1
|
Barabino A, Mellal K, Hamam R, Polosa A, Griffith M, Bouchard JF, Kalevar A, Hanna R, Bernier G. Molecular characterization and sub-retinal transplantation of hypoimmunogenic human retinal sheets in a minipig model of severe photoreceptor degeneration. Development 2024; 151:dev203071. [PMID: 39633598 DOI: 10.1242/dev.203071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/08/2024] [Indexed: 12/07/2024]
Abstract
Retinal degenerative diseases affect millions of people worldwide, and legal blindness is generally associated with the loss of cone photoreceptors located in the central region of the retina called the macula. Currently, there is no treatment to replace the macula. Addressing this unmet need, we employed control isogenic and hypoimmunogenic induced pluripotent stem cell lines to generate spontaneously polarized retinal sheets (RSs). RSs were enriched in retinal progenitor and cone precursor cells, which could differentiate into mature S- and M/L-cones in long-term cultures. Single-cell RNA-seq analysis showed that RSs recapitulate the ontogeny of the developing human retina. Isolation of neural rosettes for sub-retinal transplantation effectively eliminated unwanted cells such as RPE cells. In a porcine model of chemically induced retinal degeneration, grafts integrated the host retina and formed a new, yet immature, photoreceptor layer. In one transplanted animal, functional and immunohistochemical assays suggest that grafts exhibited responsiveness to light stimuli and established putative synaptic connections with host bipolar neurons. This study underscores the potential and challenges of RSs for clinical applications.
Collapse
Affiliation(s)
- Andrea Barabino
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5690 Boul. Rosemont, Montreal, QC H1T 2H2, Canada
| | - Katia Mellal
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5690 Boul. Rosemont, Montreal, QC H1T 2H2, Canada
| | - Rimi Hamam
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5690 Boul. Rosemont, Montreal, QC H1T 2H2, Canada
| | - Anna Polosa
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5690 Boul. Rosemont, Montreal, QC H1T 2H2, Canada
| | - May Griffith
- Department of Ophthalmology, University of Montreal, Montreal, QC H3T 1J4, Canada
| | | | - Ananda Kalevar
- Department of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Roy Hanna
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5690 Boul. Rosemont, Montreal, QC H1T 2H2, Canada
| | - Gilbert Bernier
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5690 Boul. Rosemont, Montreal, QC H1T 2H2, Canada
- Department of Neurosciences, University of Montreal, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
2
|
Lin B, Singh RK, Seiler MJ, Nasonkin IO. Survival and Functional Integration of Human Embryonic Stem Cell-Derived Retinal Organoids After Shipping and Transplantation into Retinal Degeneration Rats. Stem Cells Dev 2024; 33:201-213. [PMID: 38390839 PMCID: PMC11250834 DOI: 10.1089/scd.2023.0257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/21/2024] [Indexed: 02/24/2024] Open
Abstract
Because derivation of retinal organoids (ROs) and transplantation are frequently split between geographically distant locations, we developed a special shipping device and protocol capable of the organoids' delivery to any location. Human embryonic stem cell (hESC)-derived ROs were differentiated from the hESC line H1 (WA01), shipped overnight to another location, and then transplanted into the subretinal space of blind immunodeficient retinal degeneration (RD) rats. Development of transplants was monitored by spectral-domain optical coherence tomography. Visual function was accessed by optokinetic tests and superior colliculus (SC) electrophysiology. Cryostat sections through transplants were stained with hematoxylin and eosin; or processed for immunohistochemistry to label human donor cells, retinal cell types, and synaptic markers. After transplantation, ROs integrated into the host RD retina, formed functional photoreceptors, and improved vision in rats with advanced RD. The survival and vision improvement are comparable with our previous results of hESC-ROs without a long-distance delivery. Furthermore, for the first time in the stem cell transplantation field, we demonstrated that the response heatmap on the SC showed a similar shape to the location of the transplant in the host retina, which suggested the point-to-point projection of the transplant from the retina to SC. In conclusion, our results showed that using our special device and protocol, the hESC-derived ROs can be shipped over long distance and are capable of survival and visual improvement after transplantation into the RD rats. Our data provide a proof-of-concept for stem cell replacement as a therapy for RD patients.
Collapse
Affiliation(s)
- Bin Lin
- Department of Anatomy and Neurobiology, Physical Medicine and Rehabilitation, Ophthalmology, Sue and Bill Stem Cell Research Center, University of California, Irvine School of Medicine, Irvine, California, USA
| | | | - Magdalene J. Seiler
- Department of Anatomy and Neurobiology, Physical Medicine and Rehabilitation, Ophthalmology, Sue and Bill Stem Cell Research Center, University of California, Irvine School of Medicine, Irvine, California, USA
| | | |
Collapse
|
3
|
Liu YV, Santiago CP, Sogunro A, Konar GJ, Hu MW, McNally MM, Lu YC, Flores-Bellver M, Aparicio-Domingo S, Li KV, Li ZL, Agakishiev D, Hadyniak SE, Hussey KA, Creamer TJ, Orzolek LD, Teng D, Canto-Soler MV, Qian J, Jiang Z, Johnston RJ, Blackshaw S, Singh MS. Single-cell transcriptome analysis of xenotransplanted human retinal organoids defines two migratory cell populations of nonretinal origin. Stem Cell Reports 2023; 18:1138-1154. [PMID: 37163980 DOI: 10.1016/j.stemcr.2023.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 05/12/2023] Open
Abstract
Human retinal organoid transplantation could potentially be a treatment for degenerative retinal diseases. How the recipient retina regulates the survival, maturation, and proliferation of transplanted organoid cells is unknown. We transplanted human retinal organoid-derived cells into photoreceptor-deficient mice and conducted histology and single-cell RNA sequencing alongside time-matched cultured retinal organoids. Unexpectedly, we observed human cells that migrated into all recipient retinal layers and traveled long distances. Using an unbiased approach, we identified these cells as astrocytes and brain/spinal cord-like neural precursors that were absent or rare in stage-matched cultured organoids. In contrast, retinal progenitor-derived rods and cones remained in the subretinal space, maturing more rapidly than those in the cultured controls. These data suggest that recipient microenvironment promotes the maturation of transplanted photoreceptors while inducing or facilitating the survival of migratory cell populations that are not normally derived from retinal progenitors. These findings have important implications for potential cell-based treatments of retinal diseases.
Collapse
Affiliation(s)
- Ying V Liu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Clayton P Santiago
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Akin Sogunro
- Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Gregory J Konar
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ming-Wen Hu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Minda M McNally
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yu-Chen Lu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Miguel Flores-Bellver
- CellSight Ocular Stem Cell and Regeneration Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado, School of Medicine, Aurora, CO, USA
| | - Silvia Aparicio-Domingo
- CellSight Ocular Stem Cell and Regeneration Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado, School of Medicine, Aurora, CO, USA
| | - Kang V Li
- CellSight Ocular Stem Cell and Regeneration Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado, School of Medicine, Aurora, CO, USA
| | - Zhuo-Lin Li
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dzhalal Agakishiev
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah E Hadyniak
- Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Katarzyna A Hussey
- Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Tyler J Creamer
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Linda D Orzolek
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Derek Teng
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - M Valeria Canto-Soler
- CellSight Ocular Stem Cell and Regeneration Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado, School of Medicine, Aurora, CO, USA
| | - Jiang Qian
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zheng Jiang
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Robert J Johnston
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA.
