1
|
Jiang J, Zhang L, Zou J, Liu J, Yang J, Jiang Q, Duan P, Jiang B. Phosphorylated S6K1 and 4E-BP1 play different roles in constitutively active Rheb-mediated retinal ganglion cell survival and axon regeneration after optic nerve injury. Neural Regen Res 2023; 18:2526-2534. [PMID: 37282486 PMCID: PMC10360084 DOI: 10.4103/1673-5374.371372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
Ras homolog enriched in brain (Rheb) is a small GTPase that activates mammalian target of rapamycin complex 1 (mTORC1). Previous studies have shown that constitutively active Rheb can enhance the regeneration of sensory axons after spinal cord injury by activating downstream effectors of mTOR. S6K1 and 4E-BP1 are important downstream effectors of mTORC1. In this study, we investigated the role of Rheb/mTOR and its downstream effectors S6K1 and 4E-BP1 in the protection of retinal ganglion cells. We transfected an optic nerve crush mouse model with adeno-associated viral 2-mediated constitutively active Rheb and observed the effects on retinal ganglion cell survival and axon regeneration. We found that overexpression of constitutively active Rheb promoted survival of retinal ganglion cells in the acute (14 days) and chronic (21 and 42 days) stages of injury. We also found that either co-expression of the dominant-negative S6K1 mutant or the constitutively active 4E-BP1 mutant together with constitutively active Rheb markedly inhibited axon regeneration of retinal ganglion cells. This suggests that mTORC1-mediated S6K1 activation and 4E-BP1 inhibition were necessary components for constitutively active Rheb-induced axon regeneration. However, only S6K1 activation, but not 4E-BP1 knockdown, induced axon regeneration when applied alone. Furthermore, S6K1 activation promoted the survival of retinal ganglion cells at 14 days post-injury, whereas 4E-BP1 knockdown unexpectedly slightly decreased the survival of retinal ganglion cells at 14 days post-injury. Overexpression of constitutively active 4E-BP1 increased the survival of retinal ganglion cells at 14 days post-injury. Likewise, co-expressing constitutively active Rheb and constitutively active 4E-BP1 markedly increased the survival of retinal ganglion cells compared with overexpression of constitutively active Rheb alone at 14 days post-injury. These findings indicate that functional 4E-BP1 and S6K1 are neuroprotective and that 4E-BP1 may exert protective effects through a pathway at least partially independent of Rheb/mTOR. Together, our results show that constitutively active Rheb promotes the survival of retinal ganglion cells and axon regeneration through modulating S6K1 and 4E-BP1 activity. Phosphorylated S6K1 and 4E-BP1 promote axon regeneration but play an antagonistic role in the survival of retinal ganglion cells.
Collapse
Affiliation(s)
- Jikuan Jiang
- Department of Ophthalmology, Second Xiangya Hospital, Central South University; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan Province, China
| | - Lusi Zhang
- Department of Ophthalmology, Second Xiangya Hospital, Central South University; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan Province, China
| | - Jingling Zou
- Department of Ophthalmology, Second Xiangya Hospital, Central South University; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan Province, China
| | - Jingyuan Liu
- Department of Ophthalmology, Second Xiangya Hospital, Central South University; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan Province, China
| | - Jia Yang
- Department of Ophthalmology, Second Xiangya Hospital, Central South University; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan Province, China
| | - Qian Jiang
- Department of Ophthalmology, Second Xiangya Hospital, Central South University; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan Province, China
| | - Peiyun Duan
- Department of Ophthalmology, Second Xiangya Hospital, Central South University; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan Province, China
| | - Bing Jiang
- Department of Ophthalmology, Second Xiangya Hospital, Central South University; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan Province, China
| |
Collapse
|
2
|
Melatonin protects against NMDA-induced retinal ganglion cell injury by regulating the microglia-TNFα-RGC p38 MAPK pathway. Int Immunopharmacol 2023; 118:109976. [PMID: 37098655 DOI: 10.1016/j.intimp.2023.109976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/16/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
Glaucoma, one of the most common ocular neurodegenerative diseases worldwide, is characterized by retinal ganglion cell (RGC) loss. There is a large body of literature that describes the neuroprotective role of melatonin against neurodegenerative diseases by regulating neuroinflammation, although the exact mechanism through which melatonin acts on RGC is still uncertain. This study assessed the protective effects of melatonin using a NMDA-induced RGC injury model, and studied the possible mechanisms involved in this process. Melatonin promoted RGC survival, improved retinal function, and inhibited the apoptosis and necrosis of retinal cells. To understand the mechanism of the neuroprotective effects of melatonin on RGC, microglia and inflammation-related pathways were assessed after melatonin administration and microglia ablation. Melatonin promoted RGC survival by suppressing microglia-derived proinflammatory cytokines, in particular TNFα, which in turn inhibited the activation of p38 MAPK pathway. Inhibiting TNFα or manipulating p38 MAPK pathway protected damaged RGC. Our results suggest that melatonin protects against NMDA-induced RGC injury by inhibiting the microglial TNFα-RGC p38 MAPK pathway. It should be considered a candidate neuroprotective therapy against retinal neurodegenerative diseases.
