po Lam
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh Pennsylvania, United States
| | - Andrew P Voorhees
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh Pennsylvania, United States
| | - Yi Hua
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh Pennsylvania, United States
| | - Ralitsa T Loewen
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh Pennsylvania, United States
| | - Nils A Loewen
- Department of Ophthalmology, University of Würzburg, Würzburg, Germany
| | - Joseph F Rizzo
- Neuro-Ophthalmology Service, Department of Ophthalmology, Massachusetts Eye and Ear and Harvard Medical School, Boston, Massachusetts, United States
| | - Tatjana Jakobs
- Department of Ophthalmology, Harvard Medical School, Boston Massachusetts, United States
| | - Ian A Sigal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh Pennsylvania, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh Pennsylvania, United States
| |
Collapse
|
15
|
Ferrara M, Lugano G, Sandinha MT, Kearns VR, Geraghty B, Steel DHW. Biomechanical properties of retina and choroid: a comprehensive review of techniques and translational relevance. Eye (Lond) 2021; 35:1818-1832. [PMID: 33649576 PMCID: PMC8225810 DOI: 10.1038/s41433-021-01437-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/06/2020] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Studying the biomechanical properties of biological tissue is crucial to improve our understanding of disease pathogenesis. The biomechanical characteristics of the cornea, sclera and the optic nerve head have been well addressed with an extensive literature and an in-depth understanding of their significance whilst, in comparison, knowledge of the retina and choroid is relatively limited. Knowledge of these tissues is important not only to clarify the underlying pathogenesis of a wide variety of retinal and vitreoretinal diseases, including age-related macular degeneration, hereditary retinal dystrophies and vitreoretinal interface diseases but also to optimise the surgical handling of retinal tissues and, potentially, the design and properties of implantable retinal prostheses and subretinal therapies. Our aim with this article is to comprehensively review existing knowledge of the biomechanical properties of retina, internal limiting membrane (ILM) and the Bruch’s membrane–choroidal complex (BMCC), highlighting the potential implications for clinical and surgical practice. Prior to this we review the testing methodologies that have been used both in vitro, and those starting to be used in vivo to aid understanding of their results and significance.
Collapse
Affiliation(s)
| | - Gaia Lugano
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | | | - Victoria R Kearns
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Brendan Geraghty
- Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.
| | - David H W Steel
- Sunderland Eye Infirmary, Sunderland, UK. .,Bioscience Institute, Newcastle University, Newcastle Upon Tyne, UK.
| |
Collapse
|
16
|
Role of radially aligned scleral collagen fibers in optic nerve head biomechanics. Exp Eye Res 2020; 199:108188. [PMID: 32805265 DOI: 10.1016/j.exer.2020.108188] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/22/2020] [Accepted: 08/06/2020] [Indexed: 01/04/2023]
Abstract
Collagen fibers organized circumferentially around the canal in the peripapillary sclera are thought to provide biomechanical support to the sensitive tissues within the optic nerve head (ONH). Recent studies have demonstrated the existence of a family of fibers in the innermost sclera organized radially from the scleral canal. Our goal was to determine the role of these radial fibers in the sensitivity of scleral canal biomechanics to acute increases in intraocular pressure (IOP). Following the same general approach of previous parametric sensitivity studies, we created nonlinear generic finite element models of a posterior pole with various combinations of radial and circumferential fibers at an IOP of 0 mmHg. We then simulated the effects of normal and elevated IOP levels (15 and 30 mmHg). We monitored four IOP-induced geometric changes: peripapillary sclera stretch, scleral canal displacement, lamina cribrosa displacement, and scleral canal expansion. In addition, we examined the radial (maximum tension) and through-thickness (maximum compression) strains within the ONH tissues. Our models predicted that: 1) radial fibers reduced the posterior displacement of the lamina, especially at elevated IOP; 2) radial fibers reduced IOP-induced radial strain within the peripapillary sclera and retinal tissue; and 3) a combination of radial and circumferential fibers maintained strains within the ONH at a level similar to those conferred by circumferential fibers alone. In conclusion, radial fibers provide support for the posterior globe, additional to that provided by circumferential fibers. Most importantly, a combination of both fiber families can better protect ONH tissues from excessive IOP-induced deformation than either alone.
