1
|
Li L, Yu Y, Zhuang Z, Wu Q, Lin S, Hu J. Circadian rhythm, ipRGCs, and dopamine signalling in myopia. Graefes Arch Clin Exp Ophthalmol 2024; 262:983-990. [PMID: 37864638 DOI: 10.1007/s00417-023-06276-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/01/2023] [Accepted: 10/09/2023] [Indexed: 10/23/2023] Open
Abstract
Myopia, a common ophthalmic disorder, places a high economic burden on individuals and society. Genetic and environmental factors influence myopia progression; however, the underlying mechanisms remain unelucidated. This paper reviews recent advances in circadian rhythm, intrinsically photosensitive retinal ganglion cells (ipRGCs), and dopamine (DA) signalling in myopia and proposes the hypothesis of a circadian rhythm brain retinal circuit in myopia progression. The search of relevant English articles was conducted in the PubMed databases until June 2023. Based on the search, emerging evidence indicated that circadian rhythm was associated with myopia, including circadian genes Bmal1, Cycle, and Per. In both humans and animals, the ocular morphology and physiology show rhythmic oscillations. Theoretically, such ocular rhythms are regulated locally and indirectly via the suprachiasmatic nucleus, which receives signal from the ipRGCs. Compared with the conventional retinal ganglion cells, ipRGCs can sense the presence of light because of specific expression of melanopsin. Light, together with ipRGCs and DA signalling, plays a crucial role in both circadian rhythm and myopia. In summary, regarding myopia progression, a circadian rhythm brain retinal circuit involving ipRGCs and DA signalling has not been well established. However, based on the relationship between circadian rhythm, ipRGCs, and DA signalling in myopia, we hypothesised a circadian rhythm brain retinal circuit.
Collapse
Affiliation(s)
- Licheng Li
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Engineering Research Centre of Assistive Technology for Visual Impairment, Fujian Province University, Quanzhou, Fujian Province, China
| | - Yang Yu
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Engineering Research Centre of Assistive Technology for Visual Impairment, Fujian Province University, Quanzhou, Fujian Province, China
| | - Zihao Zhuang
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Engineering Research Centre of Assistive Technology for Visual Impairment, Fujian Province University, Quanzhou, Fujian Province, China
| | - Qi Wu
- Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St., Sydney, Australia
| | - Shu Lin
- Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St., Sydney, Australia.
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| | - Jianmin Hu
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Engineering Research Centre of Assistive Technology for Visual Impairment, Fujian Province University, Quanzhou, Fujian Province, China.
- The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian Province, China.
| |
Collapse
|
2
|
Nilsen NG, Gilson SJ, Lindgren H, Kjærland M, Pedersen HR, Baraas RC. Seasonal and Annual Change in Physiological Ocular Growth of 7- to 11-Year-Old Norwegian Children. Invest Ophthalmol Vis Sci 2023; 64:10. [PMID: 38064230 PMCID: PMC10709800 DOI: 10.1167/iovs.64.15.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
Purpose To investigate seasonal and annual change in physiological eye growth in Norwegian school children. Methods Measurements of ocular biometry, non-cycloplegic spherical equivalent autorefraction (SER), and choroidal thickness (ChT) were obtained for 92 children (44 females) aged 7 to 11 years at four time points over a year (November 2019-November 2020). Seasons (3- and 5-month intervals) were classified as winter (November-January), winter-spring (January-June), and summer-autumn (June-November). Cycloplegic SER was obtained in January and used to group children. The seasonal and annual changes were tested with a linear mixed-effects model (P values were adjusted for multiple comparisons). Results All the children experienced annual ocular growth, irrespective of SER, but less so during the summer-autumn. The baseline SER was lower (P < 0.001), axial length (AL) was longer (P < 0.038), and choroids were thicker in 10- to 11-year-old than 7- to 8-year-old mild hyperopes (P = 0.002). Assuming mild hyperopes (n = 65) experience only physiological eye growth, modeling revealed seasonal and annual increases in AL across sex and age (P < 0.018), with less change during the summer-autumn than winter-spring. The 7- to 8-year-olds had a larger decrease annually and over winter-spring in SER (P ≤ 0.036) and in ChT over winter-spring than the 10- to 11-year-olds (P = 0.006). Conclusions There were significant seasonal and annual changes in AL in children who had physiological eye growth irrespective of age within this cohort. Annual changes in SER and seasonal choroidal thinning were only observed in 7- to 8-year-old children. This indicates continued emmetropization in 7- to 8-year-olds and a transition to maintaining emmetropia in 10- to 11-year-olds.
