1
|
Li J, Zhao T, Sun Y. Interleukin-17A in diabetic retinopathy: The crosstalk of inflammation and angiogenesis. Biochem Pharmacol 2024; 225:116311. [PMID: 38788958 DOI: 10.1016/j.bcp.2024.116311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Diabetic retinopathy (DR) is a severe ocular complication of diabetes which can leads to irreversible vision loss in its late-stage. Chronic inflammation results from long-term hyperglycemia contributes to the pathogenesis and progression of DR. In recent years, the interleukin-17 (IL-17) family have attracted the interest of researchers. IL-17A is the most widely explored cytokine in IL-17 family, involved in various acute and chronic inflammatory diseases. Growing body of evidence indicate the role of IL-17A in the pathogenesis of DR. However, the pro-inflammatory and pro-angiogenic effect of IL-17A in DR have not hitherto been reviewed. Gaining an understanding of the pro-inflammatory role of IL-17A, and how IL-17A control/impact angiogenesis pathways in the eye will deepen our understanding of how IL-17A contributes to DR pathogenesis. Herein, we aimed to thoroughly review the pro-inflammatory role of IL-17A in DR, with focus in how IL-17A impact inflammation and angiogenesis crosstalk.
Collapse
Affiliation(s)
- Jiani Li
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Tantai Zhao
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yun Sun
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China.
| |
Collapse
|
2
|
Gao S, Li N, Lin Z, Zhong Y, Wang Y, Shen X. Inhibition of NLRP3 inflammasome by MCC950 under hypoxia alleviates photoreceptor apoptosis via inducing autophagy in Müller glia. FASEB J 2024; 38:e23671. [PMID: 38752538 DOI: 10.1096/fj.202301922rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/06/2024] [Accepted: 05/02/2024] [Indexed: 07/16/2024]
Abstract
NLRP3 inflammasome activation has emerged as a critical initiator of inflammatory response in ischemic retinopathy. Here, we identified the effect of a potent, selective NLRP3 inhibitor, MCC950, on autophagy and apoptosis under hypoxia. Neonatal mice were exposed to hyperoxia for 5 days to establish oxygen-induced retinopathy (OIR) model. Intravitreal injection of MCC950 was given, and then autophagy and apoptosis markers were assessed. Retinal autophagy, apoptosis, and related pathways were evaluated by western blot, immunofluorescent labeling, transmission electron microscopy, and TUNEL assay. Autophagic activity in Müller glia after NLRP3 inflammasome inhibition, together with its influence on photoreceptor death, was studied using western blot, immunofluorescence staining, mRFP-GFP-LC3 adenovirus transfection, cell viability, proliferation, and apoptosis assays. Results showed that activation of NLRP3 inflammasome in Müller glia was detected in OIR model. MCC950 could improve impaired retinal autophagic flux and attenuate retinal apoptosis while it regulated the retinal AMPK/mTOR/ULK-1 pathway. Suppressed autophagy and depressed proliferation capacity resulting from hypoxia was promoted after MCC950 treatment in Müller glia. Inhibition of AMPK and ULK-1 pathway significantly interfered with the MCC950-induced autophagy activity, indicating MCC950 positively modulated autophagy through AMPK/mTOR/ULK-1 pathway in Müller cells. Furthermore, blockage of autophagy in Müller glia significantly induced apoptosis in the cocultured 661W photoreceptor cells, whereas MCC950 markedly preserved the density of photoreceptor cells. These findings substantiated the therapeutic potential of MCC950 against impaired autophagy and subsequent apoptosis under hypoxia. Such protective effect might involve the modulation of AMPK/mTOR/ULK-1 pathway. Targeting NLRP3 inflammasome in Müller glia could be beneficial for photoreceptor survival under hypoxic conditions.