Collapse
|
17
|
Boote C, Sigal IA, Grytz R, Hua Y, Nguyen TD, Girard MJA. Scleral structure and biomechanics. Prog Retin Eye Res 2019; 74:100773. [PMID: 31412277 DOI: 10.1016/j.preteyeres.2019.100773] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 12/18/2022]
Abstract
As the eye's main load-bearing connective tissue, the sclera is centrally important to vision. In addition to cooperatively maintaining refractive status with the cornea, the sclera must also provide stable mechanical support to vulnerable internal ocular structures such as the retina and optic nerve head. Moreover, it must achieve this under complex, dynamic loading conditions imposed by eye movements and fluid pressures. Recent years have seen significant advances in our knowledge of scleral biomechanics, its modulation with ageing and disease, and their relationship to the hierarchical structure of the collagen-rich scleral extracellular matrix (ECM) and its resident cells. This review focuses on notable recent structural and biomechanical studies, setting their findings in the context of the wider scleral literature. It reviews recent progress in the development of scattering and bioimaging methods to resolve scleral ECM structure at multiple scales. In vivo and ex vivo experimental methods to characterise scleral biomechanics are explored, along with computational techniques that combine structural and biomechanical data to simulate ocular behaviour and extract tissue material properties. Studies into alterations of scleral structure and biomechanics in myopia and glaucoma are presented, and their results reconciled with associated findings on changes in the ageing eye. Finally, new developments in scleral surgery and emerging minimally invasive therapies are highlighted that could offer new hope in the fight against escalating scleral-related vision disorder worldwide.
Collapse
Affiliation(s)
- Craig Boote
- Structural Biophysics Research Group, School of Optometry & Vision Sciences, Cardiff University, UK; Ophthalmic Engineering & Innovation Laboratory (OEIL), Department of Biomedical Engineering, National University of Singapore, Singapore; Newcastle Research & Innovation Institute Singapore (NewRIIS), Singapore.
| | - Ian A Sigal
- Laboratory of Ocular Biomechanics, Department of Ophthalmology, University of Pittsburgh, USA
| | - Rafael Grytz
- Department of Ophthalmology & Visual Sciences, University of Alabama at Birmingham, USA
| | - Yi Hua
- Laboratory of Ocular Biomechanics, Department of Ophthalmology, University of Pittsburgh, USA
| | - Thao D Nguyen
- Department of Mechanical Engineering, Johns Hopkins University, USA
| | - Michael J A Girard
- Ophthalmic Engineering & Innovation Laboratory (OEIL), Department of Biomedical Engineering, National University of Singapore, Singapore; Singapore Eye Research Institute (SERI), Singapore National Eye Centre, Singapore
| |
Collapse
|
18
|
Gogola A, Jan NJ, Brazile B, Lam P, Lathrop KL, Chan KC, Sigal IA. Spatial Patterns and Age-Related Changes of the Collagen Crimp in the Human Cornea and Sclera. Invest Ophthalmol Vis Sci 2019; 59:2987-2998. [PMID: 30025116 PMCID: PMC5995484 DOI: 10.1167/iovs.17-23474] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose Collagen is the main load-bearing component of the eye, and collagen crimp is a critical determinant of tissue mechanical behavior. We test the hypothesis that collagen crimp morphology varies over the human cornea and sclera and with age. Methods We analyzed 42 axial whole-globe sections from 20 normal eyes of 20 human donors, ranging in age from 0.08 (1 month) to 97 years. The sections were imaged using polarized light microscopy to obtain μm-scale fiber bundle/lamellae orientation from two corneal and six scleral regions. Crimp morphology was quantified through waviness, tortuosity, and amplitude. Results Whole-globe median waviness, tortuosity, and amplitude were 0.127 radians, 1.002, and 0.273 μm, respectively. These parameters, however, were not uniform over the globe, instead exhibiting distinct, consistent patterns. All crimp parameters decreased significantly with age, with significantly different age-related decreases between regions. The crimp morphology of the limbus changed the most drastically with age, such that it had the largest crimp in neonates, and among the smallest in the elderly. Conclusions Age-related decreases in crimp parameters are likely one of the mechanisms underlying age-related stiffening of the sclera and cornea, potentially influencing sensitivity to IOP. Further work is needed to determine the biomechanical implications of the crimp patterns observed. The comparatively large changes in the crimp morphology of the limbus, especially in the early years of life, suggest that crimp in this region may play a role in eye development, although the exact nature of this is unclear.