| | - Seth Blackshaw
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Mandeep S Singh
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Watari K, Yamasaki S, Tu HY, Shikamura M, Kamei T, Adachi H, Tochitani T, Kita Y, Nakamura A, Ueyama K, Ono K, Morinaga C, Matsuyama T, Sho J, Nakamura M, Fujiwara M, Hori Y, Tanabe A, Hirai R, Terai O, Ohno O, Ohara H, Hayama T, Ikeda A, Nukaya D, Matsushita K, Takahashi M, Kishino A, Kimura T, Kawamata S, Mandai M, Kuwahara A. Self-organization, quality control, and preclinical studies of human iPSC-derived retinal sheets for tissue-transplantation therapy. Commun Biol 2023; 6:164. [PMID: 36765170 PMCID: PMC9918541 DOI: 10.1038/s42003-023-04543-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/31/2023] [Indexed: 02/12/2023] Open
Abstract
Three-dimensional retinal organoids (3D-retinas) are a promising graft source for transplantation therapy. We previously developed self-organizing culture for 3D-retina generation from human pluripotent stem cells (hPSCs). Here we present a quality control method and preclinical studies for tissue-sheet transplantation. Self-organizing hPSCs differentiated into both retinal and off-target tissues. Gene expression analyses identified the major off-target tissues as eye-related, cortex-like, and spinal cord-like tissues. For quality control, we developed a qPCR-based test in which each hPSC-derived neuroepithelium was dissected into two tissue-sheets: inner-central sheet for transplantation and outer-peripheral sheet for qPCR to ensure retinal tissue selection. During qPCR, tissue-sheets were stored for 3-4 days using a newly developed preservation method. In a rat tumorigenicity study, no transplant-related adverse events were observed. In retinal degeneration model rats, retinal transplants differentiated into mature photoreceptors and exhibited light responses in electrophysiology assays. These results demonstrate our rationale toward self-organizing retinal sheet transplantation therapy.
Collapse
Affiliation(s)
- Kenji Watari
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Suguru Yamasaki
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan ,grid.508743.dLaboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe 650-0047 Japan
| | - Hung-Ya Tu
- grid.508743.dLaboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe 650-0047 Japan
| | - Masayuki Shikamura
- grid.417982.10000 0004 0623 246XResearch & Development Center for Cell Therapy, Foundation for Biomedical Research and Innovation at Kobe, Chuo-ku, Kobe 650-0047 Japan
| | - Tatsuya Kamei
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Hideki Adachi
- grid.417741.00000 0004 1797 168XPreclinical Research Unit, Research Division, Sumitomo Pharma Co., Ltd., Konohana-ku, Osaka 554-0022 Japan
| | - Tomoaki Tochitani
- grid.417741.00000 0004 1797 168XPreclinical Research Unit, Research Division, Sumitomo Pharma Co., Ltd., Konohana-ku, Osaka 554-0022 Japan
| | - Yasuyuki Kita
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Aya Nakamura
- grid.417741.00000 0004 1797 168XTechnology Research & Development Division, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Kazuki Ueyama
- grid.417741.00000 0004 1797 168XTechnology Research & Development Division, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Keiichi Ono
- grid.417741.00000 0004 1797 168XTechnology Research & Development Division, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Chikako Morinaga
- grid.508743.dLaboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe 650-0047 Japan ,grid.7597.c0000000094465255RIKEN Program for Drug Discovery and Medical Technology Platforms, RIKEN Cluster for Science, Technology and Innovation Hub., Saitama, 351-0198 Japan
| | - Take Matsuyama
- grid.508743.dLaboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe 650-0047 Japan
| | - Junki Sho
- grid.508743.dLaboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe 650-0047 Japan
| | - Miyuki Nakamura
- grid.417982.10000 0004 0623 246XResearch & Development Center for Cell Therapy, Foundation for Biomedical Research and Innovation at Kobe, Chuo-ku, Kobe 650-0047 Japan
| | - Masayo Fujiwara
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Yoriko Hori
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Anna Tanabe
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Rina Hirai
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Orie Terai
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Osamu Ohno
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Hidetaka Ohara
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Tetsuya Hayama
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Atsushi Ikeda
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Daiki Nukaya
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Keizo Matsushita
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan ,grid.508743.dLaboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe 650-0047 Japan
| | - Masayo Takahashi
- grid.508743.dLaboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe 650-0047 Japan
| | - Akiyoshi Kishino
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Toru Kimura
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Shin Kawamata
- grid.417982.10000 0004 0623 246XResearch & Development Center for Cell Therapy, Foundation for Biomedical Research and Innovation at Kobe, Chuo-ku, Kobe 650-0047 Japan
| | - Michiko Mandai
- grid.508743.dLaboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe 650-0047 Japan ,grid.7597.c0000000094465255RIKEN Program for Drug Discovery and Medical Technology Platforms, RIKEN Cluster for Science, Technology and Innovation Hub., Saitama, 351-0198 Japan
| | - Atsushi Kuwahara
- Regenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe, 650-0047, Japan.
| |
Collapse
|
5
|
Kandoi S, Lamba DA. Retinal Organoids: A Human Model System for Development, Diseases, and Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:549-554. [PMID: 37440085 DOI: 10.1007/978-3-031-27681-1_80] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Inherited retinal degenerations (IRD) encompasses a group of heterogeneous disorders causing debilitating visual diseases and blindness, affecting more than two million people worldwide, in all age groups. The inheritance patterns vary from autosomal dominant, autosomal recessive, X-linked, and sporadic with mutations in over 260 genes identified to date. Despite the significant advances in clinical diagnosis, there is no effective treatment available. Human-induced pluripotent stem cells (hiPSC) derived in vitro 3D retinal organoids offer a powerful preclinical tool to investigate the molecular mechanism(s) of inherited diseases. Organoids have the potential for the development of personalized therapies by modeling the disease-specific and patient-specific IRD. This mini-review will elaborate on the utility of the advanced culture model system by focusing on staging the in vitro human retinogenesis, modeling retinal diseases, and as a tool for testing potential therapeutic approaches to restore or prevent vision loss in affected individuals.
Collapse
Affiliation(s)
- Sangeetha Kandoi
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA.
- Eli & Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA.
| | - Deepak A Lamba
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
- Eli & Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
6
|
Xue Y, Lin B, Chen JT, Tang WC, Browne AW, Seiler MJ. The Prospects for Retinal Organoids in Treatment of Retinal Diseases. Asia Pac J Ophthalmol (Phila) 2022; 11:314-327. [PMID: 36041146 PMCID: PMC9966053 DOI: 10.1097/apo.0000000000000538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/22/2022] [Indexed: 12/28/2022] Open
Abstract
Retinal degeneration (RD) is a significant cause of incurable blindness worldwide. Photoreceptors and retinal pigmented epithelium are irreversibly damaged in advanced RD. Functional replacement of photoreceptors and/or retinal pigmented epithelium cells is a promising approach to restoring vision. This paper reviews the current status and explores future prospects of the transplantation therapy provided by pluripotent stem cell-derived retinal organoids (ROs). This review summarizes the status of rodent RD disease models and discusses RO culture and analytical tools to evaluate RO quality and function. Finally, we review and discuss the studies in which RO-derived cells or sheets were transplanted. In conclusion, methods to derive ROs from pluripotent stem cells have significantly improved and become more efficient in recent years. Meanwhile, more novel technologies are applied to characterize and validate RO quality. However, opportunity remains to optimize tissue differentiation protocols and achieve better RO reproducibility. In order to screen high-quality ROs for downstream applications, approaches such as noninvasive and label-free imaging and electrophysiological functional testing are promising and worth further investigation. Lastly, transplanted RO-derived tissues have allowed improvements in visual function in several RD models, showing promises for clinical applications in the future.