Collapse
|
3
|
Lagali PS, Shanmugalingam U, Baker AN, Mezey N, Smith PD, Coupland SG, Tsilfidis C. Assessment of the uniform field electroretinogram for mouse retinal ganglion cell functional analysis. Doc Ophthalmol 2023:10.1007/s10633-023-09933-y. [PMID: 37106219 DOI: 10.1007/s10633-023-09933-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 03/26/2023] [Indexed: 04/29/2023]
Abstract
PURPOSE The uniform field electroretinogram (UF-ERG) has been suggested as an alternative to the pattern electroretinogram (PERG) for non-invasive assessment of retinal ganglion cell (RGC) function in primates. We evaluated the validity of the UF-ERG to assess mouse RGC activity in vivo. METHODS Unilateral optic nerve crush (ONC) was performed on adult C57BL/6J mice. Contralateral eyes with uncrushed optic nerves and eyes from surgically naive mice served as experimental controls. Electrophysiological visual assessment was performed at 12 weeks post-ONC. Flash-mediated visual-evoked cortical potentials (VEPs) were measured to confirm the robustness of the ONC procedure. Full-field flash ERGs were used to interrogate photoreceptor and retinal bipolar cell function. RGC function was assessed with pattern ERGs. Summed onset and offset UF-ERG responses to alternating dark and light uniform field flash stimuli of different intensities and wavelengths were recorded from ONC and control eyes, and relative differences were compared to the PERG results. Following electrophysiological analysis, RGC loss was monitored by immunohistochemical staining of the RGC marker protein, RBPMS, in post-mortem retinal tissues. RESULTS ONC dramatically impacts RGC integrity and optic nerve function, demonstrated by reduced RGC counts and near complete elimination of VEPs. ONC did not affect scotopic ERG a-wave and b-wave amplitudes, while PERG amplitudes of eyes subjected to ONC were reduced by approximately 50% compared to controls. Summation of ON and OFF UF-ERG responses did not reveal statistically significant differences between ONC and control eyes, regardless of visual stimulus. CONCLUSIONS PERG responses are markedly impaired upon ONC, while UF-ERG responses are not significantly affected by surgical trauma to RGC axons in mice. The more closely related pattern and uniform field ERGs recorded in primates suggests species-specific differences in RGC features or subpopulations corresponding to PERG and UF-ERG response generators, limiting the utility of the UF-ERG for mouse RGC functional analysis.
Collapse
Affiliation(s)
- Pamela S Lagali
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- University of Ottawa Eye Institute, The Ottawa Hospital, Ottawa, ON, K1H 8L6, Canada
| | | | - Adam N Baker
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- University of Ottawa Eye Institute, The Ottawa Hospital, Ottawa, ON, K1H 8L6, Canada
| | - Natalie Mezey
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Patrice D Smith
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Stuart G Coupland
- University of Ottawa Eye Institute, The Ottawa Hospital, Ottawa, ON, K1H 8L6, Canada
- Department of Ophthalmology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Catherine Tsilfidis
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada.