Collapse
Affiliation(s)
- Shuang Gao
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Na Li
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhongjing Lin
- Department of Ophthalmology, Renji Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yisheng Zhong
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanuo Wang
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xi Shen
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Liu CQ, Liu XY, Ouyang PW, Liu Q, Huang XM, Xiao F, Cui YH, Zhou Q, Pan HW. Ferrostatin-1 attenuates pathological angiogenesis in oxygen-induced retinopathy via inhibition of ferroptosis. Exp Eye Res 2023; 226:109347. [PMID: 36502924 DOI: 10.1016/j.exer.2022.109347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 11/08/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Retinopathy of prematurity (ROP) is a vision-threatening ocular disease that occurs in premature infants, but the underlying mechanism is still unclear. Since oxidative stress has been well documented in the ROP development, we aimed to investigate whether ferroptosis, a new type of cell death characterized by lipid peroxidation and iron overload, is also involved in ROP. We detected the lipid peroxidation, oxidative stress and the expression of ferroptosis markers in the retina of mouse model of oxygen-induced retinopathy. After ferroptosis inhibitor, ferrostatin-1, was administered by intravitreal injection, ferroptosis marker, lipid peroxidation, retinal vasculature and glial cell activation were examined. We found decreased expression of SLC7A11 and GPX4, increased expression of FTH1 and TFRC, as well as increase of lipid peroxidation in the retina of OIR mice. Ferrostatin-1 administration significantly reduced lipid peroxidation, and also reversed the change of ferroptosis marker. Neovascular area and avascular area were suppressed and the pathological vasculature changes including acellular vessels and ghost pericytes were decreased. Microglial cell and Müller cell activation was not evidently influenced by ferrostatin-1 treatment. Our findings suggest that ferroptosis is involved in the pathological angiogenesis and might be a promising target for ROP therapy.
Collapse
Affiliation(s)
- Chao-Qun Liu
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, China; Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiao-Yong Liu
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Pei-Wen Ouyang
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, China; Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
| | - Qun Liu
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiao-Mei Huang
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, China; Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
| | - Fan Xiao
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China; Department of Public Health and Preventive Medicine, Jinan University, Guangzhou, China
| | - Yu-Hong Cui
- Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China; Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Qing Zhou
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, China.
| | - Hong-Wei Pan
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, China; Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
4
|
Wu J, Hu J, Zhang F, Jin Q, Sun X. High glucose promotes IL-17A-induced gene expression through histone acetylation in retinal pigment epithelium cells. Int Immunopharmacol 2022; 110:108893. [DOI: 10.1016/j.intimp.2022.108893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 11/05/2022]
|
5
|
Li Y, Zhou H, Huang Q, Tan W, Cai Y, Wang Z, Zou J, Li B, Yoshida S, Zhou Y. Potential biomarkers for retinopathy of prematurity identified by circular RNA profiling in peripheral blood mononuclear cells. Front Immunol 2022; 13:953812. [PMID: 36081509 PMCID: PMC9447331 DOI: 10.3389/fimmu.2022.953812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose This study aims to reveal the altered expression profiles of circular RNAs (circRNAs) in the peripheral blood mononuclear cells (PBMCs) of patients with retinopathy of prematurity (ROP), and to identify potential biomarkers for ROP diagnosis. Methods Differentially expressed circRNAs in PBMCs of five infants with ROP and five controls were identified using microarray analysis. Twelve altered circRNAs were validated using reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR). Bioinformatic analyses were conducted to predict the circRNA/miRNA interactions, competing endogenous RNA (ceRNA) network, related biological functions, and signaling pathways. Four selected circRNAs in PBMCs were verified using RT-qPCR in another cohort, including 24 infants with ROP and 23 premature controls, and receiver operating characteristic (ROC) curves were used to estimate their potential as diagnostic biomarkers of ROP. Results A total of 54 and 143 circRNAs were significantly up- and down-regulated, respectively, in the PBMCs of patients with ROP compared with controls. Twelve of the significantly altered circRNAs were preliminarily validated by RT-qPCR, which confirmed the reliability of the microarray analysis. The circRNA/miRNA interactions and ceRNA network were displayed according to the altered circRNAs. Three circRNAs (hsa_circRNA_061346, hsa_circRNA_092369, and hsa_circRNA_103554) were identified as potential diagnostic biomarkers for ROP with certain clinical values. Conclusions CircRNAs were significantly altered in PBMCs of treatment-requiring ROP patients. CircRNAs may be used as potential biomarkers and possible therapeutic targets for ROP.