Collapse
Affiliation(s)
- Nickolai G. Nilsen
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Stuart J. Gilson
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Helene Lindgren
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Marianne Kjærland
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Hilde R. Pedersen
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Rigmor C. Baraas
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| |
Collapse
|
3
|
Lou L, Ostrin LA. The outdoor environment affects retinal and choroidal thickness. Ophthalmic Physiol Opt 2023; 43:572-583. [PMID: 36779486 PMCID: PMC10081136 DOI: 10.1111/opo.13107] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/14/2023]
Abstract
PURPOSE Accumulating evidence suggests that time outdoors is protective against myopia development and that the choroid may be involved in this effect. The goal of this study was to examine the effect of 2 h of time outdoors in sunlight on retinal and choroidal thickness in adults. METHODS Twenty adults, ages 23-46 years, each participated in three experimental sessions on different days, consisting of 2 h of exposure to (1) indoor illumination (350 lux), (2) darkness (<0.1 lux) or (3) outdoor environment (6000-50,000 lux). Spectral-domain optical coherence tomography (SD-OCT) imaging was conducted at baseline, after 1 and 2 h of exposure, and after 1 and 2 h of follow-up. Choroidal, total retinal, photoreceptor outer segment + retinal pigment epithelium (RPE) and photoreceptor inner segment thicknesses were determined. RESULTS At 2 h, the choroid was significantly thinner during the outdoor compared with the indoor and dark conditions (p < 0.01) but was not significantly different at follow-up. Total retinal thickness was significantly thicker during and after the outdoor compared with the indoor and dark conditions. The outer segment + RPE was significantly thinner during the outdoor compared with the indoor condition but was not significantly different at follow-up. The inner segment was significantly thicker during the outdoor compared with the indoor and dark conditions during exposure and follow-up. CONCLUSIONS Spending 2 h outdoors under high-intensity sunlight resulted in an unexpected thinning of the choroid, which recovered post-exposure. Retinal thickness showed different responses to the outdoor and indoor environments and was sensitive to the duration of exposure.
Collapse
Affiliation(s)
- Linjiang Lou
- College of Optometry, University of Houston, Houston, Texas, USA
| | - Lisa A. Ostrin
- College of Optometry, University of Houston, Houston, Texas, USA
| |
Collapse
|
4
|
Jiang X, Xiao P, Tan Q, Zhu Y. Variation of choroidal thickness during the waking period over three consecutive days in different degrees of myopia and emmetropia using optical coherence tomography. PeerJ 2023; 11:e15317. [PMID: 37163153 PMCID: PMC10164371 DOI: 10.7717/peerj.15317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/07/2023] [Indexed: 05/11/2023] Open
Abstract
Purpose To investigate the diurnal variation in subfoveal choroidal thickness (SFCT) during the waking period over three consecutive days in different degrees of myopia and emmetropia. Methods A total of 60 adult volunteers were grouped into low, moderate, high myopia, and emmetropia subgroups. SFCT, axial length (AL), anterior chamber depth (ACD), and intraocular pressure (IOP) were measured every 2 h from 8 AM to 8 PM for three successive days. Results The mean values of daily change amplitude were 3.18 mmHg (IOP), 0.05 mm (AL), 0.17 mm (ACD), and 13.51 μm (SFCT). The values of AL and ACD increased simultaneously with spherical equivalent refraction (SER), but SFCT was the opposite. IOP had a diurnal variation, and there was no difference among the four groups. AL of the high myopia group, ACD of the emmetropia group, and SFCT of each myopia group had diurnal variation over three consecutive days. AL had a high mean value at noon every day, and SFCT had a low mean value at noon every day. Conclusion The choroid thickness of subjects with different degrees of myopia had a significant diurnal variation. The change of diurnal variation between emmetropic and myopic subjects may be one of the causes of myopia.
Collapse
Affiliation(s)
- Xianming Jiang
- Department of Ophthalmology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Health Management Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Ping Xiao
- Health Management Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Qian Tan
- Department of Ophthalmology, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| | - Yunxiao Zhu
- Health Management Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Lanca C, Szeps A, Iribarren R, Cortinez F, Danza R, Marceillac J, Dankert S, Bruno M, Saracco G, Pfortner T, Impagliazzo R, de Tomas M, Bertozzi D, Andreola M, Comba M, Mattio A, Iribarren R. Role of tutorial classes and full day schooling on self-reported age of myopia onset: findings in a sample of Argentinian adults. J AAPOS 2022; 26:314.e1-314.e6. [PMID: 36265752 DOI: 10.1016/j.jaapos.2022.08.525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/05/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE To investigate the effect of tutorial classes and schooling schedule in childhood on age of myopia onset. METHODS Refractive data for subjects ≥18 years of age were collected from 8 dispensing opticians or refractive ophthalmologists' offices in Argentina. Age of myopia onset, spherical equivalent (SE), and risk factors were determined using questionnaires. Multiple linear regression models were applied to assess possible factors associated with age of myopia onset or final adult SE. RESULTS A total of 274 adults (61.3% females) with myopia between -0.50 and -6.00 D were included. Mean age was 36.9 ± 14.5 years. The mean adult SE was -2.95 ± 1.45 D, and the mean age of myopia onset was 14.2 ± 5.4 years. Subjects that attended after-school tutorial classes (β = -2.23; P = 0.005) or a full day schedule in primary school (β = -1.07; P = 0.035) or that spent more time on near work (β = -0.70; P = 0.010) in childhood, had younger age of myopia onset. CONCLUSIONS In our study cohort, adults that had attended tutorial classes and/or full-day schooling during childhood had younger age of myopia onset.
