1
|
Oshitari T. Translational Research and Therapies for Neuroprotection and Regeneration of the Optic Nerve and Retina: A Narrative Review. Int J Mol Sci 2024; 25:10485. [PMID: 39408817 PMCID: PMC11476551 DOI: 10.3390/ijms251910485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Most retinal and optic nerve diseases pose significant threats to vision, primarily due to irreversible retinal neuronal cell death, a permanent change, which is a critical factor in their pathogenesis. Conditions such as glaucoma, retinitis pigmentosa, diabetic retinopathy, and age-related macular degeneration are the top four leading causes of blindness among the elderly in Japan. While standard treatments-including reduction in intraocular pressure, anti-vascular endothelial growth factor therapies, and retinal photocoagulation-can partially delay disease progression, their therapeutic effects remain limited. To address these shortcomings, a range of neuroprotective and regenerative therapies, aimed at preventing retinal neuronal cell loss, have been extensively studied and increasingly integrated into clinical practice over the last two decades. Several of these neuroprotective therapies have achieved on-label usage worldwide. This narrative review introduces several neuroprotective and regenerative therapies for retinal and optic nerve diseases that have been successfully translated into clinical practice, providing foundational knowledge and success stories that serve as valuable references for researchers in the field.
Collapse
Affiliation(s)
- Toshiyuki Oshitari
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Inohana 1-8-1, Chuo-ku, Chiba 260-8670, Japan; ; Tel.: +81-43-226-2124; Fax: +81-43-224-4162
- Department of Ophthalmology, International University of Health and Welfare School of Medicine, 4-3 Kozunomori, Narita 286-8686, Japan
| |
Collapse
|
2
|
Ruan Y, Buonfiglio F, Gericke A. Adrenoceptors in the Eye - Physiological and Pathophysiological Relevance. Handb Exp Pharmacol 2024; 285:453-505. [PMID: 38082203 DOI: 10.1007/164_2023_702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The autonomic nervous system plays a crucial role in the innervation of the eye. Consequently, it comes as no surprise that catecholamines and their corresponding receptors have been extensively studied and characterized in numerous ocular structures, including the cornea, conjunctiva, lacrimal gland, trabecular meshwork, uvea, and retina. These investigations have unveiled substantial clinical implications, particularly in the context of treating glaucoma, a progressive neurodegenerative disorder responsible for irreversible vision loss on a global scale. The primary therapeutic approaches for glaucoma frequently involve the modulation of α1-, α2-, and β-adrenoceptors, making them pivotal targets. In this chapter, we offer a comprehensive overview of the expression, distribution, and functional roles of adrenoceptors within various components of the eye and its associated structures. Additionally, we delve into the pivotal role of adrenoceptors in the pathophysiology of glaucoma. Furthermore, we provide a concise historical perspective on adrenoceptor research, examine the distinct contributions of individual adrenoceptor subtypes to the treatment of various ocular conditions, and propose potential future avenues of exploration in this field.