Collapse
Affiliation(s)
- Yuntian Xue
- Biomedical Engineering, University of California, Irvine, CA
- Stem Cell Research Center, University of California, Irvine, CA
| | - Bin Lin
- Stem Cell Research Center, University of California, Irvine, CA
| | - Jacqueline T. Chen
- Stem Cell Research Center, University of California, Irvine, CA
- Gavin Herbert Eye Institute Ophthalmology, University of California, Irvine, CA
| | - William C. Tang
- Biomedical Engineering, University of California, Irvine, CA
| | - Andrew W. Browne
- Biomedical Engineering, University of California, Irvine, CA
- Gavin Herbert Eye Institute Ophthalmology, University of California, Irvine, CA
- Institute for Clinical and Translational Science, University of California, Irvine, CA
| | - Magdalene J. Seiler
- Stem Cell Research Center, University of California, Irvine, CA
- Gavin Herbert Eye Institute Ophthalmology, University of California, Irvine, CA
- Department of Physical Medicine and Rehabilitation, University of California, Irvine, CA
- Department of Anatomy and Neurobiology, University of California, Irvine, CA
| |
Collapse
|
7
|
Van Gelder RN, Chiang MF, Dyer MA, Greenwell TN, Levin LA, Wong RO, Svendsen CN. Regenerative and restorative medicine for eye disease. Nat Med 2022; 28:1149-1156. [PMID: 35715505 PMCID: PMC10718186 DOI: 10.1038/s41591-022-01862-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/06/2022] [Indexed: 12/11/2022]
Abstract
Causes of blindness differ across the globe; in higher-income countries, most blindness results from the degeneration of specific classes of cells in the retina, including retinal pigment epithelium (RPE), photoreceptors, and retinal ganglion cells. Advances over the past decade in retinal regenerative medicine have allowed each of these cell types to be produced ex vivo from progenitor stem cells. Here, we review progress in applying these technologies to cell replacement - with the goal of vision restoration in degenerative disease. We discuss the landscape of human clinical trials for RPE transplantation and advanced preclinical studies for other cell types. We also review progress toward in situ repair of retinal degeneration using endogenous progenitor cells. Finally, we provide a high-level overview of progress toward prosthetic ocular vision restoration, including advanced photovoltaic devices, opsin-based gene therapy, and small-molecule photoswitches. Progress in each of these domains is at or near the human clinical-trial stage, bringing the audacious goal of vision restoration within sight.
Collapse
Affiliation(s)
- Russell N Van Gelder
- Karalis-Johnson Retina Center, Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA, USA.
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA, USA.
- Department of Pathology and Laboratory Medicine, University of Washington School of Medicine, Seattle, WA, USA.
- Roger and Angie Karalis Johnson Retina Center, University of Washington School of Medicine, Seattle, WA, USA.
| | - Michael F Chiang
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude's Research Hospital, Memphis, TN, USA
| | - Thomas N Greenwell
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Leonard A Levin
- Department of Ophthalmology and Visual Sciences, McGill University, Montreal, Quebec, Canada
- Department of Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Rachel O Wong
- Karalis-Johnson Retina Center, Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA, USA
| | - Clive N Svendsen
- Board of Governors Regenerative Medicine Institute, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
8
|
Rempel SK, Welch MJ, Ludwig AL, Phillips MJ, Kancherla Y, Zack DJ, Gamm DM, Gómez TM. Human photoreceptors switch from autonomous axon extension to cell-mediated process pulling during synaptic marker redistribution. Cell Rep 2022; 39:110827. [PMID: 35584680 DOI: 10.1016/j.celrep.2022.110827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/18/2022] [Accepted: 04/26/2022] [Indexed: 11/19/2022] Open
Abstract
Photoreceptors (PRs) are the primary visual sensory cells, and their loss leads to blindness that is currently incurable. Although cell replacement therapy holds promise, success is hindered by our limited understanding of PR axon growth during development and regeneration. Here, we generate retinal organoids from human pluripotent stem cells to study the mechanisms of PR process extension. We find that early-born PRs exhibit autonomous axon extension from dynamic terminals. However, as PRs age from 40 to 80 days of differentiation, they lose dynamic terminals on 2D substrata and in 3D retinal organoids. Interestingly, PRs without motile terminals are still capable of extending axons but only by process stretching via attachment to motile non-PR cells. Immobile PR terminals of late-born PRs have fewer and less organized actin filaments but more synaptic proteins compared with early-born PR terminals. These findings may help inform the development of PR transplantation therapies.
Collapse
Affiliation(s)
- Sarah K Rempel
- Department of Neuroscience, University of Wisconsin - Madison, Madison, WI 53706, USA; McPherson Eye Research Institute, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Madalynn J Welch
- Department of Neuroscience, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Allison L Ludwig
- Department of Ophthalmology and Visual Sciences, University of Wisconsin - Madison, Madison, WI 53705, USA; McPherson Eye Research Institute, University of Wisconsin - Madison, Madison, WI 53706, USA; Waisman Center, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - M Joseph Phillips
- McPherson Eye Research Institute, University of Wisconsin - Madison, Madison, WI 53706, USA; Waisman Center, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Yochana Kancherla
- Department of Neuroscience, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Donald J Zack
- Department of Ophthalmology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - David M Gamm
- Department of Ophthalmology and Visual Sciences, University of Wisconsin - Madison, Madison, WI 53705, USA; McPherson Eye Research Institute, University of Wisconsin - Madison, Madison, WI 53706, USA; Waisman Center, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Timothy M Gómez
- Department of Neuroscience, University of Wisconsin - Madison, Madison, WI 53706, USA; McPherson Eye Research Institute, University of Wisconsin - Madison, Madison, WI 53706, USA.
| |
Collapse
|
9
|
Gasparini SJ, Tessmer K, Reh M, Wieneke S, Carido M, Völkner M, Borsch O, Swiersy A, Zuzic M, Goureau O, Kurth T, Busskamp V, Zeck G, Karl MO, Ader M. Transplanted human cones incorporate and function in a murine cone degeneration model. J Clin Invest 2022; 132:154619. [PMID: 35482419 PMCID: PMC9197520 DOI: 10.1172/jci154619] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
Once human photoreceptors die, they do not regenerate, thus, photoreceptor transplantation has emerged as a potential treatment approach for blinding diseases. Improvements in transplant organization, donor cell maturation, and synaptic connectivity to the host will be critical in advancing this technology for use in clinical practice. Unlike the unstructured grafts of prior cell-suspension transplantations into end-stage degeneration models, we describe the extensive incorporation of induced pluripotent stem cell (iPSC) retinal organoid–derived human photoreceptors into mice with cone dysfunction. This incorporative phenotype was validated in both cone-only as well as pan-photoreceptor transplantations. Rather than forming a glial barrier, Müller cells extended throughout the graft, even forming a series of adherens junctions between mouse and human cells, reminiscent of an outer limiting membrane. Donor-host interaction appeared to promote polarization as well as the development of morphological features critical for light detection, namely the formation of inner and well-stacked outer segments oriented toward the retinal pigment epithelium. Putative synapse formation and graft function were evident at both structural and electrophysiological levels. Overall, these results show that human photoreceptors interacted readily with a partially degenerated retina. Moreover, incorporation into the host retina appeared to be beneficial to graft maturation, polarization, and function.