Collapse
Affiliation(s)
- Alexandra Gogola
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Ning-Jiun Jan
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Bryn Brazile
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Po Lam
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Kira L Lathrop
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Kevin C Chan
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,Department of Ophthalmology, New York University, New York, New York, United States.,Department of Radiology, New York University, New York, New York, United States
| | - Ian A Sigal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
19
|
Tran H, Wallace J, Zhu Z, Lucy KA, Voorhees AP, Schmitt SE, Bilonick RA, Schuman JS, Smith MA, Wollstein G, Sigal IA. Seeing the Hidden Lamina: Effects of Exsanguination on the Optic Nerve Head. Invest Ophthalmol Vis Sci 2019; 59:2564-2575. [PMID: 29847664 PMCID: PMC5968837 DOI: 10.1167/iovs.17-23356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose To introduce an experimental approach for direct comparison of the primate optic nerve head (ONH) before and after death by exsanguination. Method The ONHs of four eyes from three monkeys were imaged with spectral-domain optical coherence tomography (OCT) before and after exsanguination under controlled IOP. ONH structures, including the Bruch membrane (BM), BM opening, inner limiting membrane (ILM), and anterior lamina cribrosa (ALC) were delineated on 18 virtual radial sections per OCT scan. Thirteen parameters were analyzed: scleral canal at BM opening (area, planarity, and aspect ratio), ILM depth, BM depth; ALC (depth, shape index, and curvedness), and ALC visibility (globally, superior, inferior, nasal, and temporal quadrants). Results All four ALC quadrants had a statistically significant improvement in visibility after exsanguination (overall P < 0.001). ALC visibility increased by 35% globally and by 36%, 37%, 14%, and 4% in the superior, inferior, nasal, and temporal quadrants, respectively. ALC increased 4.1%, 1.9%, and 0.1% in curvedness, shape index, and depth, respectively. Scleral canals increased 7.2%, 25.2%, and 1.1% in area, planarity, and aspect ratio, respectively. ILM and BM depths averaged -7.5% and -55.2% decreases in depth, respectively. Most, but not all, changes were beyond the repeatability range. Conclusions Exsanguination allows for improved lamina characterization, especially in regions typically blocked by shadowing in OCT. The results also demonstrate changes in ONH morphology due to the loss of blood pressure. Future research will be needed to determine whether there are differences in ONH biomechanics before and after exsanguination and what those differences would imply.
Collapse
Affiliation(s)
- Huong Tran
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Jacob Wallace
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Ziyi Zhu
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Katie A Lucy
- New York University Langone Eye Center, NYU School of Medicine, New York, New York, United States
| | - Andrew P Voorhees
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Samantha E Schmitt
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Richard A Bilonick
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Joel S Schuman
- New York University Langone Eye Center, NYU School of Medicine, New York, New York, United States
| | - Matthew A Smith
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Gadi Wollstein
- New York University Langone Eye Center, NYU School of Medicine, New York, New York, United States
| | - Ian A Sigal
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
20
|
Jan NJ, Brazile BL, Hu D, Grube G, Wallace J, Gogola A, Sigal IA. Crimp around the globe; patterns of collagen crimp across the corneoscleral shell. Exp Eye Res 2018; 172:159-170. [PMID: 29660327 DOI: 10.1016/j.exer.2018.04.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 12/20/2022]
Abstract
Our goal was to systematically quantify the collagen crimp morphology around the corneoscleral shell, and test the hypothesis that collagen crimp is not uniform over the globe. Axial longitudinal cryosections (30 μm) of three sheep eyes, fixed at 0 mmHg IOP, were imaged using polarized light microscopy to quantify the local collagen in 8 regions: two corneal (central and peripheral) and six scleral (limbus, anterior-equatorial, equatorial, posterior-equatorial, posterior and peripapillary). Collagen crimp period (length of one wave), tortuosity (path length divided by end-to-end length), waviness (SD of orientation), amplitude (half the peak to trough distance), and conformity (width of contiguous similarly oriented bundles) were measured in each region. Measurements were obtained on 8216 collagen fiber bundles. When pooling measurements across the whole eye globe, the median crimp values were: 23.9 μm period, 13.2 μm conformity, 0.63 μm amplitude, 1.006 tortuosity, and 12.7° waviness. However, all parameters varied significantly across the globe. Median bundle periods in the central cornea, limbus, and peripapillary sclera (PPS) were 14.1 μm, 29.5 μm, and 22.9 μm, respectively. Median conformities were 20.8 μm, 14.5 μm, and 15.1 μm, respectively. Median tortuosities were 1.005, 1.007, and 1.007, respectively. Median waviness' were 11.4°, 13.2°, and 13.2°, respectively. Median amplitudes were 0.35 μm, 0.87 μm, and 0.65 μm, respectively. All parameters varied significantly across the globe. All regions differed significantly from one another on at least one parameter. Regions with small periods had large conformities, and bundles with high tortuosity had high waviness and amplitude. Waviness, tortuosity, and amplitude, associated with nonlinear biomechanical behavior, exhibited "double hump" distributions, whereas period and conformity, representing tissue organization, were substantially different between sclera and cornea. Though the biomechanical implications and origin of the patterns observed remain unclear, our findings of well-defined patterns of collagen crimp across the corneoscleral shell, consistent between eyes, support the existence of mechanisms that regulate collagen characteristics at the regional or smaller levels. These results are experimental data necessary for more realistic models of ocular biomechanics and remodeling.