Collapse
Affiliation(s)
- Yue Ruan
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
3
|
Xu H, Liu Y, Jin L, Chen X, Chen X, Wang Q, Tang Z. Preparation and Characterization of Ion-Sensitive Brimonidine Tartrate In Situ Gel for Ocular Delivery. Pharmaceuticals (Basel) 2023; 16:ph16010090. [PMID: 36678587 PMCID: PMC9866900 DOI: 10.3390/ph16010090] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Brimonidine tartrate (BRT) is a highly selective α2 adrenergic receptor agonist as treatment for patients with open angle glaucoma and high intraocular pressure. The objective of this study was to formulate an ophthalmic ion-sensitive in situ gel (ISG) of BRT to increase the retention time of the drug and its bioavailability. The optimum formulation of 2 mg/mL BRT-ISG was obtained with 0.45% gellan gum as the gel matrix. In vitro release results showed that the water-soluble drug bromonidine tartrate in ocular in situ gels exhibited a high burst effect and fast release in solution. The results of dialysis membrane permeation showed that there was a significant difference between the commercially available and BRT-ISG groups after 45 min. The results of the pre-corneal retention study indicated that gellan gum can effectively prolong ocular surface retention. Preliminary stability results showed that it should be stored in a cool and dark place, and the formulation under long-term preservation can be basically stable. The pharmacokinetic study of the BRT-ISG in the anterior chamber of the rabbit eye was studied by microdialysis technique, and microdialysis samples were analyzed by LC-MS/MS. The pharmacokinetic study showed that the BRT-ISG reached Cmax (8.16 mg/L) at 93 min after administration, which was 2.7 times that of the BRT eye drops, and the AUC(0-t) (1397.08 mg·min/L) was 3.4 times that of the BRT eye drops. The optimal prescription can prolong the retention time of BRT in front of the cornea and significantly improve the bioavailability of BRT in the eye. Combined with the results of in vitro release, permeation and pre-corneal retention studies, the improvement of BRT-ISG bioavailability in rabbit eyes was found to be mainly due to the retention effect after the mixture of ISG and tears.
Collapse
Affiliation(s)
- Haonan Xu
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Ye Liu
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Lu Jin
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Xu Chen
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Xinghao Chen
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Qiao Wang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou 310013, China
- Correspondence: (Q.W.); (Z.T.)
| | - Zhan Tang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou 310013, China
- Correspondence: (Q.W.); (Z.T.)
| |
Collapse
|
4
|
Chen J, Zhang J, Yang DD, Li ZC, Zhao B, Chen Y, He Z. Clonidine ameliorates cerebral ischemia-reperfusion injury by up-regulating the GluN3 subunits of NMDA receptor. Metab Brain Dis 2022; 37:1829-1841. [PMID: 35727521 DOI: 10.1007/s11011-022-01028-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/04/2022] [Indexed: 10/18/2022]
Abstract
This study aimed to investigate the protective effects of the alpha-2 adrenergic receptor (α2-AR) agonist, clonidine, on the cerebral ischemia-reperfusion (I/R) injury and elaborate the underlying mechanisms. Cerebral I/R model was established by middle cerebral artery occlusion (MCAO) for 2 h followed by reperfusion for 4 h in adult male SD rats. Saline, clonidine and yohimbine (an α2-AR antagonist) were intraperitoneally administered each day for one week before surgery. Neurological deficit was evaluated just before decapitation. TTC staining was applied for correlation of cerebral infarction volume. HE staining was performed to observe the neuron morphology. Immunohistochemical staining was performed to detect the localization and expression of GluN3 proteins. Western blot analysis also was used to detect the expression levels of GluN3 proteins. Our data showed that clonidine ameliorated neurological deficit and reduced the cerebral infarction volume of the rats with cerebral I/R. It is worth noting that treatment with clonidine up-regulated the protein expression of GluN3 in the rats with the cerebral I/R, especially in the cell membrane. Moreover, clonidine also up-regulated the transposition from cytoplasm to cell membrane of GluN3 after cerebral I/R. In addition, yohimbine abolished the neuroprotective effects of clonidine. The results indicated that clonidine played a protective role in cerebral I/R injury through regulation of the protein expression of GluN3 subunits of N-methyl-D-aspartate (NMDA) receptor.
Collapse
Affiliation(s)
- Jing Chen
- Third-Grade Pharmacological Laboratory On Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, People's Republic of China
- Medical College, China Three Gorges University, Yichang, 443002, People's Republic of China
| | - Juan Zhang
- The First People's Hospital of Yichang, Yichang, 443000, People's Republic of China
| | - Dan-Dan Yang
- The Second People's Hospital of China Three Gorges University, Yichang, 443000, People's Republic of China
| | - Zi-Cheng Li
- Third-Grade Pharmacological Laboratory On Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, People's Republic of China
- Medical College, China Three Gorges University, Yichang, 443002, People's Republic of China
| | - Bo Zhao
- Third-Grade Pharmacological Laboratory On Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, People's Republic of China
- Medical College, China Three Gorges University, Yichang, 443002, People's Republic of China
| | - Yue Chen
- Third-Grade Pharmacological Laboratory On Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, People's Republic of China
- Medical College, China Three Gorges University, Yichang, 443002, People's Republic of China
| | - Zhi He
- Third-Grade Pharmacological Laboratory On Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, People's Republic of China.