Collapse
Affiliation(s)
| | - Karen Tessmer
- Ader Lab, Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Miriam Reh
- Department of Neurophysics, NMI Natural and Medical Sciences Institute at the University Tübingen, Reutlingen, Germany
| | - Stephanie Wieneke
- Karl Lab, Center for Regenerative Therapies TU Dresden and German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Madalena Carido
- Ader Lab, Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Manuela Völkner
- Karl Lab, Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Oliver Borsch
- Ader Lab, Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Anka Swiersy
- Busskamp Lab, Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Marta Zuzic
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Olivier Goureau
- Institut de la Vision, INSERM, CNRS, Sorbonne Université, Paris, France
| | - Thomas Kurth
- Center for Molecular and Cellular Biology, Technische Universität (TU) Dresden, Dresden, Germany
| | - Volker Busskamp
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Günther Zeck
- Department of Neurophysics, NMI Natural and Medical Sciences Institute at the University Tübingen, Reutlingen, Germany
| | - Mike O Karl
- Karl Lab, Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Marius Ader
- Ader Lab, Center for Regenerative Therapies TU Dresden, Dresden, Germany
| |
Collapse
|
10
|
Yamasaki S, Kuwahara A, Kishino A, Kimura T, Takahashi M, Mandai M. Addition of Chk1 inhibitor and BMP4 cooperatively promotes retinal tissue formation in self-organizing human pluripotent stem cell differentiation culture. Regen Ther 2022; 19:24-34. [PMID: 35059477 PMCID: PMC8733178 DOI: 10.1016/j.reth.2021.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 11/20/2022] Open
Abstract
Background The BMP signaling pathway plays a key role in growth, differentiation and patterning during neural development. Recent work on the generation of a self-organization of three-dimensional retinal organoid (3D-retina) from human pluripotent stem cells (hPSCs) revealed that addition of recombinant human BMP4 (rhBMP4) promotes retinal differentiation in the early neural differentiation stage. For clinical application, efficient differentiation from hPSCs to retinal cells with minimal numbers of off-target non-retinal cells is desirable. We therefore aimed to further improve an efficient retinal differentiation method for future up-scaling of cell production. Methods hPSCs were differentiated into 3D-retina using a modified SFEBq method. The effect of rhBMP4 with or without Checkpoint kinase 1 (Chk1) inhibitor (PD407824), a modulator of BMP signaling pathway, at day 3 was compared by characterizing the differentiating 3D-retina by the use of the hPSCs and immunohistochemical analysis. Results The Chk1 inhibitor treatment promoted retinal differentiation from hPSCs, in combination with low-concentration rhBMP4. Addition of a Chk1 inhibitor generated a unique type of organoid with neural retina (NR) encapsulated in retinal pigment epithelium (RPE), possibly by promoting phosphorylation of SMAD1/5/9 in the cells inside the early aggregates. We confirmed that the Chk1-inhibitor-treated hPSC-3D-retina differentiated into rod and cone photoreceptor precursors and other types of retinal neurons, in long-term culture. Conclusions In this study, we found that combined use of rhBMP4 and a Chk1 inhibitor cooperatively promoted retinal differentiation from hPSCs. Our new retinal differentiation method is a promising option for the stable supply and up-scaling of production of 3D-retina for future cell therapy. Chk1 inhibitor cooperates with low-concentration rhBMP4 to promote hPSC-retinal differentiation. Combined rhBMP4 and Chk1 inhibitor treatment generated NR-RPE organoids with NR tissue encapsulated in RPE. In long-term culture, the Chk1 inhibitor-treated 3D-retina produces rod and cone photoreceptor precursors and other types of retinal neurons.
Collapse
|
11
|
Bonilla-Pons SÀ, Nakagawa S, Bahima EG, Fernández-Blanco Á, Pesaresi M, D'Antin JC, Sebastian-Perez R, Greco D, Domínguez-Sala E, Gómez-Riera R, Compte RIB, Dierssen M, Pulido NM, Cosma MP. Müller glia fused with adult stem cells undergo neural differentiation in human retinal models. EBioMedicine 2022; 77:103914. [PMID: 35278743 PMCID: PMC8917309 DOI: 10.1016/j.ebiom.2022.103914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 12/15/2022] Open
Abstract
Background Visual impairments are a critical medical hurdle to be addressed in modern society. Müller glia (MG) have regenerative potential in the retina in lower vertebrates, but not in mammals. However, in mice, in vivo cell fusion between MG and adult stem cells forms hybrids that can partially regenerate ablated neurons. Methods We used organotypic cultures of human retina and preparations of dissociated cells to test the hypothesis that cell fusion between human MG and adult stem cells can induce neuronal regeneration in human systems. Moreover, we established a microinjection system for transplanting human retinal organoids to demonstrate hybrid differentiation. Findings We first found that cell fusion occurs between MG and adult stem cells, in organotypic cultures of human retina as well as in cell cultures. Next, we showed that the resulting hybrids can differentiate and acquire a proto-neural electrophysiology profile when the Wnt/beta-catenin pathway is activated in the adult stem cells prior fusion. Finally, we demonstrated the engraftment and differentiation of these hybrids into human retinal organoids. Interpretation We show fusion between human MG and adult stem cells, and demonstrate that the resulting hybrid cells can differentiate towards neural fate in human model systems. Our results suggest that cell fusion-mediated therapy is a potential regenerative approach for treating human retinal dystrophies. Funding This work was supported by La Caixa Health (HR17-00231), Velux Stiftung (976a) and the Ministerio de Ciencia e Innovación, (BFU2017-86760-P) (AEI/FEDER, UE), AGAUR (2017 SGR 689, 2017 SGR 926).
Collapse
Affiliation(s)
- Sergi Àngel Bonilla-Pons
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain; Universitat de Barcelona (UB), Barcelona, Spain
| | - Shoma Nakagawa
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain
| | - Elena Garreta Bahima
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Álvaro Fernández-Blanco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Martina Pesaresi
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Justin Christopher D'Antin
- Centro de Oftalmología Barraquer, Barcelona, Spain; Institut Universitari Barraquer, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Ruben Sebastian-Perez
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Daniela Greco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain
| | - Eduardo Domínguez-Sala
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain
| | - Raúl Gómez-Riera
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain
| | - Rafael Ignacio Barraquer Compte
- Centro de Oftalmología Barraquer, Barcelona, Spain; Institut Universitari Barraquer, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Mara Dierssen
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Biomedical Research Networking Centre On Rare Diseases (CIBERER), Institute of Health Carlos III, Madrid, Spain
| | - Nuria Montserrat Pulido
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain; Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China; CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell an Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Science, Guangzhou 510530, China.