- University of Ottawa Eye Institute, The Ottawa Hospital, Ottawa, ON, K1H 8L6, Canada.
- Department of Ophthalmology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
4
|
Su Y, Ai S, Shen Y, Cheng W, Xu C, Sui L, Zhao Y. Regulatory Effects of Three-Dimensional Cultured Lipopolysaccharide-Pretreated Periodontal Ligament Stem Cell-Derived Secretome on Macrophages. Int J Mol Sci 2023; 24:ijms24086981. [PMID: 37108145 PMCID: PMC10139044 DOI: 10.3390/ijms24086981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Phenotypic transformation of macrophages plays important immune response roles in the occurrence, development and regression of periodontitis. Under inflammation or other environmental stimulation, mesenchymal stem cells (MSCs) exert immunomodulatory effects through their secretome. It has been found that secretome derived from lipopolysaccharide (LPS)-pretreated or three-dimensional (3D)-cultured MSCs significantly reduced inflammatory responses in inflammatory diseases, including periodontitis, by inducing M2 macrophage polarization. In this study, periodontal ligament stem cells (PDLSCs) pretreated with LPS were 3D cultured in hydrogel (termed SupraGel) for a certain period of time and the secretome was collected to explore its regulatory effects on macrophages. Expression changes of immune cytokines in the secretome were also examined to speculate on the regulatory mechanisms in macrophages. The results indicated that PDLSCs showed good viability in SupraGel and could be separated from the gel by adding PBS and centrifuging. The secretome derived from LPS-pretreated and/or 3D-cultured PDLSCs all inhibited the polarization of M1 macrophages, while the secretome derived from LPS-pretreated PDLSCs (regardless of 3D culture) had the ability to promote the polarization of M1 to M2 macrophages and the migration of macrophages. Cytokines involved in the production, migration and polarization of macrophages, as well as multiple growth factors, increased in the PDLSC-derived secretome after LPS pretreatment and/or 3D culture, which suggested that the secretome had the potential to regulate macrophages and promote tissue regeneration, and that it could be used in the treatment of inflammation-related diseases such as periodontitis in the future.
Collapse
Affiliation(s)
- Yuran Su
- Department of Prosthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Sifan Ai
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Collaborative Innovation Center of Chemical Science and Engineering, and National Institute of Functional Materials, Nankai University, Tianjin 300071, China
| | - Youqing Shen
- Department of Orthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Wen Cheng
- Department of Orthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Chenyu Xu
- Department of Orthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Lei Sui
- Department of Prosthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Yanhong Zhao
- Department of Orthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
5
|
Liu Y, Chen J, Liang H, Cai Y, Li X, Yan L, Zhou L, Shan L, Wang H. Human umbilical cord-derived mesenchymal stem cells not only ameliorate blood glucose but also protect vascular endothelium from diabetic damage through a paracrine mechanism mediated by MAPK/ERK signaling. Stem Cell Res Ther 2022; 13:258. [PMID: 35715841 PMCID: PMC9205155 DOI: 10.1186/s13287-022-02927-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/22/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Endothelial damage is an initial step of macro- and micro-vasculature dysfunctions in diabetic patients, accounting for a high incidence of diabetic vascular complications, such as atherosclerosis, nephropathy, retinopathy, and neuropathy. However, clinic lacks effective therapeutics targeting diabetic vascular complications. In field of regenerative medicine, mesenchymal stem cells, such as human umbilical cord-derived MSCs (hucMSCs), have great potential in treating tissue damage. METHODS To determine whether hucMSCs infusion could repair diabetic vascular endothelial damage and how it works, this study conducted in vivo experiment on streptozotocin-induced diabetic rat model to test body weight, fasting blood glucose (FBG), serum ICAM-1 and VCAM-1 