Collapse
Affiliation(s)
- Carla Lanca
- Escola Superior de Tecnologia da Saúde de Lisboa (ESTeSL), Instituto Politécnico de Lisboa, Lisboa, Portugal; Comprehensive Health Research Center (CHRC), Escola Nacional de Saúde Pública, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Abel Szeps
- Liniers Ophthalmological Center, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Nilsen NG, Gilson SJ, Pedersen HR, Hagen LA, Knoblauch K, Baraas RC. Seasonal Variation in Diurnal Rhythms of the Human Eye: Implications for Continuing Ocular Growth in Adolescents and Young Adults. Invest Ophthalmol Vis Sci 2022; 63:20. [PMID: 36282117 PMCID: PMC9617503 DOI: 10.1167/iovs.63.11.20] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Purpose To investigate the diurnal rhythms in the human eye in winter and summer in southeast Norway (latitude 60°N). Methods Eight measures (epochs) of intraocular pressure, ocular biometry, and optical coherence tomography were obtained from healthy participants (17–24 years of age) on a mid-winter's day (n = 35; 6 hours of daylight at solstice) and on a day the following summer (n = 24; 18 hours of daylight at solstice). Participants wore an activity monitor 7 days before measurements. The epochs were scheduled relative to the individual's habitual wake and sleep time: two in the day (morning and midday) and six in the evening (every hour until and 1 hour after sleep time). Saliva was collected for melatonin. A linear mixed-effects model was used to determine significant diurnal variations, and a sinusoid with a 24-hour period was fitted to the data with a nonlinear mixed-effects model to estimate rhythmic statistics. Results All parameters underwent significant diurnal variation in winter and summer (P < 0.002). A 1-hour phase advance was observed for melatonin and ocular axial length in the summer (P < 0.001). The degree of change in axial length was associated with axial length phase advance (R2 = 0.81, P < 0.001) and choroidal thickening (R2 = 0.54, P < 0.001) in summer. Conclusions Diurnal rhythms in ocular biometry appear to be synchronized with melatonin secretion in both winter and summer, revealing seasonal variation of diurnal rhythms in young adult eyes. The association between axial length and seasonal changes in the phase relationships between ocular parameters and melatonin suggests a between-individual variation in adaptation to seasonal changes in ocular diurnal rhythms.
Collapse
Affiliation(s)
- Nickolai G Nilsen
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Stuart J Gilson
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Hilde R Pedersen
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Lene A Hagen
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Kenneth Knoblauch
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway.,Stem-Cell and Brain Research Institute, INSERM U1208, Bron, France.,Université de Lyon, Université Lyon I, Lyon, France
| | - Rigmor C Baraas
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| |
Collapse
|
7
|
Zeng Q, Luo L, Yao Y, Tu S, Yang Z, Zhao M. Three-dimensional choroidal vascularity index in central serous chorioretinopathy using ultra-widefield swept-source optical coherence tomography angiography. Front Med (Lausanne) 2022; 9:967369. [PMID: 36160148 PMCID: PMC9490028 DOI: 10.3389/fmed.2022.967369] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/22/2022] [Indexed: 11/21/2022] Open
Abstract
Background To map and compare the three-dimensional choroidal vascularity index (3D-CVI) in eyes with unilateral central serous chorioretinopathy (CSC), fellow eyes and control eyes using ultra-widefield swept source optical coherence tomography (UWF SS-OCTA). Methods In this prospective observational study, the 3D-CVIs were measured in 9 subfields or 1 × 1 mm grids by the UWF SS-OCTA with a viewing angle of horizontal 24 × vertical 20 mm. The proportions of vortex vein anastomoses and their corresponding CVI in the central regions were compared among the CSC, fellow and control eyes. Correlations of CVI and vascular density of the large choroidal vessel layer/choriocapillaris layer/choroidal thickness (CT) were also assessed. Results Thirty-two eyes in 32 patients with unilateral CSC and 32 normal eyes were included in the study. The mean CVI in the eyes with CSC was significantly greater than that in the fellow eyes of CSC and control eyes (41.99 ± 3.56% vs. 40.38 ± 3.855%, P = 0.003; 41.99 ± 3.56% vs. 38.93 ± 4.067%, P = 0.004, respectively). The CVIs in superotemporal, inferotemporal and inferonasal regions were significantly higher in CSC eyes than control eyes (P = 0.03, P = 0.02, P = 0.008). In CSC eyes, there was a linear positive correlation between 3D-CVI and vascular density of the large choroidal vessel layer and CT in all subfields. The proportion of vortex vein anastomoses in CSC was 25/32 (78.1%), and significantly higher in fellow and control eyes (P < 0.001). The average central CVI was significantly higher in CSC eyes with anastomoses than in CSC eyes without anastomoses (42.8 ± 5.1% vs. 38.4 ± 2.7%, P = 0.039). CVIs in superior, central, inferior, superonasal, nasal and inferonasal regions were significantly correlated with vortex vein anastomoses (P < 0.05), regardless of CSC, fellow or healthy eyes. In addition, whether there were vortex vein anastomoses, CVI in superotemporal region was significantly higher in eyes with CSC (P = 0.002) and fellow eyes (P = 0.014), compared to control eyes. No significant correlation was found between hypertension and CVIs in the three groups. Conclusion Remodeling of choroidal drainage routes by venous anastomosis between superior and inferior vortex veins may be common in CSC. The 3D-CVI could be a comprehensive parameter to evaluate the choroid vasculature and help understand the pathogenesis of pachychoroid spectrum disease.