- Medical College, China Three Gorges University, Yichang, 443002, People's Republic of China.
| |
Collapse
|
5
|
Wang T, Cao L, Jiang Q, Zhang T. Topical Medication Therapy for Glaucoma and Ocular Hypertension. Front Pharmacol 2021; 12:749858. [PMID: 34925012 PMCID: PMC8672036 DOI: 10.3389/fphar.2021.749858] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022] Open
Abstract
Glaucoma is one of the most common causes of blindness, thus seriously affecting people’s health and quality of life. The topical medical therapy is as the first line treatment in the management of glaucoma since it is inexpensive, convenient, effective, and safe. This review summarizes and compares extensive clinical trials on the topical medications for the treatment of glaucoma, including topical monotherapy agents, topical fixed-combination agents, topical non-fixed combination agents, and their composition, mechanism of action, efficacy, and adverse effects, which will provide reference for optimal choice of clinical medication. Fixed-combination therapeutics offer greater efficacy, reliable security, clinical compliance, and tolerance than non-fixed combination agents and monotherapy agents, which will become a prefer option for the treatment of glaucoma. Meanwhile, we also discuss new trends in the field of new fixed combinations of medications, which may better control IOP and treat glaucoma.
Collapse
Affiliation(s)
- Tao Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Linlin Cao
- Department of Pharmaceutics, The Second Hospital of Dalian Medical University, Dalian, China
| | - Qikun Jiang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Tianhong Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
6
|
Polydopamine nanoparticles attenuate retina ganglion cell degeneration and restore visual function after optic nerve injury. J Nanobiotechnology 2021; 19:436. [PMID: 34930292 PMCID: PMC8686547 DOI: 10.1186/s12951-021-01199-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022] Open
Abstract
Background Oxidative stress contributes to retina ganglion cells (RGCs) loss in variety of ocular diseases, including ocular trauma, ocular vein occlusion, and glaucoma. Scavenging the excessed reactive oxygen species (ROS) in retinal neurovascular unit could be beneficial to RGCs survival. In this study, a polydopamine (PDA)-based nanoplatform is developed to protect RGCs. Results The PDA nanoparticles efficiently eliminate multi-types of ROS, protect endothelia and neuronal cells from oxidative damage, and inhibit microglia activation in retinas. In an optic nerve crush (ONC) model, single intravitreal injection of PDA nanoparticles could significantly attenuate RGCs loss via eliminating ROS in retinas, reducing the inflammatory response and maintaining barrier function of retinal vascular endothelia. Comparative transcriptome analysis of the retina implied that PDA nanoparticles improve RGCs survival probably by altering the expression of genes involved in inflammation and ROS production. Importantly, as a versatile drug carrier, PDA nanoparticles could deliver brimonidine (a neuroprotection drug) to synergistically attenuate RGCs loss and promote axon regeneration, thus restore visual function. Conclusions The PDA nanoparticle-based therapeutic nanoplatform displayed excellent performance in ROS elimination, providing a promising probability for treating retinal degeneration diseases. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01199-3.