| |
Collapse
|
12
|
Thomas BB, Lin B, Martinez-Camarillo JC, Zhu D, McLelland BT, Nistor G, Keirstead HS, Humayun MS, Seiler MJ. Co-grafts of Human Embryonic Stem Cell Derived Retina Organoids and Retinal Pigment Epithelium for Retinal Reconstruction in Immunodeficient Retinal Degenerate Royal College of Surgeons Rats. Front Neurosci 2021; 15:752958. [PMID: 34764853 PMCID: PMC8576198 DOI: 10.3389/fnins.2021.752958] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
End-stage age-related macular degeneration (AMD) and retinitis pigmentosa (RP) are two major retinal degenerative (RD) conditions that result in irreversible vision loss. Permanent eye damage can also occur in battlefields or due to accidents. This suggests there is an unmet need for developing effective strategies for treating permanent retinal damages. In previous studies, co-grafted sheets of fetal retina with its retinal pigment epithelium (RPE) have demonstrated vision improvement in rat retinal disease models and in patients, but this has not yet been attempted with stem-cell derived tissue. Here we demonstrate a cellular therapy for irreversible retinal eye injuries using a "total retina patch" consisting of retinal photoreceptor progenitor sheets and healthy RPE cells on an artificial Bruch's membrane (BM). For this, retina organoids (ROs) (cultured in suspension) and polarized RPE sheets (cultured on an ultrathin parylene substrate) were made into a co-graft using bio-adhesives [gelatin, growth factor-reduced matrigel, and medium viscosity (MVG) alginate]. In vivo transplantation experiments were conducted in immunodeficient Royal College of Surgeons (RCS) rats at advanced stages of retinal degeneration. Structural reconstruction of the severely damaged retina was observed based on histological assessments and optical coherence tomography (OCT) imaging. Visual functional assessments were conducted by optokinetic behavioral testing and superior colliculus electrophysiology. Long-term survival of the co-graft in the rat subretinal space and improvement in visual function were observed. Immunohistochemistry showed that co-grafts grew, generated new photoreceptors and developed neuronal processes that were integrated into the host retina. This novel approach can be considered as a new therapy for complete replacement of a degenerated retina.
Collapse
Affiliation(s)
- Biju B. Thomas
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, United States
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, United States
| | - Bin Lin
- Department of Physical Medicine and Rehabilitation, University of California, Irvine, Irvine, CA, United States
- Stem Cell Research Center, University of California, Irvine, Irvine, CA, United States
| | - Juan Carlos Martinez-Camarillo
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, United States
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, United States
| | - Danhong Zhu
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, United States
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Bryce T. McLelland
- Department of Physical Medicine and Rehabilitation, University of California, Irvine, Irvine, CA, United States
- Stem Cell Research Center, University of California, Irvine, Irvine, CA, United States
| | | | | | - Mark S. Humayun
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, United States
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, United States
| | - Magdalene J. Seiler
- Department of Physical Medicine and Rehabilitation, University of California, Irvine, Irvine, CA, United States
- Stem Cell Research Center, University of California, Irvine, Irvine, CA, United States
- Department of Ophthalmology, University of California, Irvine, Irvine, CA, United States
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
13
|
Luo Z, Xian B, Li K, Li K, Yang R, Chen M, Xu C, Tang M, Rong H, Hu D, Ye M, Yang S, Lu S, Zhang H, Ge J. Biodegradable scaffolds facilitate epiretinal transplantation of hiPSC-Derived retinal neurons in nonhuman primates. Acta Biomater 2021; 134:289-301. [PMID: 34314890 DOI: 10.1016/j.actbio.2021.07.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/30/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023]
Abstract
Transplantation of stem cell-derived retinal neurons is a promising regenerative therapy for optic neuropathy. However, significant anatomic differences compromise its efficacy in large animal models. The present study describes the procedure and outcomes of human-induced pluripotent stem cell (hiPSC)-derived retinal sheet transplantation in primate models using biodegradable materials. Stem cell-derived retinal organoids were seeded on polylactic-coglycolic acid (PLGA) scaffolds and directed toward a retinal ganglion cell (RGC) fate. The seeded tissues showed active proliferation, typical neuronal morphology, and electrical excitability. The cellular scaffolds were then epiretinally transplanted onto the inner surface of rhesus monkey retinas. With sufficient graft-host contact provided by the scaffold, the transplanted tissues survived for up to 1 year without tumorigenesis. Histological examinations indicated survival, further maturation, and migration. Moreover, green fluorescent protein-labeled axonal projections toward the host optic nerve were observed. Cryopreserved organoids were also able to survive and migrate after transplantation. Our results suggest the potential efficacy of RGC replacement therapy in the repair of optic neuropathy for the restoration of visual function. STATEMENT OF SIGNIFICANCE: In the present study, we generated a human retinal sheet by seeding hiPSC-retinal organoid-derived RGCs on a biodegradable PLGA scaffold. We transplanted this retinal sheet onto the inner surface of the rhesus monkey retina. With scaffold support, donor cells survive, migrate and project their axons into the host optic nerve. Furthermore, an effective cryopreservation strategy for retinal organoids was developed, and the thawed organoids were also observed to survive and show cell migration after transplantation.
Collapse
|
14
|
Retinal Organoid Technology: Where Are We Now? Int J Mol Sci 2021; 22:ijms221910244. [PMID: 34638582 PMCID: PMC8549701 DOI: 10.3390/ijms221910244] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/25/2022] Open
Abstract
It is difficult to regenerate mammalian retinal cells once the adult retina is damaged, and current clinical approaches to retinal damages are very limited. The introduction of the retinal organoid technique empowers researchers to study the molecular mechanisms controlling retinal development, explore the pathogenesis of retinal diseases, develop novel treatment options, and pursue cell/tissue transplantation under a certain genetic background. Here, we revisit the historical background of retinal organoid technology, categorize current methods of organoid induction, and outline the obstacles and potential solutions to next-generation retinal organoids. Meanwhile, we recapitulate recent research progress in cell/tissue transplantation to treat retinal diseases, and discuss the pros and cons of transplanting single-cell suspension versus retinal organoid sheet for cell therapies.
Collapse
|
15
|
Occelli LM, Marinho F, Singh RK, Binette F, Nasonkin IO, Petersen-Jones SM. Subretinal Transplantation of Human Embryonic Stem Cell-Derived Retinal Tissue in a Feline Large Animal Model. J Vis Exp 2021:10.3791/61683. [PMID: 34424232 PMCID: PMC10029721 DOI: 10.3791/61683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Retinal degenerative (RD) conditions associated with photoreceptor loss such as age-related macular degeneration (AMD), retinitis pigmentosa (RP) and Leber Congenital Amaurosis (LCA) cause progressive and debilitating vision loss. There is an unmet need for therapies that can restore vision once photoreceptors have been lost. Transplantation of human pluripotent stem cell (hPSC)-derived retinal tissue (organoids) into the subretinal space of an eye with advanced RD brings retinal tissue sheets with thousands of healthy mutation-free photoreceptors and has a potential to treat most/all blinding diseases associated with photoreceptor degeneration with one approved protocol. Transplantation of fetal retinal tissue into the subretinal space of animal models and people with advanced RD has been developed successfully but cannot be used as a routine therapy due to ethical concerns and limited tissue supply. Large eye inherited retinal degeneration (IRD) animal models are valuable for developing vision restoration therapies utilizing advanced surgical approaches to transplant retinal cells/tissue into the subretinal space. The similarities in globe size, and photoreceptor distribution (e.g., presence of macula-like region area centralis) and availability of IRD models closely recapitulating human IRD would facilitate rapid translation of a promising therapy to the clinic. Presented here is a surgical technique of transplanting hPSC-derived retinal tissue into the subretinal space of a large animal model allowing assessment of this promising approach in animal models.