Collapse
Affiliation(s)
- Qiaozhu Zeng
- Department of Ophthalmology, Eye Diseases and Optometry Institute, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| | - Lan Luo
- Department of Ophthalmology, Eye Diseases and Optometry Institute, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| | - Yuou Yao
- Department of Ophthalmology, Eye Diseases and Optometry Institute, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| | - Shu Tu
- Department of Ophthalmology, Eye Diseases and Optometry Institute, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| | - Zhi Yang
- TowardPi (Beijing) Medical Technology, Beijing, China
| | - Mingwei Zhao
- Department of Ophthalmology, Eye Diseases and Optometry Institute, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
- *Correspondence: Mingwei Zhao,
| |
Collapse
|
8
|
Lou L, Ostrin LA. Effects of Monocular Light Deprivation on the Diurnal Rhythms in Retinal and Choroidal Thickness. Invest Ophthalmol Vis Sci 2022; 63:6. [PMID: 35816044 PMCID: PMC9284467 DOI: 10.1167/iovs.63.8.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To determine the effects of monocular light deprivation on diurnal rhythms in retinal and choroidal thickness. Methods Twenty participants, ages 22 to 45 years, underwent spectral domain optical coherence tomography imaging every three hours, from 8 AM to 8 PM, on two consecutive days. Participants wore an eye patch over the left eye starting at bedtime of day 1 until the end of the last measurement on day 2. Choroidal, total retinal, photoreceptor outer segment + retinal pigment epithelium (RPE), and photoreceptor inner segment thicknesses were determined. Results For both eyes, significant diurnal variations were observed in choroidal, total retinal, outer segment + RPE, and inner segment thickness (P < 0.001). For light-deprived eyes, choroid diurnal variation persisted, although the choroid was significantly thinner at 8 AM and 11 AM (P < 0.01) on day 2 compared to day 1. On the other hand, diurnal variations in retinal thickness were eliminated in the light-deprived eye on day 2 when the eye was patched (P > 0.05). Total retinal and inner segment thicknesses significantly decreased (P < 0.001) and outer segment + RPE thickness significantly increased (P < 0.05) on day 2 compared to day 1. Conclusions Blocking light exposure in one eye abolished the rhythms in retinal thickness, but not in choroidal thickness, of the deprived eye. Findings suggest that the rhythms in retinal thickness are, at least in part, driven by light exposure, whereas the rhythm in choroidal thickness is not impacted by short-term light deprivation.
Collapse
Affiliation(s)
- Linjiang Lou
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Lisa A Ostrin
- College of Optometry, University of Houston, Houston, Texas, United States
| |
Collapse
|
9
|
Chakraborty R, Baranton K, Spiegel D, Lacan P, Guillon M, Barrau C, Villette T. Effects of mild‐ and moderate‐intensity illumination on short‐term axial length and choroidal thickness changes in young adults. Ophthalmic Physiol Opt 2022; 42:762-772. [DOI: 10.1111/opo.12988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Ranjay Chakraborty
- College of Nursing and Health Sciences, Optometry and Vision Science Flinders University Adelaide South Australia Australia
- Caring Futures Institute Flinders University Adelaide South Australia Australia
| | - Konogan Baranton
- Center Innovation & Technologies Europe Essilor International SAS Charenton‐le‐Pont France
| | | | - Pascale Lacan
- Center Innovation & Technologies Europe Essilor International SAS Charenton‐le‐Pont France
| | - Matthias Guillon
- Center Innovation & Technologies Europe Essilor International SAS Charenton‐le‐Pont France
| | - Coralie Barrau
- Center Innovation & Technologies Europe Essilor International SAS Charenton‐le‐Pont France
| | - Thierry Villette
- Center Innovation & Technologies Europe Essilor International SAS Charenton‐le‐Pont France
| |
Collapse
|
10
|
Nickla DL, Rucker F, Taylor CP, Sarfare S, Chen W, Elin-Calcador J, Wang X. Effects of morning and evening exposures to blue light of varying illuminance on ocular growth rates and ocular rhythms in chicks. Exp Eye Res 2022; 217:108963. [PMID: 35093392 PMCID: PMC8957570 DOI: 10.1016/j.exer.2022.108963] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/14/2022]
Abstract
Recent evidence indicates that moderate levels of blue light are sufficient to suppress the nighttime rise in serum melatonin in humans, suggesting that luminous screens may be deleterious to sleep cycles and to other functions. Little is known however, about the effects of exposures to blue light on ocular physiology. We tested the effects of transient blue light exposures of various illuminances on ocular growth rates and ocular rhythms in chicks. 10-day old chicks were exposed to narrow band blue light (460 nm) of specific illuminance for 4 h in the evening (ZT8-ZT12) or the morning (ZT0-ZT4) for 9 days; for the remainder of the day they were in white light (588 lux). For the evening, four illuminances were tested: 0.15 lux (n = 15), 200 lux (radiometrically matched to white controls; n = 16), 600 lux (photometrically matched to white controls; n = 15) or 1000 lux (n = 8). The 600 lux condition was also tested using a 2-h duration (n = 8). The 200 and 600 lux conditions were extended to 14 and 21 days (n = 8 each). For morning exposures, 200 lux (n = 9), 600 lux (n = 9) and 1000 lux (n = 8) were tested. Controls remained in white light (n = 23). Ocular dimensions were measured by A-scan ultrasonography on days 1 and 9 to assess growth rates. On day 8 or 9, measurements were made at 6-h intervals over 24 h starting at noon to assess rhythm parameters. Evening exposure to blue light stimulated ocular growth rates relative to controls for all except the bright condition (0.15 lux, 200 lux, 600 lux vs bright and white respectively: 845 μm, 838 μm, 898 μm vs 733 μm and 766 μm; p < 0.05 for all comparisons). 2 h exposures to 600 lux were similarly effective (915 μm vs 766 μm; p < 0.05). Morning exposures only resulted in growth stimulation for the 200 lux condition (200 lux vs white: 884 μm vs 766 μm; p < 0.05). Furthermore, for this group only, growth of the anterior chamber had a significant contribution to the overall effect (vs white: p < 0.05), and choroids showed significant thickening. For evening exposures to 200 and 600 lux, the growth stimulatory effect lasted for 14 days (p = 0.01); by 21 days only the 600 lux group still differed (p < 0.0001). Evening exposures caused circadian disruptions in the choroidal thickness rhythms, and morning exposures disrupted both axial and choroidal rhythms. Exposure to 4 h of blue light at lower illuminances (less than 1000 lux) at transition times of lights-on and lights-off stimulates ocular growth rates and affects ocular rhythms in chicks, suggesting that such exposures may be deleterious to emmetropization in children.