Collapse
|
7
|
Çalışkan B, Öztürk Kesebir A, Demir Y, Akyol Salman İ. The effect of brimonidine and proparacaine on metabolic enzymes: Glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and glutathione reductase. Biotechnol Appl Biochem 2021; 69:281-288. [PMID: 33438819 DOI: 10.1002/bab.2107] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/06/2021] [Indexed: 12/17/2022]
Abstract
Oxidative stress is to upregulate the pentose phosphate pathway (PPP). The PPP consists of two functional branches, glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconaste dehydrogenase (6PGD). Glutathione reductase (GR) has a significant role in catalyzing an oxidized glutathione form into a reduced form. The purpose of this study is to investigate the effects of brimonidine and proparacaine on the activity of 6PGD, G6PD, and GR enzymes purified from human erythrocytes. Brimonidine displayed considerable inhibition profile against G6PD with IC50 value and KI constant of 29.93 ± 3.56 and 48.46 ± 0.66 μM, respectively. On the other hand, proparacaine had no inhibitory effect against G6PD. KI values were found to be 66.06 ± 0.78 and 811.50 ± 11.13 μM for brimonidine and proparacaine, respectively, for 6PGD. KI values were found to be 144.10 ± 2.01 and 1,654.00 ± 26.29 μM for brimonidine and proparacaine, respectively, for GR. Herein, also in silico molecular docking studies were performed between drugs and enzymes.
Collapse
Affiliation(s)
- Büşra Çalışkan
- Department of Ophthalmology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Arzu Öztürk Kesebir
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - İlknur Akyol Salman
- Department of Ophthalmology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
8
|
A Topical Formulation of Melatoninergic Compounds Exerts Strong Hypotensive and Neuroprotective Effects in a Rat Model of Hypertensive Glaucoma. Int J Mol Sci 2020; 21:ijms21239267. [PMID: 33291737 PMCID: PMC7730513 DOI: 10.3390/ijms21239267] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 02/08/2023] Open
Abstract
Melatonin is of great importance for regulating several eye processes, including pressure homeostasis. Melatonin in combination with agomelatine has been recently reported to reduce intraocular pressure (IOP) with higher efficacy than each compound alone. Here, we used the methylcellulose (MCE) rat model of hypertensive glaucoma, an optic neuropathy characterized by the apoptotic death of retinal ganglion cells (RGCs), to evaluate the hypotensive and neuroprotective efficacy of an eye drop nanomicellar formulation containing melatonin/agomelatine. Eye tissue distribution of melatonin/agomelatine in healthy rats was evaluated by HPLC/MS/MS. In the MCE model, we assessed by tonometry the hypotensive efficacy of melatonin/agomelatine. Neuroprotection was revealed by electroretinography; by levels of inflammatory and apoptotic markers; and by RGC density. The effects of melatonin/agomelatine were compared with those of timolol (a beta blocker with prevalent hypotensive activity) or brimonidine (an alpha 2 adrenergic agonist with potential neuroprotective efficacy), two drugs commonly used to treat glaucoma. Both melatonin and agomelatine penetrate the posterior segment of the eye. In the MCE model, IOP elevation was drastically reduced by melatonin/agomelatine with higher efficacy than that of timolol or brimonidine. Concomitantly, gliosis-related inflammation and the Bax-associated apoptosis were partially prevented, thus leading to RGC survival and recovered retinal dysfunction. We suggest that topical melatoninergic compounds might be beneficial for ocular health.
Collapse
|
9
|
The Role of Adrenoceptors in the Retina. Cells 2020; 9:cells9122594. [PMID: 33287335 PMCID: PMC7761662 DOI: 10.3390/cells9122594] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 01/16/2023] Open
Abstract
The retina is a part of the central nervous system, a thin multilayer with neuronal lamination, responsible for detecting, preprocessing, and sending visual information to the brain. Many retinal diseases are characterized by hemodynamic perturbations and neurodegeneration leading to vision loss and reduced quality of life. Since catecholamines and respective bindings sites have been characterized in the retina, we systematically reviewed the literature with regard to retinal expression, distribution and function of alpha1 (α1)-, alpha2 (α2)-, and beta (β)-adrenoceptors (ARs). Moreover, we discuss the role of the individual adrenoceptors as targets for the treatment of retinal diseases.