Collapse
Affiliation(s)
- Yun Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Haixiang Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Qian Huang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Wei Tan
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Yuting Cai
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Zicong Wang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Jingling Zou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
- *Correspondence: Yedi Zhou,
| |
Collapse
|
6
|
Gao S, Li N, Wang Y, Lin Z, Zhu Y, Xu J, Zhang Q, Zhu C, Zhou Y, Zhou J, Shen X. Inhibition of vascular endothelial growth factor alleviates neovascular retinopathy with regulated neurotrophic/proinflammatory cytokines through the modulation of DBI-TSPO signaling. FASEB J 2022; 36:e22367. [PMID: 35639422 DOI: 10.1096/fj.202101294rrr] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 04/17/2022] [Accepted: 05/10/2022] [Indexed: 11/11/2022]
Abstract
Diazepam binding inhibitor (DBI)-translocator protein (18kDa) (TSPO) signaling in the retina was reported to possess coordinated macroglia-microglia interactions. We investigated DBI-TSPO signaling and its correlation with vascular endothelial growth factor (VEGF), neurotrophic or inflammatory cytokines in neovascular retinopathy, and under hypoxic conditions. The vitreous expression of DBI, VEGF, nerve growth factor (NGF), and interleukin-1beta (IL-1β) were examined in proliferative diabetic retinopathy (PDR) patients with or without anti-VEGF therapy and nondiabetic controls. Retinal DBI-TSPO signaling and the effect of the anti-VEGF agent were evaluated in a mouse model of oxygen-induced retinopathy (OIR). Interactions between Müller cell-derived VEGF and DBI, as well as cocultured microglial cells under hypoxic conditions, were studied, using Western blot, real-time RT-PCR, enzyme-linked immunosorbent assay (ELISA), flow cytometry, and immunofluorescent labeling. Results showed that vitreous levels of DBI, VEGF, NGF, and IL-1β were significantly higher in PDR patients compared with controls, which further changed after anti-VEGF therapy. A statistical association was found between vitreous DBI and VEGF, NGF, IL-1β, and age. The application of the anti-VEGF agent in the OIR model induced retinal expression of DBI and NGF, and attenuated inflammation and microglial cell activation. Inhibition of Müller cell-derived VEGF could increase its DBI expression under hypoxic conditions, while the DBI-TSPO signaling pathway is essential for anti-VEGF agents exerting anti-inflammatory and neuroprotective effects, as well as limiting inflammatory magnitude, promoting its neurotrophin production and anti-inflammatory (M2) polarization in microglial cells. These findings suggest the beneficial effect of anti-VEGF therapy on inflammation and neurotrophy of retinal glial cells through modulation of the DBI-TSPO signaling pathway.
Collapse
Affiliation(s)
- Shuang Gao
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Na Li
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanuo Wang
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhongjing Lin
- Department of Ophthalmology, Renji Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanji Zhu
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianmin Xu
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiong Zhang
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Caihong Zhu
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yingming Zhou
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jia Zhou
- Department of Ophthalmology, Ruijin Hospital, LuWan Branch, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xi Shen
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Zhu M, Gao S, Gao S, Wang Y, Li N, Shen X. Interleukin-17A attenuates photoreceptor cell apoptosis in streptozotocin-induced diabetic mouse model. Bioengineered 2022; 13:14175-14187. [PMID: 35730427 PMCID: PMC9342149 DOI: 10.1080/21655979.2022.2084241] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Diabetic retinopathy (DR) represents an important microvascular complication of diabetes, which is the top etiology of vision impairment worldwide. Although interleukin (IL)-17A is increasingly implicated in DR development, the underlying cellular mechanisms remain poorly defined. This work aims to evaluate IL-17A levels in the retina of streptozotocin (STZ)-induced diabetic mice and elucidate their potential roles. We found IL-17A was upregulated in diabetic retina after intraperitoneal injection of STZ and high-glucose (HG)-cultured primary Müller cells. IL-17A knockout (IL-17A−/−) downregulated glial fibrillary acidic protein (GFAP) and inhibited the conversion of proneurotrophin-3 (proNT-3) to mature NT-3 in retinal specimens from diabetic mice as well as in Müller cells cultured under HG conditions. Induced apoptosis and upregulated Bax and cleaved caspase-3 were observed in retinal specimens from IL-17A−/− diabetic mice and photoreceptor (661 W) cells after co-culture with IL-17A−/− Müller cells. Moreover, RNA interference-induced gene silencing of tyrosine kinase C receptor (TrkC) in 661 W cells reversed the anti-apoptotic effect of IL-17A under HG conditions. Taken together, our findings suggest that IL-17A/NT-3/TrkC axis regulation suppresses apoptosis in photoreceptor cells, providing a new treatment strategy for DR.