Collapse
Affiliation(s)
- Debora L Nickla
- The New England College of Optometry, Dept of Biosciences and Disease, Boston, MA, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Kim YH, Oh J. Comparison of choroidal hyperreflective spots on optical coherence tomography images between both eyes of normal subjects. Quant Imaging Med Surg 2022; 12:920-935. [PMID: 35111594 DOI: 10.21037/qims-21-637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/04/2021] [Indexed: 11/06/2022]
Abstract
Background Advancement of optical coherence tomography (OCT) technology allows for better in vivo visualization of the choroidal architecture, which comprises vessels and stroma. However, most OCT studies using image binarization methods have focused only on choroidal vessels represented by dark pixels. This study aimed to compare the distribution of choroidal hyperreflective spots on swept-source OCT (SS-OCT) images between both eyes of normal subjects. Methods In this observational comparative study, we included SS-OCT images of healthy subjects, which were prospectively obtained to compare images among the devices. SS-OCT images acquired using PLEX Elite 9000 and DRI-OCT Triton were analyzed. En-face OCT images were obtained at five different depth positions of the inner choroid at the macula. The mean reflectivity of the choroidal slabs, the number, total area, and circularity of hyperreflective spots were quantitatively compared between the devices and between both eyes of the same subjects. Results In 30 eyes of 15 healthy subjects, the mean reflectivity of the choroidal slabs varied with the scan depth on both devices (P<0.001 and P<0.001). Hyperreflective spots were similarly distributed in the images from both devices, but at different depths. The number and area of hyperreflective spots in the second and third layers of the DRI-OCT Triton were positively correlated with those in the fourth and fifth layers of the PLEX Elite 9000, respectively (all P<0.05). The intraclass correlation coefficients (ICC) for the area of hyperreflective spots were excellent for the third slab of the DRI-OCT and the fifth slab of the PLEX Elite (ICC =0.798; 95% CI, -0.576-0.904). The number and area of hyperreflective spots were correlated between both eyes in the third, fourth and fifth layers on DRI-OCT Triton (all P<0.05) and in the first, second, and fifth layers on PLEX Elite 9000 (all P<0.05). Conclusions Hyperreflective spots in en-face images from two different SS-OCT devices were similarly observed between both eyes of the same person. The distributions of spots between the two eyes of the same person were correlated. These findings suggest that the distribution of hyperreflective spots on the choroid reflects the choroidal characteristics of the subject.
Collapse
Affiliation(s)
- Young Ho Kim
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea
| | - Jaeryung Oh
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
12
|
Kim YH, Oh J. Choroidal Thickness Profile in Chorioretinal Diseases: Beyond the Macula. Front Med (Lausanne) 2021; 8:797428. [PMID: 34988102 PMCID: PMC8720884 DOI: 10.3389/fmed.2021.797428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Enhanced depth imaging optical coherence tomography (EDI-OCT) and swept-source OCT (SS-OCT) have emerged as essential diagnostic tools in the study and management of various chorioretinal diseases. Evidence from early clinical studies using EDI-OCT and SS-OCT indicates that choroidal dysfunction plays a major role in the pathogenesis of chorioretinal diseases. Measurement of choroidal thickness (CT) has already become a major research and clinical method, and CT is considered as an indicator of choroidal status in a variety of ophthalmic diseases. Recently, CT measurement has also been proposed as a non-invasive marker for the early detection and monitoring of various systemic diseases. Among the several possible CT measurement locations, subfoveal CT has rapidly become a reliable parameter for measuring CT in healthy and diseased eyes. Moreover, recent advancements in OCT technology have enabled faster and wider imaging of the posterior part of the eye, allowing the various changes in CT as measured outside the macula to be shown accordingly. In this review, we first provide an overview of the results of clinical studies that have analyzed the healthy macular choroid and that in various chorioretinal diseases, and then summarize the current understanding of the choroid outside the macula. We also examine the CT profile as an index that encompasses both within and outside of the macula. Furthermore, we describe the clinical applications of ultrawide OCT, which enables visualization of the far periphery, and discuss the prospects for the development of more reliable choroidal parameters that can better reflect the choroid's characteristics.