Collapse
|
10
|
Benning L, Reinehr S, Grotegut P, Kuehn S, Stute G, Dick HB, Joachim SC. Synapse and Receptor Alterations in Two Different S100B-Induced Glaucoma-Like Models. Int J Mol Sci 2020; 21:ijms21196998. [PMID: 32977518 PMCID: PMC7583988 DOI: 10.3390/ijms21196998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 09/20/2020] [Indexed: 11/03/2022] Open
Abstract
Glaucoma is identified by an irreversible retinal ganglion cell (RGC) loss and optic nerve damage. Over the past few years, the immune system gained importance in its genesis. In a glaucoma-like animal model with intraocular S100B injection, RGC death occurs at 14 days. In an experimental autoimmune glaucoma model with systemic S100B immunization, a loss of RGCs is accompanied by a decreased synaptic signal at 28 days. Here, we aimed to study synaptic alterations in these two models. In one group, rats received a systemic S100B immunization (n = 7/group), while in the other group, S100B was injected intraocularly (n = 6–7/group). Both groups were compared to appropriate controls and investigated after 14 days. While inhibitory post-synapses remained unchanged in both models, excitatory post-synapses degenerated in animals with intraocular S100B injection (p = 0.03). Excitatory pre-synapses tendentially increased in animals with systemic S100B immunization (p = 0.08) and significantly decreased in intraocular ones (p = 0.04). Significantly more N-methyl-d-aspartate (NMDA) receptors (both p ≤ 0.04) as well as gamma-aminobutyric acid (GABA) receptors (both p < 0.03) were observed in S100B animals in both models. We assume that an upregulation of these receptors causes the interacting synapse types to degenerate. Heightened levels of excitatory pre-synapses could be explained by remodeling followed by degeneration.
Collapse
|
11
|
Liu Y, Wang J, Jin X, Xin Z, Wu X, Tong X, Tao Y, Wang D. A novel rat model of ocular hypertension by a single intracameral injection of cross-linked hyaluronic acid hydrogel (Healaflow ® ). Basic Clin Pharmacol Toxicol 2020; 127:361-370. [PMID: 32383327 DOI: 10.1111/bcpt.13430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/26/2020] [Accepted: 05/03/2020] [Indexed: 12/28/2022]
Abstract
To create a novel animal model of ocular hypertension via the intracameral injection of Healaflow. Unilateral chronic ocular hypertension model of rats was created by the intracameral injection of 3 μL Healaflow. The IOP of subjects was monitored. Dynamic morphological changes were evaluated by fundus imaging, OCT and histological examination. Visual function changes were measured by electroretinography and flash visual-evoked potentials. 24 and 72 hours after injection, the retinal tissue was collected for transcriptome analysis. The expression levels of related genes and proteins were further evaluated by qRT-PCR and Western blotting. The IOP peaked within 1 day after a single intracameral injection of Healaflow and then decreased gradually within 4 weeks. Furthermore, the persistently degenerating retinal ganglion cells occurred within 4 weeks. The visual function of these rats was also impaired. The results of transcriptome analyses, qRT-PCR and Western blotting showed that the expression levels of B2m, Ikzf1 and Stat3 were up-regulated, while the expression levels of Six3 and Prss56 were down-regulated in the retinal tissues. Intracameral injection of Healaflow is an effective approach to induce glaucomatous neurodegeneration in rats. Six3 and Prss56 may be involved in the pathogenesis of progressive glaucomatous damage.
Collapse
Affiliation(s)
- Ying Liu
- Department of ophthalmology, The First Medical Center, Chinese PLA General Hospital, Beijing, China.,Department of Ophthalmology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Jichen Wang
- First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Xin Jin
- Department of ophthalmology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhiyuan Xin
- Department of ophthalmology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xing Wu
- Department of ophthalmology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xu Tong
- Department of ophthalmology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ye Tao
- Department of Ophthalmology, Henan Provincial People's Hospital, People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Dajiang Wang
- Department of ophthalmology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|