Collapse
Affiliation(s)
- Laurence M Occelli
- College of Veterinary Medicine, Department of Small Animal Clinical Sciences, Michigan State University
| | - Felipe Marinho
- College of Veterinary Medicine, Department of Small Animal Clinical Sciences, Michigan State University
| | | | | | | | - Simon M Petersen-Jones
- College of Veterinary Medicine, Department of Small Animal Clinical Sciences, Michigan State University;
| |
Collapse
|
16
|
Yamasaki S, Sugita S, Horiuchi M, Masuda T, Fujii S, Makabe K, Kawasaki A, Hayashi T, Kuwahara A, Kishino A, Kimura T, Takahashi M, Mandai M. Low Immunogenicity and Immunosuppressive Properties of Human ESC- and iPSC-Derived Retinas. Stem Cell Reports 2021; 16:851-867. [PMID: 33770500 PMCID: PMC8072071 DOI: 10.1016/j.stemcr.2021.02.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 12/18/2022] Open
Abstract
ESC- and iPSC-derived retinal transplantation is a promising therapeutic approach for disease with end-stage retinal degeneration, such as retinitis pigmentosa and age-related macular degeneration. We previously showed medium- to long-term survival, maturation, and light response of transplanted human ESC- and iPSC-retina in mouse, rat, and monkey models of end-stage retinal degeneration. Because the use of patient hiPSC-derived retina with a disease-causing gene mutation is not appropriate for therapeutic use, allogeneic transplantation using retinal tissue/cells differentiated from a stocked hESC and iPSC line would be most practical. Here, we characterize the immunological properties of hESC- and iPSC-retina and present their three major advantages: (1) hESC- and iPSC-retina expressed low levels of human leukocyte antigen (HLA) class I and little HLA class II in vitro, (2) hESC- and iPSC-retina greatly suppressed immune activation of lymphocytes in co-culture, and (3) hESC- and iPSC-retina suppressed activated immune cells partially via transforming growth factor β signaling. These results support the use of allogeneic hESC- and iPSC-retina in future clinical application.
Collapse
Affiliation(s)
- Suguru Yamasaki
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan; Regenerative & Cellular Medicine Kobe Center, Sumitomo Dainippon Pharma Co., Ltd., Kobe 650-0047, Japan
| | - Sunao Sugita
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan.
| | - Matsuri Horiuchi
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan; Regenerative & Cellular Medicine Kobe Center, Sumitomo Dainippon Pharma Co., Ltd., Kobe 650-0047, Japan
| | - Tomohiro Masuda
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Shota Fujii
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Kenichi Makabe
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Akihiro Kawasaki
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Takuya Hayashi
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Atsushi Kuwahara
- Regenerative & Cellular Medicine Kobe Center, Sumitomo Dainippon Pharma Co., Ltd., Kobe 650-0047, Japan
| | - Akiyoshi Kishino
- Regenerative & Cellular Medicine Kobe Center, Sumitomo Dainippon Pharma Co., Ltd., Kobe 650-0047, Japan
| | - Toru Kimura
- Regenerative & Cellular Medicine Kobe Center, Sumitomo Dainippon Pharma Co., Ltd., Kobe 650-0047, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Michiko Mandai
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan; RIKEN Program for Drug Discovery and Medical Technology Platforms (DMP), RIKEN Cluster for Science, Technology and Innovation Hub, Saitama 351-0198, Japan.
| |
Collapse
|
17
|
Role of the Internal Limiting Membrane in Structural Engraftment and Topographic Spacing of Transplanted Human Stem Cell-Derived Retinal Ganglion Cells. Stem Cell Reports 2020; 16:149-167. [PMID: 33382979 PMCID: PMC7897583 DOI: 10.1016/j.stemcr.2020.12.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022] Open
Abstract
Retinal ganglion cell (RGC) replacement holds potential for restoring vision lost to optic neuropathy. Transplanted RGCs must undergo neuroretinal integration to receive afferent visual signals for processing and efferent transmission. To date, retinal integration following RGC transplantation has been limited. We sought to overcome key barriers to transplanted human stem cell-derived RGC integration. Following co-culture ex vivo on organotypic mouse retinal explants, human RGCs cluster and extend bundled neurites that remain superficial to the neuroretina, hindering afferent synaptogenesis. To enhance integration, we increased the cellular permeability of the internal limiting membrane (ILM). Extracellular matrix digestion using proteolytic enzymes achieved ILM disruption while minimizing retinal toxicity and preserving glial reactivity. ILM disruption is associated with dispersion rather than clustering of co-cultured RGC bodies and neurites, and increased parenchymal neurite ingrowth. The ILM represents a significant obstacle to transplanted RGC connectivity and its circumvention may be necessary for functional RGC replacement.
Collapse
|
18
|
Sher I, Moverman D, Ketter-Katz H, Moisseiev E, Rotenstreich Y. In vivo retinal imaging in translational regenerative research. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1096. [PMID: 33145315 PMCID: PMC7575995 DOI: 10.21037/atm-20-4355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Regenerative translational studies must include a longitudinal assessment of the changes in retinal structure and function that occur as part of the natural history of the disease and those that result from the studied intervention. Traditionally, retinal structural changes have been evaluated by histological analysis which necessitates sacrificing the animals. In this review, we describe key imaging approaches such as fundus imaging, optical coherence tomography (OCT), OCT-angiography, adaptive optics (AO), and confocal scanning laser ophthalmoscopy (cSLO) that enable noninvasive, non-contact, and fast in vivo imaging of the posterior segment. These imaging technologies substantially reduce the number of animals needed and enable progression analysis and longitudinal follow-up in individual animals for accurate assessment of disease natural history, effects of interventions and acute changes. We also describe the benefits and limitations of each technology, as well as outline possible future directions that can be taken in translational retinal imaging studies.
Collapse
Affiliation(s)
- Ifat Sher
- Goldschleger Eye Institute, Sheba Medical Center, Tel-Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Moverman
- Goldschleger Eye Institute, Sheba Medical Center, Tel-Hashomer, Israel
| | - Hadas Ketter-Katz
- Goldschleger Eye Institute, Sheba Medical Center, Tel-Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Elad Moisseiev
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Ophthalmology, Meir Medical Center, Kfar Saba, Israel
| | - Ygal Rotenstreich
- Goldschleger Eye Institute, Sheba Medical Center, Tel-Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
19
|
Singh RK, Nasonkin IO. Limitations and Promise of Retinal Tissue From Human Pluripotent Stem Cells for Developing Therapies of Blindness. Front Cell Neurosci 2020; 14:179. [PMID: 33132839 PMCID: PMC7513806 DOI: 10.3389/fncel.2020.00179] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022] Open
Abstract
The self-formation of retinal tissue from pluripotent stem cells generated a tremendous promise for developing new therapies of retinal degenerative diseases, which previously seemed unattainable. Together with use of induced pluripotent stem cells or/and CRISPR-based recombineering the retinal organoid technology provided an avenue for developing models of human retinal degenerative diseases "in a dish" for studying the pathology, delineating the mechanisms and also establishing a platform for large-scale drug screening. At the same time, retinal organoids, highly resembling developing human fetal retinal tissue, are viewed as source of multipotential retinal progenitors, young photoreceptors and just the whole retinal tissue, which may be transplanted into the subretinal space with a goal of replacing patient's degenerated retina with a new retinal "patch." Both approaches (transplantation and modeling/drug screening) were projected when Yoshiki Sasai demonstrated the feasibility of deriving mammalian retinal tissue from pluripotent stem cells, and generated a lot of excitement. With further work and testing of both approaches in vitro and in vivo, a major implicit limitation has become apparent pretty quickly: the absence of the uniform layer of Retinal Pigment Epithelium (RPE) cells, which is normally present in mammalian retina, surrounds photoreceptor layer and develops and matures first. The RPE layer polarize into apical and basal sides during development and establish microvilli on the apical side, interacting with photoreceptors, nurturing photoreceptor outer segments and participating in the visual cycle by recycling 11-trans retinal (bleached pigment) back to 11-cis retinal. Retinal organoids, however, either do not have RPE layer or carry patches of RPE mostly on one side, thus directly exposing most photoreceptors in the developing organoids to neural medium. Recreation of the critical retinal niche between the apical RPE and photoreceptors, where many retinal disease mechanisms originate, is so far unattainable, imposes clear limitations on both modeling/drug screening and transplantation approaches and is a focus of investigation in many labs. Here we dissect different retinal degenerative diseases and analyze how and where retinal organoid technology can contribute the most to developing therapies even with a current limitation and absence of long and functional outer segments, supported by RPE.