levels, histopathology and immunohistochemical staining of aorta segments. In vitro experiment was further conducted to determine the effects of hucMSCs on diabetic vascular endothelial damage, applying assays of resazurin staining, MTT cell viability, wound healing, transwell migration, and matrigel tube formation on human umbilical vein endothelial cells (HUVECs). RNA sequencing (RNAseq) and molecular experiment were conducted to clarify the mechanism of hucMSCs. RESULTS The in vivo data revealed that hucMSCs partially restore the alterations of body weight, FBG, serum ICAM-1 and VCAM-1 levels, histopathology of aorta and reversed the abnormal phosphorylation of ERK in diabetic rats. By using the conditioned medium of hucMSCs (MSC-CM), the in vitro data revealed that hucMSCs improved cell viability, wound healing, migration and angiogenesis of the high glucose-damaged HUVECs through a paracrine action mode, and the altered gene expressions of IL-6, TNF-α, ICAM-1, VCAM-1, BAX, P16, P53 and ET-1 were significantly restored by MSC-CM. RNAseq incorporated with real-time PCR and Western blot results clarified that high glucose activated MAPK/ERK signaling in HUVECs, while MSC-CM reversed the abnormal phosphorylation of ERK and overexpressions of MKNK2, ERBB3, MYC and DUSP5 in MAPK/ERK signaling pathway. CONCLUSIONS HucMSCs not only ameliorated blood glucose but also protected vascular endothelium from diabetic damage, in which MAPK/ERK signaling mediated its molecular mechanism of paracrine action. Our findings provided novel knowledge of hucMSCs in the treatment of diabetes and suggested a prospective strategy for the clinical treatment of diabetic vascular complications.
Collapse
Affiliation(s)
- Yi Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingan Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haowei Liang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yueqin Cai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinyue Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Yan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China.,Cell Resource Bank and Integrated Cell Preparation Center of Xiaoshan District, Hangzhou Regional Cell Preparation Center (Shangyu Biotechnology Co., Ltd), Hangzhou, China
| | - Li Zhou
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China. .,Cell Resource Bank and Integrated Cell Preparation Center of Xiaoshan District, Hangzhou Regional Cell Preparation Center (Shangyu Biotechnology Co., Ltd), Hangzhou, China.
| | - Hui Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
6
|
GAP-43 Induces the Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells into Retinal Ganglial-Like Cells. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4949206. [PMID: 35495894 PMCID: PMC9050254 DOI: 10.1155/2022/4949206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/26/2022] [Indexed: 11/18/2022]
Abstract
Optic neuritis (ON) is a common neurological disease, and the transplant of retinal ganglion cells (RGCs) has been thought as a promising strategy for improving the injury of the optic nerve system. Bone mesenchymal stem cells (BMSCs) have the potential to differentiate into neural cells. Several studies have indicated that GAP-43 is related with the regeneration of nerve cells, while the effect of GAP-43 on inducing BMSC differentiation remains unclear. In this study, the BMSCs were separated from the rats and identified with flow cytometry assay. The GAP-43 expressed vectors were transfected into the BMSCs, and the biomarkers of RGCs such as PAX6, LHX2, and ATOH7 were used to observe by qRT-PCR. Moreover, the effect of GAP-43-induced BMSCs (G-BMSCs) on ON improvement was also verified with rat models, and the activity of MAPK pathway was measured with western blot. Here, it was found that GAP-43 could obviously promote the differentiation of BMSCs, and increased PAX6, LHX2, ATOH7, BRN3A, and BRN3B were observed in the process of cell differentiation. Moreover, it was also found that G-BMSCs significantly increased the abundances of NFL and NFM in G-BMSCs, and GAP-43 could also enhance the activity of MAPK pathways in BMSCs. Therefore, this study suggested that GAP-43 could induce the differentiation of bone marrow-derived mesenchymal stem cells into retinal ganglial cells.