Collapse
Affiliation(s)
- Minqi Zhu
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shuang Gao
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Sha Gao
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanuo Wang
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Na Li
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xi Shen
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Sun L, Wang R, Hu G, Liu H, Lv K, Duan Y, Shen N, Wu J, Hu J, Liu Y, Jin Q, Zhang F, Xu X. Single cell RNA sequencing (scRNA-Seq) deciphering pathological alterations in streptozotocin-induced diabetic retinas. Exp Eye Res 2021; 210:108718. [PMID: 34364890 DOI: 10.1016/j.exer.2021.108718] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 08/01/2021] [Accepted: 08/04/2021] [Indexed: 11/28/2022]
Abstract
Diabetic retinopathy (DR) is an irreversible and progressive diabetic complication leading to visual impairment, even blindness. Due to the delicate and complicated structure of the retina, the pathology of DR has not been completely elucidated yet. We constructed a transcriptome atlas of >14,000 single cells from healthy and streptozotocin (STZ)-induced diabetic murine retinas to decipher pathological alterations of DR. We found four stress-inducible genes Cirbp, Rmb3, Mt1 and Mt2 commonly induced in most types of retinal cells. Bipolar cells were little affected on both number and gene expression. Diabetes increased expression of inflammatory factor genes in retinal microglia, and stimulated expression of immediate early genes (IEGs) in retinal astrocytes. A large number of genes were deregulated in diabetic vascular endothelial cells (ECs), and the differentially expressed genes were paired to the pathways functioning in metabolism, shear stress and vascular permeability. These pathways were mapped by more deregulated genes in a subpopulation of ECs specifically presented in diabetic retinas (diabetic retinal ECs, DRECs). Moreover, several inflammation pathways were activated in DRECs, and the most significant one is the IL-17 signaling pathway. According to the EC markers, DRECs were mainly capillary ECs, confirmed by immunofluorescent staining of S100a9, a target gene of the IL-17 signaling pathway. This study deciphered pathological alterations of DR, and provided clues for potential targets for DR therapy.
Collapse
Affiliation(s)
- Licheng Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, 200080, Shanghai, China; National Clinical Research Center for Eye Diseases, 200080, Shanghai, China; Shanghai Key Laboratory of Fundus Diseases, 200080, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, 200080, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, 200080, Shanghai, China
| | - Ruonan Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, 200080, Shanghai, China; National Clinical Research Center for Eye Diseases, 200080, Shanghai, China; Shanghai Key Laboratory of Fundus Diseases, 200080, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, 200080, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, 200080, Shanghai, China
| | - Guangyi Hu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, 200080, Shanghai, China; National Clinical Research Center for Eye Diseases, 200080, Shanghai, China; Shanghai Key Laboratory of Fundus Diseases, 200080, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, 200080, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, 200080, Shanghai, China
| | - Huazhen Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, 200080, Shanghai, China; National Clinical Research Center for Eye Diseases, 200080, Shanghai, China; Shanghai Key Laboratory of Fundus Diseases, 200080, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, 200080, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, 200080, Shanghai, China
| | - Kangjia Lv
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, 200080, Shanghai, China; National Clinical Research Center for Eye Diseases, 200080, Shanghai, China; Shanghai Key Laboratory of Fundus Diseases, 200080, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, 200080, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, 200080, Shanghai, China
| | - Yi Duan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, 200080, Shanghai, China; National Clinical Research Center for Eye Diseases, 200080, Shanghai, China; Shanghai Key Laboratory of Fundus Diseases, 200080, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, 200080, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, 200080, Shanghai, China
| | - Ning Shen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, 200080, Shanghai, China; National Clinical Research Center for Eye Diseases, 200080, Shanghai, China; Shanghai Key Laboratory of Fundus Diseases, 200080, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, 200080, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, 200080, Shanghai, China