Collapse
|
20
|
Lin B, McLelland BT, Aramant RB, Thomas BB, Nistor G, Keirstead HS, Seiler MJ. Retina Organoid Transplants Develop Photoreceptors and Improve Visual Function in RCS Rats With RPE Dysfunction. Invest Ophthalmol Vis Sci 2020; 61:34. [PMID: 32945842 PMCID: PMC7509771 DOI: 10.1167/iovs.61.11.34] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/17/2020] [Indexed: 01/01/2023] Open
Abstract
Purpose To study if human embryonic stem cell-derived photoreceptors could survive and function without the support of retinal pigment epithelium (RPE) after transplantation into Royal College of Surgeons rats, a rat model of retinal degeneration caused by RPE dysfunction. Methods CSC14 human embryonic stem cells were differentiated into primordial eye structures called retinal organoids. Retinal organoids were analyzed by quantitative PCR and immunofluorescence and compared with human fetal retina. Retinal organoid sheets (30-70 day of differentiation) were transplanted into immunodeficient RCS rats, aged 44 to 56 days. The development of transplant organoids in vivo in relation to the host was examined by optical coherence tomography. Visual function was assessed by optokinetic testing, electroretinogram, and superior colliculus electrophysiologic recording. Cryostat sections were analyzed for various retinal, synaptic, and donor markers. Results Retinal organoids showed similar gene expression to human fetal retina transplanted rats demonstrated significant improvement in visual function compared with RCS nonsurgery and sham surgery controls by ERGs at 2 months after surgery (but not later), optokinetic testing (up to 6 months after surgery) and electrophysiologic superior colliculus recordings (6-8 months after surgery). The transplanted organoids survived more than 7 months; developed photoreceptors with inner and outer segments, and other retinal cells; and were well-integrated within the host. Conclusions This study, to our knowledge, is the first to show that transplanted photoreceptors survive and function even with host's dysfunctional RPE. Our findings suggest that transplantation of organoid sheets from stem cells may be a promising approach/therapeutic for blinding diseases.
Collapse
Affiliation(s)
- Bin Lin
- Physical Medicine & Rehabilitation, Sue & Bill Gross Stem Cell Research Center, University of California at Irvine, School of Medicine, Irvine, California, United States
| | - Bryce T. McLelland
- Physical Medicine & Rehabilitation, Sue & Bill Gross Stem Cell Research Center, University of California at Irvine, School of Medicine, Irvine, California, United States
| | - Robert B. Aramant
- Physical Medicine & Rehabilitation, Sue & Bill Gross Stem Cell Research Center, University of California at Irvine, School of Medicine, Irvine, California, United States
| | - Biju B. Thomas
- USC Roski Eye Institute, Department of Ophthalmology, University of Southern California, Los Angeles, California, United States
| | - Gabriel Nistor
- AIVITA Biomedical Inc., Irvine, California, United States
| | | | - Magdalene J. Seiler
- Physical Medicine & Rehabilitation, Sue & Bill Gross Stem Cell Research Center, University of California at Irvine, School of Medicine, Irvine, California, United States
- Ophthalmology, University of California at Irvine, School of Medicine, Irvine, California, United States
- Anatomy & Neurobiology, University of California at Irvine School of Medicine, Irvine, California, United States
| |
Collapse
|
21
|
Hua ZQ, Liu H, Wang N, Jin ZB. Towards stem cell-based neuronal regeneration for glaucoma. PROGRESS IN BRAIN RESEARCH 2020; 257:99-118. [PMID: 32988476 DOI: 10.1016/bs.pbr.2020.05.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Glaucoma is a neurodegenerative disease as a leading cause of global blindness. Retinal ganglion cell (RGC) apoptosis and optic nerve damage are the main pathological changes. Patients have elevated intraocular pressure and progressive visual field loss. Unfortunately, current treatments for glaucoma merely stay at delaying the disease progression. As a promising treatment, stem cell-based neuronal regeneration therapy holds potential for glaucoma, thereby great efforts have been paid on it. RGC regeneration and transplantation are key approaches for the future treatment of glaucoma. A line of studies have shown that a variety of cells can be used to regenerate RGCs, including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs), and retinal progenitor cells (RPCs). In this review, we overview the current progress on the regeneration of pluripotent stem cell-derived RGCs and outlook the perspective and challenges in this field.
Collapse
Affiliation(s)
- Zi-Qi Hua
- Laboratory of Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hui Liu
- Laboratory of Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China.
| |
Collapse
|
22
|
Singh RK, Winkler P, Binette F, Glickman RD, Seiler M, Petersen-Jones SM, Nasonkin IO. Development of a protocol for maintaining viability while shipping organoid-derived retinal tissue. J Tissue Eng Regen Med 2020; 14:388-394. [PMID: 31908157 DOI: 10.1002/term.2997] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/17/2019] [Accepted: 12/06/2019] [Indexed: 12/20/2022]
Abstract
Retinal organoid technology enables generation of an inexhaustible supply of three-dimensional retinal tissue from human pluripotent stem cells (hPSCs) for regenerative medicine applications. The high similarity of organoid-derived retinal tissue and transplantable human fetal retina provides an opportunity for evaluating and modeling retinal tissue replacement strategies in relevant animal models in the effort to develop a functional retinal patch to restore vision in patients with profound blindness caused by retinal degeneration. Because of the complexity of this very promising approach requiring specialized stem cell and grafting techniques, the tasks of retinal tissue derivation and transplantation are frequently split between geographically distant teams. Delivery of delicate and perishable neural tissue such as retina to the surgical sites requires a reliable shipping protocol and also controlled temperature conditions with damage-reporting mechanisms in place to prevent transplantation of tissue damaged in transit into expensive animal models. We have developed a robust overnight tissue shipping protocol providing reliable temperature control, live monitoring of the shipment conditions and physical location of the package, and damage reporting at the time of delivery. This allows for shipping of viable (transplantation-competent) hPSC-derived retinal tissue over large distances, thus enabling stem cell and surgical teams from different parts of the country to work together and maximize successful engraftment of organoid-derived retinal tissue. Although this protocol was developed for preclinical in vivo studies in animal models, it is potentially translatable for clinical transplantation in the future and will contribute to developing clinical protocols for restoring vision in patients with retinal degeneration.