Collapse
|
13
|
Kim YH, Lee B, Kang E, Oh J. Peripapillary Choroidal Vascularity Outside the Macula in Patients With Central Serous Chorioretinopathy. Transl Vis Sci Technol 2021; 10:9. [PMID: 34251422 PMCID: PMC8288056 DOI: 10.1167/tvst.10.8.9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Purpose To investigate choroidal vascularity outside the macula in central serous chorioretinopathy (CSC). Methods Fifty normal controls and 103 patients with a history of CSC (31 with acute CSC, 32 with chronic CSC, and 40 with resolved CSC) were included. Using swept-source optical coherence tomography, we measured choroidal thickness (CT) and choroidal vascularity index (CVI) at the subfoveal and nasal peripapillary areas. Results Subfoveal CT in the acute CSC group was greater than that in all other groups (all P < 0.05). Peripapillary CT in the acute and chronic CSC groups was significantly greater than that in controls (all P ≤ 0.005). However, subfoveal and peripapillary CT in the resolved CSC group was not different from controls. Subfoveal CVI in the acute group (64.71% ± 2.68%) was higher than that in controls (61.68% ± 5.68%) (P = 0.015). Peripapillary CVIs in the acute (67.35% ± 6.04%) and chronic groups (64.90% ± 5.31%) were higher than controls (54.57% ± 7.02%) (all P < 0.001). Subfoveal CVI in the resolved CSC group was not different from controls (P = 0.252), whereas peripapillary CVI (62.61% ± 6.03%) was higher (P < 0.001). Conclusions Unlike CT, CVI outside the macula was increased in all eyes with both current and past history of CSC. These findings suggest that the choroidal vascularity outside the macula may represent choroidal characteristics in addition to the subfoveal area. Translational Relevance Peripapillary CVI outside the macula may provide additional information beyond what is known through subfoveal choroid studies.
Collapse
Affiliation(s)
- Young Ho Kim
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea
| | - Boram Lee
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea
| | - Edward Kang
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea
| | - Jaeryung Oh
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
14
|
Ofuji Y, Torii H, Yotsukura E, Mori K, Kurihara T, Negishi K, Tsubota K. Axial length shortening in a myopic child with anisometropic amblyopia after wearing violet light-transmitting eyeglasses for 2 years. Am J Ophthalmol Case Rep 2020; 20:101002. [PMID: 33364519 PMCID: PMC7750137 DOI: 10.1016/j.ajoc.2020.101002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 09/08/2020] [Accepted: 12/07/2020] [Indexed: 11/17/2022] Open
Abstract
PURPOSE To report a case in which the axial length (AL) shortened and the choroid thickened due to the use of violet light-transmitting eyeglasses. OBSERVATIONS A 4-year-old boy with high myopia was referred to Keio University Hospital. He was prescribed standard eyeglasses. Six months after the first visit, his best-corrected visual acuities were 1.2 and 0.4 in the right and left eyes, respectively, with the standard eyeglasses, and he was diagnosed with anisometropic amblyopia. The right eye then was patched for 6 hours daily during the daytime. Because of the availability of violet light-transmitting eyeglasses, we changed the eyeglasses and instructed his parents to have him engage in outdoor activities for over 2 hours daily to be exposed to sufficient violet light. As a result, the violet light entered his left eye and minimal violet light entered his right eye. The changes in the ALs, choroidal thicknesses, and cycloplegic objective refractions in the right and left eyes during 2 years of wearing violet light-transmitting eyeglasses were +0.85 and -0.20 mm, +4.9 and + 115.7 μm, and -1.02 and + 1.88 D, respectively. CONCLUSIONS AND IMPORTANCE We successfully described a case in which the myopia improved, the AL shortened, and the choroid thickened after using violet light-transmitting eyeglasses.
Collapse
Affiliation(s)
- Yoshiko Ofuji
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hidemasa Torii
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Erisa Yotsukura
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kiwako Mori
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Toshihide Kurihara
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Tsubota Laboratory, Inc., 304 Toshin Shinanomachi-ekimae Bldg., 34 Shinanomachi Shinjuku-ku, Tokyo, 160-0016, Japan
| |
Collapse
|
15
|
She Z, Hung LF, Arumugam B, Beach KM, Smith EL. Effects of low intensity ambient lighting on refractive development in infant rhesus monkeys (Macaca mulatta). Vision Res 2020; 176:48-59. [PMID: 32777589 PMCID: PMC7487012 DOI: 10.1016/j.visres.2020.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/02/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023]
Abstract
Studies in chickens suggest low intensity ambient lighting causes myopia. The purpose of this experiment was to examine the effects of low intensity ambient lighting (dim light) on normal refractive development in macaque monkeys. Seven infant rhesus monkeys were reared under dim light (room illumination level: ~55 lx) from 24 to ~310 days of age with otherwise unrestricted vision. Refractive error, corneal power, ocular axial dimensions, and choroidal thickness were measured in anesthetized animals at the onset of the experiment and periodically throughout the dim-light-rearing period, and were compared with those of normal-light-reared monkeys. We found that dim light did not produce myopia; instead, dim-light monkeys were hyperopic relative to normal-light monkeys (median refractive errors at ~155 days, OD: +3.13 D vs. +2.31 D; OS: +3.31D vs. +2.44 D; at ~310 days, OD: +2.75D vs. +1.78D, OS: +3.00D vs. +1.75D). In addition, dim-light rearing caused sustained thickening in the choroid, but it did not alter corneal power development, nor did it change the axial nature of the refractive errors. These results showed that, for rhesus monkeys and possibly other primates, low ambient lighting by itself is not necessarily myopiagenic, but might compromise the efficiency of emmetropization.