| | - Jiali Wu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, 200080, Shanghai, China; National Clinical Research Center for Eye Diseases, 200080, Shanghai, China; Shanghai Key Laboratory of Fundus Diseases, 200080, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, 200080, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, 200080, Shanghai, China
| | - Jing Hu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, 200080, Shanghai, China; National Clinical Research Center for Eye Diseases, 200080, Shanghai, China; Shanghai Key Laboratory of Fundus Diseases, 200080, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, 200080, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, 200080, Shanghai, China
| | - Yujuan Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, 200080, Shanghai, China; National Clinical Research Center for Eye Diseases, 200080, Shanghai, China; Shanghai Key Laboratory of Fundus Diseases, 200080, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, 200080, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, 200080, Shanghai, China
| | - Qihuang Jin
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, 200080, Shanghai, China; National Clinical Research Center for Eye Diseases, 200080, Shanghai, China; Shanghai Key Laboratory of Fundus Diseases, 200080, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, 200080, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, 200080, Shanghai, China.
| | - Fang Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, 200080, Shanghai, China; National Clinical Research Center for Eye Diseases, 200080, Shanghai, China; Shanghai Key Laboratory of Fundus Diseases, 200080, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, 200080, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, 200080, Shanghai, China.
| | - Xun Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, 200080, Shanghai, China; National Clinical Research Center for Eye Diseases, 200080, Shanghai, China; Shanghai Key Laboratory of Fundus Diseases, 200080, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, 200080, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, 200080, Shanghai, China.
| |
Collapse
|
9
|
Bi W, Wang J, Jiang Y, Li Q, Wang S, Liu M, Liu Q, Li F, Paul C, Wang Y, Yang HT. Neurotrophin-3 contributes to benefits of human embryonic stem cell-derived cardiovascular progenitor cells against reperfused myocardial infarction. Stem Cells Transl Med 2021; 10:756-772. [PMID: 33529481 PMCID: PMC8046156 DOI: 10.1002/sctm.20-0456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/22/2020] [Accepted: 01/09/2021] [Indexed: 12/12/2022] Open
Abstract
Acute myocardial infarction (MI) resulting from coronary ischemia is a major cause of disability and death worldwide. Transplantation of human embryonic stem cell (hESC)‐derived cardiovascular progenitor cells (hCVPCs) promotes the healing of infarcted hearts by secreted factors. However, the hCVPC‐secreted proteins contributing to cardiac repair remain largely unidentified. In this study, we investigated protective effects of neurotrophin (NT)‐3 secreted from hCVPCs in hearts against myocardial ischemia/reperfusion (I/R) injury and explored the underlying mechanisms to determine the potential of using hCVPC products as a new therapeutic strategy. The implantation of hCVPCs into infarcted myocardium at the beginning of reperfusion following 1 hour of ischemia improved cardiac function and scar formation of mouse hearts. These beneficial effects were concomitant with reduced cardiomyocyte death and increased angiogenesis. Moreover, hCVPCs secreted a rich abundance of NT‐3. The cardioreparative effect of hCVPCs in the I/R hearts was mimicked by human recombinant NT‐3 (hNT‐3) but canceled by NT‐3 neutralizing antibody (NT‐3‐Ab). Furthermore, endogenous NT‐3 was detected in mouse adult cardiomyocytes and its level was enhanced in I/R hearts. Adenovirus‐mediated NT‐3 knockdown exacerbated myocardial I/R injury. Mechanistically, hNT‐3 and endogenous NT‐3 inhibited I/R‐induced cardiomyocyte apoptosis through activating the extracellular signal‐regulated kinase (ERK) and reducing the Bim level, resulting in the cardioreparative effects of infarcted hearts together with their effects in the improvement of angiogenesis. These results demonstrate for the first time that NT‐3 is a cardioprotective factor secreted by hCVPCs and exists in adult cardiomyocytes that reduces I/R‐induced cardiomyocyte apoptosis via the ERK‐Bim signaling pathway and promotes angiogenesis. As a cell product, NT‐3 may represent as a noncell approach for the treatment of myocardial I/R injury.