Collapse
Affiliation(s)
- Ratnesh K Singh
- Research & Development, Lineage Cell Therapeutics, Inc, Alameda, CA
| | - Paige Winkler
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI
| | - Francois Binette
- Research & Development, Lineage Cell Therapeutics, Inc, Alameda, CA
| | - Randolph D Glickman
- Department of Ophthalmology, University of Texas Health Science Center, San Antonio, TX
| | - Magdalene Seiler
- Stem Cell Research Center, University of California Irvine, Irvine, CA.,Department of Physical Medicine and Rehabilitation, University of California Irvine, Irvine, CA.,Department of Ophthalmology, University of California Irvine, Irvine, CA.,Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA
| | - Simon M Petersen-Jones
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI
| | - Igor O Nasonkin
- Research & Development, Lineage Cell Therapeutics, Inc, Alameda, CA
| |
Collapse
|
23
|
Tumorigenicity assessment of cell therapy products: The need for global consensus and points to consider. Cytotherapy 2019; 21:1095-1111. [DOI: 10.1016/j.jcyt.2019.10.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022]
|
24
|
Singh RK, Occelli LM, Binette F, Petersen-Jones SM, Nasonkin IO. Transplantation of Human Embryonic Stem Cell-Derived Retinal Tissue in the Subretinal Space of the Cat Eye. Stem Cells Dev 2019; 28:1151-1166. [PMID: 31210100 PMCID: PMC6708274 DOI: 10.1089/scd.2019.0090] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
To develop biological approaches to restore vision, we developed a method of transplanting stem cell-derived retinal tissue into the subretinal space of a large-eye animal model (cat). Human embryonic stem cells (hESC) were differentiated to retinal organoids in a dish. hESC-derived retinal tissue was introduced into the subretinal space of wild-type cats following a pars plana vitrectomy. The cats were systemically immunosuppressed with either prednisolone or prednisolone plus cyclosporine A. The eyes were examined by fundoscopy and spectral-domain optical coherence tomography imaging for adverse effects due to the presence of the subretinal grafts. Immunohistochemistry was done with antibodies to retinal and human markers to delineate graft survival, differentiation, and integration into cat retina. We successfully delivered hESC-derived retinal tissue into the subretinal space of the cat eye. We observed strong infiltration of immune cells in the graft and surrounding tissue in the cats treated with prednisolone. In contrast, we showed better survival and low immune response to the graft in cats treated with prednisolone plus cyclosporine A. Immunohistochemistry with antibodies (STEM121, CALB2, DCX, and SMI-312) revealed large number of graft-derived fibers connecting the graft and the host. We also show presence of human-specific synaptophysin puncta in the cat retina. This work demonstrates feasibility of engrafting hESC-derived retinal tissue into the subretinal space of large-eye animal models. Transplanting retinal tissue in degenerating cat retina will enable rapid development of preclinical in vivo work focused on vision restoration.
Collapse
Affiliation(s)
- Ratnesh K Singh
- Lineage Cell Therapeutics, Inc. (formerly BioTime Inc.), Carlsbad, California
| | - Laurence M Occelli
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lasing, Michigan
| | - Francois Binette
- Lineage Cell Therapeutics, Inc. (formerly BioTime Inc.), Carlsbad, California
| | - Simon M Petersen-Jones
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lasing, Michigan
| | - Igor O Nasonkin
- Lineage Cell Therapeutics, Inc. (formerly BioTime Inc.), Carlsbad, California
| |
Collapse
|
25
|
Terrell D, Comander J. Current Stem-Cell Approaches for the Treatment of Inherited Retinal Degenerations. Semin Ophthalmol 2019; 34:287-292. [DOI: 10.1080/08820538.2019.1620808] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- David Terrell
- Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Jason Comander
- Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
26
|
Abstract
Purpose Retinal degenerative diseases lead to the death of retinal neurons causing visual impairment and blindness. In lower order vertebrates, the retina and its surrounding tissue contain stem cell niches capable of regenerating damaged tissue. Here we examine these niches and review their capacity to be used as retinal stem/progenitor cells (RSC/RPCs) for retinal repair. Recent Findings Exogenous factors can control the in vitro activation of RSCs/PCs found in several niches within the adult eye including cells in the ciliary margin, the retinal pigment epithelium, iris pigment epithelium as well as the inducement of Müller and amacrine cells within the neural retina itself. Recently, factors have been identified for the activation of adult mammalian Müller cells to a RPC state in vivo. Summary Whereas cell transplantation still holds potential for retinal repair, activation of the dormant native regeneration process may lead to a more successful process including greater integration efficiency and proper synaptic targeting.
Collapse
|
27
|
Yanai A, McNab P, Gregory-Evans K. Retinal therapy with induced pluripotent stem cells; leading the way to human clinical trials. EXPERT REVIEW OF OPHTHALMOLOGY 2019. [DOI: 10.1080/17469899.2019.1568872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Anat Yanai
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Pia McNab
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kevin Gregory-Evans
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
28
|
Surgical Approaches for Cell Therapeutics Delivery to the Retinal Pigment Epithelium and Retina. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1186:141-170. [PMID: 31654389 DOI: 10.1007/978-3-030-28471-8_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Developing successful surgical strategies to deliver cell therapeutics to the back of the eye is an essential pillar to success for stem cell-based applications in blinding retinal diseases. Within this chapter, we have attempted to gather all key considerations during preclinical animal trials.Guidance is provided for choices on animal models, options for immunosuppression, as well as anesthesia. Subsequently we cover surgical strategies for RPE graft delivery, both as suspension as well as in monolayers in small rodents, rabbits, pigs, and nonhuman primate. A detailed account is given in particular on animal variations in vitrectomy and subretinal surgery, which requires a considerable learning curve, when transiting from human to animal. In turn, however, many essential subretinal implantation techniques in large-eyed animals are directly transferrable to human clinical trial protocols.A dedicated subchapter on photoreceptor replacement provides insights on preparation of suspension as well as sheet grafts, to subsequently outline the basics of subretinal delivery via both the transscleral and transvitreal route. In closing, a future outlook on vision restoration through retinal cell-based therapeutics is presented.
Collapse
|
29
|
Gasparini SJ, Llonch S, Borsch O, Ader M. Transplantation of photoreceptors into the degenerative retina: Current state and future perspectives. Prog Retin Eye Res 2018; 69:1-37. [PMID: 30445193 DOI: 10.1016/j.preteyeres.2018.11.001] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/29/2018] [Accepted: 11/06/2018] [Indexed: 12/12/2022]
Abstract
The mammalian retina displays no intrinsic regenerative capacities, therefore retinal degenerative diseases such as age-related macular degeneration (AMD) or retinitis pigmentosa (RP) result in a permanent loss of the light-sensing photoreceptor cells. The degeneration of photoreceptors leads to vision impairment and, in later stages, complete blindness. Several therapeutic strategies have been developed to slow down or prevent further retinal degeneration, however a definitive cure i.e. replacement of the lost photoreceptors, has not yet been established. Cell-based treatment approaches, by means of photoreceptor transplantation, have been studied in pre-clinical animal models over the last three decades. The introduction of pluripotent stem cell-derived retinal organoids represents, in principle, an unlimited source for the generation of transplantable human photoreceptors. However, safety, immunological and reproducibility-related issues regarding the use of such cells still need to be solved. Moreover, the recent finding of cytoplasmic material transfer between donor and host photoreceptors demands reinterpretation of several former transplantation studies. At the same time, material transfer between healthy donor and dysfunctional patient photoreceptors also offers a potential alternative strategy for therapeutic intervention. In this review we discuss the history and current state of photoreceptor transplantation, the techniques used to assess rescue of visual function, the prerequisites for effective transplantation as well as the main roadblocks, including safety and immune response to the graft, that need to be overcome for successful clinical translation of photoreceptor transplantation approaches.
Collapse
Affiliation(s)
- Sylvia J Gasparini
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Sílvia Llonch
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Oliver Borsch
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Marius Ader
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany.
| |
Collapse
|