Collapse
Affiliation(s)
- Ning-Jiun Jan
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, USA; Department of Ophthalmology, University of Pittsburgh School of Medicine, USA
| | - Bryn L Brazile
- Department of Ophthalmology, University of Pittsburgh School of Medicine, USA
| | - Danielle Hu
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, USA; Department of Ophthalmology, University of Pittsburgh School of Medicine, USA
| | - Garrett Grube
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, USA
| | - Jacob Wallace
- Department of Ophthalmology, University of Pittsburgh School of Medicine, USA
| | - Alexandra Gogola
- Department of Ophthalmology, University of Pittsburgh School of Medicine, USA
| | - Ian A Sigal
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, USA; Department of Ophthalmology, University of Pittsburgh School of Medicine, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh, USA; The Louis J. Fox Center for Vision Restoration of UPMC and the University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
21
|
Age-related Changes in Eye, Brain and Visuomotor Behavior in the DBA/2J Mouse Model of Chronic Glaucoma. Sci Rep 2018; 8:4643. [PMID: 29545576 PMCID: PMC5854610 DOI: 10.1038/s41598-018-22850-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 03/02/2018] [Indexed: 12/19/2022] Open
Abstract
Although elevated intraocular pressure (IOP) and age are major risk factors for glaucoma, their effects on glaucoma pathogenesis remain unclear. This study examined the onset and progression of glaucomatous changes to ocular anatomy and physiology, structural and physiological brain integrity, and visuomotor behavior in the DBA/2J mice via non-invasive tonometry, multi-parametric magnetic resonance imaging (MRI) and optokinetic assessments from 5 to 12 months of age. Using T2-weighted MRI, diffusion tensor MRI, and manganese-enhanced MRI, increasing IOP elevation at 9 and 12 months old coincided with anterior chamber deepening, altered fractional anisotropy and radial diffusivity of the optic nerve and optic tract, as well as reduced anterograde manganese transport along the visual pathway respectively in the DBA/2J mice. Vitreous body elongation and visuomotor function deterioration were observed until 9 months old, whereas axial diffusivity only decreased at 12 months old in diffusion tensor MRI. Under the same experimental settings, C57BL/6J mice only showed modest age-related changes. Taken together, these results indicate that the anterior and posterior visual pathways of the DBA/2J mice exhibit differential susceptibility to glaucomatous neurodegeneration observable by in vivo multi-modal examinations.
Collapse
|
22
|
Voorhees AP, Jan NJ, Austin ME, Flanagan JG, Sivak JM, Bilonick RA, Sigal IA. Lamina Cribrosa Pore Shape and Size as Predictors of Neural Tissue Mechanical Insult. Invest Ophthalmol Vis Sci 2017; 58:5336-5346. [PMID: 29049736 PMCID: PMC5649511 DOI: 10.1167/iovs.17-22015] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 09/14/2017] [Indexed: 12/11/2022] Open
Abstract
Purpose The purpose of this study was to determine how the architecture of the lamina cribrosa (LC) microstructure, including the shape and size of the lamina pores, influences the IOP-induced deformation of the neural tissues within the LC pores using computational modeling. Methods We built seven specimen-specific finite element models of LC microstructure with distinct nonlinear anisotropic properties for LC beams and neural tissues based on histological sections from three sheep eyes. Changes in shape (aspect ratio and convexity) and size (area and perimeter length) due to IOP-induced hoop stress were calculated for 128 LC pores. Multivariate linear regression was used to determine if pore shape and size were correlated with the strain in the pores. We also compared the microstructure models to a homogenized model built following previous approaches. Results The LC microstructure resulted in focal tensile, compressive, and shear strains in the neural tissues of the LC that were not predicted by homogenized models. IOP-induced hoop stress caused pores to become larger and more convex; however, pore aspect ratio did not change consistently. Peak tensile strains within the pores were well predicted by a linear regression model considering the initial convexity (negative correlation, P < 0.001), aspect ratio (positive correlation, P < 0.01), and area (negative correlation, P < 0.01). Significant correlations were also found when considering the deformed shape and size of the LC pores. Conclusions The deformation of the LC neural tissues was largely dependent on the collagenous LC beams. Simple measures of LC pore shape and area provided good estimates of neural tissue biomechanical insult.
Collapse
Affiliation(s)
- Andrew P. Voorhees
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Ning-Jiun Jan
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Morgan E. Austin
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - John G. Flanagan
- Optometry and Vision Science, University of California Berkeley, Berkeley, California, United States
| | - Jeremy M. Sivak
- Ophthalmology and Vison Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Richard A. Bilonick
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Ian A. Sigal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|