Collapse
Affiliation(s)
- Wei Bi
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine & Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - Jinxi Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine & Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - Yun Jiang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine & Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - Qiang Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine & Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - Shihui Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine & Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - Meilan Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine & Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - Qiao Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine & Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - Fang Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine & Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - Christian Paul
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Huang-Tian Yang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine & Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China.,Translational Medical Center for Stem Cell Therapy & Institute for Heart Failure and Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine and Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, People's Republic of China.,Institute for Stem Cell and Regeneration, CAS, Beijing, People's Republic of China
| |
Collapse
|
10
|
Parrozzani R, Nacci EB, Bini S, Marchione G, Salvadori S, Nardo D, Midena E. Severe retinopathy of prematurity is associated with early post-natal low platelet count. Sci Rep 2021; 11:891. [PMID: 33441659 PMCID: PMC7807000 DOI: 10.1038/s41598-020-79535-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Pathophysiology of retinopathy of prematurity (ROP) still presents a gap. Lately blood tests parameters of premature infants have been measured at different times of ROP, attempting to detect correlations with ROP development and progression. So far, very early post-natal biomarkers, predictive of ROP outcome, have not been detected. Our purpose is to evaluate, in the earliest post birth blood sample, the correlation between routinely dosed blood parameters and ROP outcome. 563 preterm babies, screened according to ROP guidelines, were included and classified in conformity with ET-ROP study in "Group 1" (ROP needing treatment), "Group 2" (ROP spontaneously regressed) and "noROP" group (never developed ROP). The earliest (within an hour after delivery) blood test parameters routinely dosed in each preterm infant were collected. Platelet count was decreased in Group 1 versus noROP group (p = 0.0416) and in Group 2 versus noROP group (p = 0.1093). The difference of thrombocytopenic infants among groups was statistically significant (p = 0.0071). CRP was higher in noROP versus all ROPs (p = 0.0331). First post-natal blood sample revealed a significant thrombocytopenia in ROP needing treatment, suggesting a role of platelets in the pathophysiology and progression of ROP, possibly considering it as a predictive parameter of ROP evolution.
Collapse
Affiliation(s)
| | | | - Silvia Bini
- Department of Ophthalmology, University of Padova, Padova, Italy
| | - Giulia Marchione
- Department of Ophthalmology, University of Padova, Padova, Italy
| | - Sabrina Salvadori
- Department of Woman's and Child's Health, University of Padova, Padova, Italy
| | - Daniel Nardo
- Department of Woman's and Child's Health, University of Padova, Padova, Italy
| | - Edoardo Midena
- Department of Ophthalmology, University of Padova, Padova, Italy.
- IRCCS-Fondazione Bietti, Rome, Italy.
| |
Collapse
|
11
|
miR-126-5p regulates H9c2 cell proliferation and apoptosis under hypoxic conditions by targeting IL-17A. Exp Ther Med 2020; 21:67. [PMID: 33365067 DOI: 10.3892/etm.2020.9499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 06/19/2020] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence has indicated that microRNAs (miRNAs/miRs) regulate the occurrence and development of various diseases, including diabetes, osteoporosis and cardiovascular conditions. However, the role of miRNAs in acute myocardial infarction (AMI) is not completely understood. The present study aimed to evaluate the therapeutic efficacy and mechanisms underlying the effects of miR-126-5p on H9c2 cell proliferation and apoptosis by targeting interleukin (IL)-17A. A total of 40 patients with AMI and 40 healthy volunteers were recruited in the present study and the expression levels of serum miR-126-5p and IL-17A were determined. Following confirmation that IL-17A was a target of miR-126-5p via a dual-luciferase reporter assay, H9c2 cells were exposed to hypoxic conditions. H9c2 cell viability and apoptosis were subsequently assessed. Additionally, the protein expression levels of apoptosis-associated proteins were detected following transfection. Compared with healthy individuals, miR-126-5p expression was significantly decreased in the serum samples of patients with AMI, whereas IL-17A, the target of miR-126-5p, was significantly increased. Following hypoxic treatment, miR-126-5p overexpression enhanced H9c2 cell viability compared with the NC group, which was subsequently reversed following co-transfection with pcDNA3.1-IL-17A. Additionally, the results indicated that hypoxia-induced H9c2 cell apoptosis was significantly reduced following transfection with miR-126-5p mimics via the PI3K/AKT signaling pathway compared with the NC group. The present study indicated that miR-126-5p may serve as a novel miRNA that regulates H9c2 cell viability and apoptosis by targeting IL-17A under hypoxic conditions. Therefore, miR-126-5p may serve as a crucial biomarker for the diagnosis of AMI.