Collapse
Affiliation(s)
- Zhihui She
- College of Optometry, University of Houston, Houston, TX, United States
| | - Li-Fang Hung
- College of Optometry, University of Houston, Houston, TX, United States; Brien Holden Vision Institute, Sydney, NSW, Australia
| | - Baskar Arumugam
- College of Optometry, University of Houston, Houston, TX, United States
| | - Krista M Beach
- College of Optometry, University of Houston, Houston, TX, United States
| | - Earl L Smith
- College of Optometry, University of Houston, Houston, TX, United States; Brien Holden Vision Institute, Sydney, NSW, Australia.
| |
Collapse
|
16
|
Sarfare S, Yang J, Nickla DL. The effects of brief high intensity light on ocular growth in chicks developing myopia vary with time of day. Exp Eye Res 2020; 195:108039. [PMID: 32339518 DOI: 10.1016/j.exer.2020.108039] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/04/2020] [Accepted: 04/02/2020] [Indexed: 12/31/2022]
Abstract
Evidence suggests that the relevant variable in the anti-myopigenic effect of increased time spent outdoors is the increase in light intensity. Because light is the strongest Zeitgeber, it is plausible that the effects of bright light exposure depend on time of day, and may impact circadian rhythms. In these studies, we asked whether the effects on eye growth rates and ocular rhythms of brief daily exposures to bright light differed depending on time of day in eyes developing myopia in response to form deprivation (FD) or negative lens-induced hyperopic defocus (LENS). We also studied the effects of concurrent exposures to brief hyperopic defocus and bright light. Exp. 1: Starting at 12d, chicks wearing monocular diffusers or -10 D lenses were exposed to 3 daily hours (h) of bright light (30K lux) in the morning (FD: n = 12; LENS: n = 7) or evening (FD: n = 21; LENS: n = 7) for a total of 6 exposures. Controls wore diffusers or lenses but weren't exposed to bright light ("not bright" FD: n = 14; LENS: n = 9). Exp. 2: Untreated chicks were exposed to 3 h bright light in the morning (n = 12) or evening (n = 14) for a total of 6 exposures. Controls were not exposed to bright light (n = 11). Exp. 3: Chicks were exposed to 2 h simultaneous monocular hyperopic defocus and bright light in the morning (n = 11), mid-day (n = 7) or evening (n = 8) for 5 exposures. "Not bright" lens-wearing controls were data from published work (Nickla et al., 2017). High frequency A-scan ultrasonography was done at the start and end to measure growth rates. The FD group in Exp. 1 and the morning and evening groups in Exp. 3 were measured at 6-h intervals over the final 24 h to determine parameters for the rhythms in axial length and choroidal thickness. 1. Brief bright light in the evening inhibited eye growth in eyes wearing diffusers or lenses relative to "not bright" controls(interocular differences: FD: 316 vs 468 μm, p = 0.026; LENS: 233 vs 438 μm, p = 0.03); morning bright light had no effect. There was no differential effect of time of day of exposure on the rhythm in axial length; for choroid thickness, "time" accounted for the variance between groups (2-way ANOVA interaction p = 0.027). 2. In binocularly untreated chicks, bright light in the morning had a small but significant growth stimulatory effect relative to evening exposures (803 vs 679 μm/7d; post-hoc p = 0.048). 3. Eyes exposed to simultaneous hyperopic defocus and bright light were significantly more inhibited relative to "not bright" controls for morning exposures (interocular differences: -207 vs 69 μm; p < 0.01). In conclusion, the effects of brief periods of bright light on the growth controller depended on the time of day of exposure and on the contemporaneous state ofocular growth .
Collapse
Affiliation(s)
- Shanta Sarfare
- The New England College of Optometry, 424 Beacon St, Boston, MA, USA
| | - Jane Yang
- The New England College of Optometry, 424 Beacon St, Boston, MA, USA
| | - Debora L Nickla
- The New England College of Optometry, 424 Beacon St, Boston, MA, USA.