Collapse
|
7
|
Cell-Based Neuroprotection of Retinal Ganglion Cells in Animal Models of Optic Neuropathies. BIOLOGY 2021; 10:biology10111181. [PMID: 34827174 PMCID: PMC8615038 DOI: 10.3390/biology10111181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022]
Abstract
Retinal ganglion cells (RGCs) comprise a heterogenous group of projection neurons that transmit visual information from the retina to the brain. Progressive degeneration of these cells, as it occurs in inflammatory, ischemic, traumatic or glaucomatous optic neuropathies, results in visual deterioration and is among the leading causes of irreversible blindness. Treatment options for these diseases are limited. Neuroprotective approaches aim to slow down and eventually halt the loss of ganglion cells in these disorders. In this review, we have summarized preclinical studies that have evaluated the efficacy of cell-based neuroprotective treatment strategies to rescue retinal ganglion cells from cell death. Intraocular transplantations of diverse genetically nonmodified cell types or cells engineered to overexpress neurotrophic factors have been demonstrated to result in significant attenuation of ganglion cell loss in animal models of different optic neuropathies. Cell-based combinatorial neuroprotective approaches represent a potential strategy to further increase the survival rates of retinal ganglion cells. However, data about the long-term impact of the different cell-based treatment strategies on retinal ganglion cell survival and detailed analyses of potential adverse effects of a sustained intraocular delivery of neurotrophic factors on retina structure and function are limited, making it difficult to assess their therapeutic potential.
Collapse
|
8
|
Zhou G, Wang Y, Gao S, Fu X, Cao Y, Peng Y, Zhuang J, Hu J, Shao A, Wang L. Potential Mechanisms and Perspectives in Ischemic Stroke Treatment Using Stem Cell Therapies. Front Cell Dev Biol 2021; 9:646927. [PMID: 33869200 PMCID: PMC8047216 DOI: 10.3389/fcell.2021.646927] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke (IS) remains one of the major causes of death and disability due to the limited ability of central nervous system cells to regenerate and differentiate. Although several advances have been made in stroke therapies in the last decades, there are only a few approaches available to improve IS outcome. In the acute phase of IS, mechanical thrombectomy and the administration of tissue plasminogen activator have been widely used, while aspirin or clopidogrel represents the main therapy used in the subacute or chronic phase. However, in most cases, stroke patients fail to achieve satisfactory functional recovery under the treatments mentioned above. Recently, cell therapy, especially stem cell therapy, has been considered as a novel and potential therapeutic strategy to improve stroke outcome through mechanisms, including cell differentiation, cell replacement, immunomodulation, neural circuit reconstruction, and protective factor release. Different stem cell types, such as mesenchymal stem cells, marrow mononuclear cells, and neural stem cells, have also been considered for stroke therapy. In recent years, many clinical and preclinical studies on cell therapy have been carried out, and numerous results have shown that cell therapy has bright prospects in the treatment of stroke. However, some cell therapy issues are not yet fully understood, such as its optimal parameters including cell type choice, cell doses, and injection routes; therefore, a closer relationship between basic and clinical research is needed. In this review, the role of cell therapy in stroke treatment and its mechanisms was summarized, as well as the function of different stem cell types in stroke treatment and the clinical trials using stem cell therapy to cure stroke, to reveal future insights on stroke-related cell therapy, and to guide further studies.