Collapse
|
12
|
Wang B, Han D, Li F, Hou W, Wang L, Meng L, Mou K, Lu S, Zhu W, Zhou Y. Elevated IL-22 in psoriasis plays an anti-apoptotic role in keratinocytes through mediating Bcl-xL/Bax. Apoptosis 2020; 25:663-673. [PMID: 32632545 PMCID: PMC7527361 DOI: 10.1007/s10495-020-01623-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
IL-22 is known to mediate inflammation in psoriasis, while IL-22 binding protein (IL-22BP) binds IL-22 to suppress IL-22 signaling. However, the function of IL-22 in regulating apoptosis in psoriasis remains poorly understood. In this study, we found that IL-22/IL-22R1 in lesional skin and IL-22 in serum from psoriatic patients were highly upregulated compared with healthy controls, while IL-22BP was not changed. Correlations between IL-22/IL-22R1 levels and the thickness of psoriatic lesions suggested that IL-22 might positively regulate abnormal hyperplasia in psoriasis. Apoptotic keratinocytes were increased only in stratum corneum, but not in spinous and basal layers of psoriasis. Moreover, IL-22 promoted cell viability in human epidermal keratinocytes (HEKs). The apoptosis induced by TNF-α and IFN-γ was inhibited in HEKs treated with IL-22, since that IL-22 upregulated Bcl-xL and downregulated Bax production in HEKs in the presence of TNF-α and IFN-γ. In addition, IL-22BP could counteract the anti-apoptotic effect of IL-22. Our finding demonstrates that IL-22 might play an anti-apoptosis role on keratinocytes to balance cell proliferation and apoptosis in psoriatic epidermis.
Collapse
Affiliation(s)
- Bo Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Dan Han
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Fei Li
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Weikun Hou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Osteonecrosis and Joint Reconstruction Ward, Joint Surgery, Xi'an Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Lijuan Wang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Liesu Meng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Kuanhou Mou
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shemin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Wenhua Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
| | - Yan Zhou
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
13
|
Bullock J, Pagan-Mercado G, Becerra SP. Cell-based assays to identify novel retinoprotective agents. MethodsX 2020; 7:101026. [PMID: 32874942 PMCID: PMC7452256 DOI: 10.1016/j.mex.2020.101026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/05/2020] [Indexed: 12/21/2022] Open
Abstract
Degeneration of the retina can lead ultimately to devastating irreversible vision loss, such as in inherited retinitis pigmentosa and age-related macular degeneration. Currently there is no cure to prevent retinal degeneration. Quantitative cell-based assays can be used to test potential drugs that prevent the death of retinal cells. Here, we describe in detail three semi-automated cell-based protocols to identify retinoprotective factors with two retinal cell lines, rat R28 cells and mouse 661W cells. In these protocols, cells are induced to undergo death by photo-oxidation stress, growth factor depletion or cytotoxicity with sodium iodate. Pigment epithelium-derived factor, an established neurotrophic factor for retinal cells, was used as a positive control. We discuss how these protocols will prove useful in high-throughput quantitative screening to identify novel therapeutics for retinal disorders.
Collapse
Affiliation(s)
- Jeanee Bullock
- Section on Protein Structure and Function, LRCMB, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, USA
| | - Glorivee Pagan-Mercado
- Section on Protein Structure and Function, LRCMB, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - S Patricia Becerra
- Section on Protein Structure and Function, LRCMB, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|