| |
Collapse
|
17
|
Burfield HJ, Patel NB, Ostrin LA. Ocular Biometric Diurnal Rhythms in Emmetropic and Myopic Adults. Invest Ophthalmol Vis Sci 2019; 59:5176-5187. [PMID: 30372744 PMCID: PMC6203176 DOI: 10.1167/iovs.18-25389] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Purpose To investigate diurnal variations in anterior and posterior segment biometry and assess differences between emmetropic and myopic adults. Methods Healthy subjects (n = 42, 23–41 years old) underwent biometry and spectral-domain optical coherence tomography imaging (SD-OCT) every 4 hours for 24 hours. Subjects were in darkness from 11:00 PM to 7:00 AM. Central corneal thickness, corneal power, anterior chamber depth, lens thickness, vitreous chamber depth, and axial length were measured. Thicknesses of the total retina, photoreceptor outer segments + RPE, photoreceptor inner segments, and choroid over a 6-mm annulus were determined. Results All parameters except anterior chamber depth demonstrated significant diurnal variations, with no refractive error differences. Amplitude of choroid diurnal variation correlated with axial length (P = 0.05). Amplitude of axial length variation (35.71 ± 19.40 μm) was in antiphase to choroid variation (25.65 ± 2.01 μm, P < 0.001). The central 1-mm retina underwent variation of 5.03 ± 0.23 μm with a peak at 12 hours (P < 0.001), whereas photoreceptor outer segment + RPE thickness peaked at 4 hours and inner segment thickness peaked at 16 hours. Diurnal variations in retina and choroid were observed in the 3- and 6-mm annuli. Conclusions Diurnal rhythms in anterior and posterior segment biometry were observed over 24 hours in adults. Differences in baseline parameters were found between refractive error groups, and choroid diurnal variation correlated with axial length. The retina and choroid exhibited diurnal thickness variations in foveal and parafoveal regions.
Collapse
Affiliation(s)
- Hannah J Burfield
- College of Optometry University of Houston, Houston, Texas, United States
| | - Nimesh B Patel
- College of Optometry University of Houston, Houston, Texas, United States
| | - Lisa A Ostrin
- College of Optometry University of Houston, Houston, Texas, United States
| |
Collapse
|
18
|
Read SA, Fuss JA, Vincent SJ, Collins MJ, Alonso-Caneiro D. Choroidal changes in human myopia: insights from optical coherence tomography imaging. Clin Exp Optom 2018; 102:270-285. [PMID: 30565333 DOI: 10.1111/cxo.12862] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/23/2018] [Accepted: 11/12/2018] [Indexed: 01/05/2023] Open
Abstract
The choroid is a vascular tissue which plays a range of critical roles in the normal physiology of the eye, such as supplying the outer retina with oxygen and nutrients and the regulation of intraocular pressure. There is also substantial evidence, particularly from animal studies, that the choroid plays an important role in the regulation of eye growth and the development of common refractive errors like myopia. In recent years, advances in optical coherence tomography technology have improved our ability to image and measure the choroid in the human eye. Research using this technology over the past decade has dramatically improved our knowledge of the normal choroid, and its potential role in the regulation of eye growth and refractive error development. This review aims to provide an overview of recent work examining the normal human choroid, its changes with myopia and the possible role of the choroid in the mechanism regulating eye growth. Studies have demonstrated that choroidal thinning accompanies the development and progression of myopia, and have established a close link between eye growth and choroidal thickness changes. Dramatic thinning of the choroid is seen with high myopia, and associations are also observed between choroidal thinning and reduced vision, and the development of retinal pathology associated with high myopia. In the short-term, environmental factors known to be associated with myopia development and more rapid eye growth typically lead to a thinning of the choroid, whereas factors linked to a slowing of eye growth are typically associated with short-term choroidal thickening. Collectively, these findings suggest that the choroid is an important biomarker of eye growth in the human eye, and additional research to better understand the human choroid is likely to further our knowledge of the signals and pathways regulating eye growth, myopia development and progression.
Collapse
Affiliation(s)
- Scott A Read
- School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - James A Fuss
- School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Stephen J Vincent
- School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Michael J Collins
- School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - David Alonso-Caneiro
- School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
19
|
Read SA, Pieterse EC, Alonso-Caneiro D, Bormann R, Hong S, Lo CH, Richer R, Syed A, Tran L. Daily morning light therapy is associated with an increase in choroidal thickness in healthy young adults. Sci Rep 2018; 8:8200. [PMID: 29844529 PMCID: PMC5974399 DOI: 10.1038/s41598-018-26635-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/15/2018] [Indexed: 12/19/2022] Open
Abstract
Ambient light exposure is one environmental factor thought to play a role in the regulation of eye growth and refractive error development, and choroidal thickness changes have also been linked to longer term changes in eye growth. Therefore in this study we aimed to examine the influence of a 1-week period of morning light therapy upon choroidal thickness. Twenty two healthy young adult subjects had a series of macular choroidal thickness measurements collected with spectral domain optical coherence tomography before, and then following a 7-day period of increased daily light exposure. Increased light exposure was delivered through the use of commercially available light therapy glasses, worn for 30 minutes in the morning each day. A significant increase in subfoveal choroidal thickness (mean increase of +5.4 ± 10.3 µm) was found following 7-days of increased daily light exposure (p = 0.02). An increase in choroidal thickness was also observed associated with light therapy across the central 5 mm macular region. This study provides the first evidence in the human eye that daily morning light therapy results in small magnitude but statistically significant increases in choroidal thickness. These changes may have implications for our understanding of the impact of environmental factors upon eye growth.
Collapse
Affiliation(s)
- Scott A Read
- School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Queensland, Australia.
| | - Emily C Pieterse
- School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - David Alonso-Caneiro
- School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Rebekah Bormann
- School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Seentinie Hong
- School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Chai-Hoon Lo
- School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Rhiannon Richer
- School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Atif Syed
- School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Linda Tran
- School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|