Collapse
Affiliation(s)
- Guoyang Zhou
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongjie Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shiqi Gao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiongjie Fu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Cao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yucong Peng
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianfeng Zhuang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junwen Hu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lin Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Zheng K, Feng G, Zhang J, Xing J, Huang D, Lian M, Zhang W, Wu W, Hu Y, Lu X, Feng X. Basic fibroblast growth factor promotes human dental pulp stem cells cultured in 3D porous chitosan scaffolds to neural differentiation. Int J Neurosci 2020; 131:625-633. [PMID: 32186218 DOI: 10.1080/00207454.2020.1744592] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIM/PURPOSE Dental pulp stem cells (DPSCs) were widely used as seed cells in the field of tissue engineering and regenerative medicine, including spinal cord injury (SCI) repair and other neuronal degenerative diseases, due to their easy isolation, multiple differentiation potential, low immunogenicity and low rates of rejection during transplantation. Various studies have shown that bFGF can enhance peripheral nerve regeneration after injury, and phospho-ERK (p-ERK) activation as a major mediator may be involved in this process. Previous studies also have proved that a suitable biomaterial scaffold can carry and transport the therapeutic cells effectively to the recipient area. It has showed in our earlier experiments that 3D porous chitosan scaffolds exhibited a suitable circumstance for survival and neural differentiation of DPSCs in vitro. The purpose of the study was to evaluate the influence of chitosan scaffolds and bFGF on differentiation of DPSCs. MATERIALS AND METHODS In current study, DPSCs were cultured in chitosan scaffolds and treated with neural differentiation medium for 7 days. The neural genes and protein markers were analyzed by western blot and immunofluorescence. Meanwhile, the relevant signaling pathway involved in this process was also tested. RESULTS Our study revealed that the viability of DPSCs was not influenced by co-culture with the chitosan scaffolds as well as bFGF. Compared with the control and DPSC/chitosan-scaffold groups, the levels of GFAP, S100β and β-tubulin III significantly increased in the DPSC/chitosan-scaffold+bFGF group. CONCLUSION Chitosan scaffolds were non-cytotoxic to the survival of DPSCs, and chitosan scaffolds combined with bFGF facilitated the neural differentiation of DPSCs. The transplantation of DPSCs/chitosan-scaffold+bFGF might be a secure and effective method of treating SCI and other neuronal diseases.
Collapse
Affiliation(s)
- Ke Zheng
- Department of Stomatology, Wuxi No. 2 People's Hospital, Wuxi, China.,Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Guijuan Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jinlong Zhang
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Jing Xing
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Dan Huang
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Min Lian
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Wei Zhang
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Wenli Wu
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yingzi Hu
- Medical College of Nantong University, Nantong, China
| | - Xiaohui Lu
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xingmei Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
10
|
Giannaccare G, Carnevali A, Senni C, Logozzo L, Scorcia V. Umbilical Cord Blood and Serum for the Treatment of Ocular Diseases: A Comprehensive Review. Ophthalmol Ther 2020; 9:235-248. [PMID: 32107737 PMCID: PMC7196109 DOI: 10.1007/s40123-020-00239-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Indexed: 12/30/2022] Open
Abstract
Several blood derivatives have been proposed for the treatment of various ocular diseases that affect either the anterior or the posterior segment of the eye. Blood sources may range from the patient’s own peripheral blood (autologous) to donor tissues, mainly allogeneic peripheral blood and umbilical cord blood (UCB). The utilization of the latter permits the collection of a large amount of serum all at once, and is characterized by therapeutic feasibility in patients with a poor general condition or anemia and blood dyscrasia. Products derived from UCB have two potential uses. First, serum in the form of eye drops can be applied topically onto the ocular surface to efficiently treat anterior segment disorders such as dry eye syndrome or corneal epithelial defects with different etiologies. The rationale for and efficacy of this application derive from the high concentrations of biologically active components and growth factors in UCB, which can nourish the ocular surface. Second, UCB is a source of stem cells, which are used in the field of regenerative medicine because they differentiate into various mature cells, including corneal and retinal cells. Therefore, UCB-derived stem cells have been proposed as a replacement therapy for the treatment of retinal and optic nerve diseases, given that current standard treatments often fail. The present review explores the clinical results that have been obtained using UCB-derived products in the field of ophthalmology, as well as the current limitations of those products in this field. Furthermore, given the promising development of UCB-based therapies, possible future directions in this area are discussed.
Collapse
Affiliation(s)
- Giuseppe Giannaccare
- Department of Ophthalmology, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Adriano Carnevali
- Department of Ophthalmology, University Magna Graecia of Catanzaro, Catanzaro, Italy.
| | - Carlotta Senni
- Ophthalmology Unit, S.Orsola-Malpighi University Hospital, Bologna, Italy
| | - Laura Logozzo
- Department of Ophthalmology, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Vincenzo Scorcia
- Department of Ophthalmology, University Magna Graecia of Catanzaro, Catanzaro, Italy
| |
Collapse
|